JPS6167203A - Non-vulcanized type rubber magnet - Google Patents

Non-vulcanized type rubber magnet

Info

Publication number
JPS6167203A
JPS6167203A JP18821984A JP18821984A JPS6167203A JP S6167203 A JPS6167203 A JP S6167203A JP 18821984 A JP18821984 A JP 18821984A JP 18821984 A JP18821984 A JP 18821984A JP S6167203 A JPS6167203 A JP S6167203A
Authority
JP
Japan
Prior art keywords
rubber
ethylene
rubber magnet
epm
epdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18821984A
Other languages
Japanese (ja)
Inventor
Masao Yasuda
安田 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP18821984A priority Critical patent/JPS6167203A/en
Publication of JPS6167203A publication Critical patent/JPS6167203A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • H01F1/117Flexible bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a rubber magnet of high mechanical strength by using a uniform mixture in a specific ratio of a metal oxide magnetic power, EPM or EPDM containing a specific quantity of ethylene, and fatty acid or metal salt. CONSTITUTION:Uniform mixture of one or more kinds of 62-68vol% metal oxide magnetic powders such as barium ferrite and strontium ferrite magnetic powders, an ethylene propylene rubber base composed of EPM or EPDM containing 60wt% or more ethylene, and fatty acid or metal salt thereof corre sponding to 5-15wt% or more of the rubber base is used. For instance, a com pound of a 63.8vol% strontium ferrite magnetic powder, EPDM containing 75wt% ethylene whose Mooney viscosity (ML1+4 100 deg.C) is 90, and 3-15phr stearic acid zinc is mixed and kneaded in a kneader for about 10min. This mixed and kneaded material is passed through two rolls about 10 times, then it is elongated so that it has a thickness of about 3mm, whereby a steet rubber magnet is obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はゴム磁石に関し、特に無加硫型ゴム磁石に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a rubber magnet, and particularly to an unvulcanized rubber magnet.

〔従来技術〕[Prior art]

ゴム磁石の製造には各種天然及び合成ゴムが使用されて
おり、バリウムフェライトやストロンチウム7エライト
のような硬磁性材料の粉末をゴムベースに混合するに当
り、各覆添加剤の1つとして加硫剤を添加し、均一混合
し、所定の形状、に成形した後150℃前後の高温度で
数十分ないし数時間加硫を行って機械的強度等の高いす
ぐれたゴム磁石を得ている。
Various natural and synthetic rubbers are used in the production of rubber magnets, and when powdered hard magnetic materials such as barium ferrite and strontium 7-elite are mixed into the rubber base, vulcanization is used as one of the additives. After adding the additive and uniformly mixing it and molding it into a predetermined shape, it is vulcanized at a high temperature of around 150° C. for several tens of minutes to several hours to obtain an excellent rubber magnet with high mechanical strength.

このような加硫処理はゴム磁石の製造に望ましいもので
はあるが、加硫処理に加熱装置が必要であり、消費エネ
ルギーが大きくなり、また加硫処理に時間がかかる欠点
がある。その上、一旦加硫処理が終るとゴム分子は架橋
しているから、製造工程中でゴム磁石に欠けや割れが発
生すると最早再生処理は不可能であり、不良品として廃
棄せざるを得す、資源利用の面からも問題があった。又
熱可塑性樹脂、例えば塩化ビニル、ポリエチレン等をペ
ースにした樹脂マグネットもあるが、高温での緒特性が
良好とは言えなかった。
Although such a vulcanization process is desirable for manufacturing rubber magnets, it requires a heating device for the vulcanization process, consumes a large amount of energy, and has the disadvantage that the vulcanization process takes a long time. Furthermore, once the vulcanization process is completed, the rubber molecules are crosslinked, so if a rubber magnet is chipped or cracked during the manufacturing process, it is no longer possible to recycle it and it must be discarded as a defective product. There were also problems in terms of resource utilization. There are also resin magnets based on thermoplastic resins such as vinyl chloride, polyethylene, etc., but their properties at high temperatures cannot be said to be good.

〔発明の目的〕[Purpose of the invention]

従って、本発明の目的は、加硫工程が不要のゴム磁石を
提供することにある。
Therefore, an object of the present invention is to provide a rubber magnet that does not require a vulcanization process.

本発明の他の目的は、加硫工程を用いない無加硫型ゴム
磁石であるにも拘らず、機械的強度の高いゴム磁石を提
供することにある。
Another object of the present invention is to provide a rubber magnet with high mechanical strength, although it is an unvulcanized rubber magnet that does not require a vulcanization process.

〔発明の概要〕[Summary of the invention]

上記の目的は、磁性粉として金属酸化物磁性粉末、例え
ばバリウムフェライト、ストロンチウムフェライト磁性
粉末等の1種、又は2種以上を62−68 vo1%用
い、ゴムベースとしてエチレン含有量が6owts以上
のEPM(飽和型エチレンプロピレンエラストマー)ま
たtiEPDM(不afLlffiエチレンプロピレン
エラストマー)を残部用い、これらにさらに脂肪酸また
はその金属塩をs −1s phr (ゴム分に対する
wt% )を加えて均一混合体としたゴム磁石により達
成される。
The above purpose is to use 62-68 vol% of one or more types of metal oxide magnetic powder, such as barium ferrite and strontium ferrite magnetic powder, as the magnetic powder, and EPM with an ethylene content of 6 owts or more as the rubber base. (Saturated ethylene propylene elastomer) or tiEPDM (unafLfffi ethylene propylene elastomer) is used as the remainder, and s-1s phr (wt% based on the rubber content) of fatty acid or its metal salt is added to the rubber magnet to form a homogeneous mixture. This is achieved by

ゴムベースは好ましくはムーニー粘度(ML1+410
0℃)が60以上のものを用いる。
The rubber base preferably has a Mooney viscosity (ML1+410
0°C) is 60 or higher.

本発明のゴム磁石の最大の利点は無加硫型であるにも拘
らず、かなり広い温度範囲にわたって加硫型ゴム磁石と
同等の機械強度を有することである。本発明によると加
硫処理が無いために製造コストが下がる。のみならず、
製造ラインで不良品が発生しても、それらは粉砕してゴ
ム磁石の原料として再生することができる。
The greatest advantage of the rubber magnet of the present invention is that although it is an unvulcanized type, it has mechanical strength equivalent to that of a vulcanized rubber magnet over a fairly wide temperature range. According to the present invention, manufacturing costs are reduced because there is no vulcanization treatment. As well,
Even if defective products occur on the production line, they can be crushed and recycled as raw materials for rubber magnets.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明で用いる磁石用磁性粉は平均粒子径1μ前後、特
に単磁区構造を有する1μ以下の金属酸化物磁性粉末、
例えばバリウムフェライト、ストロンチウムフェライト
磁性粉末等である。これらのフェライト粉末はゴム分と
の合計量を基準にして62−68マol %の割合で用
いられる。この量が62 vol %以下になるとゴム
磁石の残留磁束密度が十分でない。一方、この量が68
 vol %を超えるとゴム分との混合が困難となって
機械的強度の高いゴム磁石を製造することが出来なくな
る。
The magnetic powder for magnets used in the present invention is a metal oxide magnetic powder with an average particle size of around 1 μm, particularly 1 μm or less having a single magnetic domain structure.
For example, barium ferrite, strontium ferrite magnetic powder, etc. These ferrite powders are used in a proportion of 62-68 molar % based on the total amount including the rubber content. If this amount is less than 62 vol %, the residual magnetic flux density of the rubber magnet will not be sufficient. On the other hand, this amount is 68
If it exceeds vol %, it becomes difficult to mix with the rubber component, making it impossible to manufacture a rubber magnet with high mechanical strength.

本発明で用いるEPMまたはEPDMは60w t 9
6以上のエチレン分を含有することが必要である。この
ようなエチレンプロピレンエラストマーはゴム磁石のベ
ースとして極めてすぐれた物性を賦与し、加硫処理を行
わないで大きい機械的強度のゴム磁石を提供することが
できる。エチレン含有量が60wt% 以下であると、
ゴム磁石の機械的強度が低くなる。
The EPM or EPDM used in the present invention is 60wt9
It is necessary to contain an ethylene content of 6 or more. Such an ethylene propylene elastomer provides extremely excellent physical properties as a base for a rubber magnet, and can provide a rubber magnet with high mechanical strength without vulcanization. When the ethylene content is 60 wt% or less,
The mechanical strength of the rubber magnet decreases.

EPMまたはEPDMは60以上のムーニー粘度を有す
ることが望ましい。ムーニー粘度はゴム分子の鎖長に関
連しており、この粘度が60以上であるとゴム磁石の強
度を十分に大きくすることができる。
Desirably, the EPM or EPDM has a Mooney viscosity of 60 or higher. Mooney viscosity is related to the chain length of rubber molecules, and when this viscosity is 60 or more, the strength of the rubber magnet can be sufficiently increased.

上記のEPMまたはEPDMにフェライト磁性粉末を直
接混合分散させることは困難である。そこで、第3の成
分としてステアリン酸、ステアリン酸亜鉛、ラウリン醗
、乏つリン酸亜鉛、その他の脂肪酸或いはそれらの金桝
塩などを用いる。脂肪酸またはその金属塩は磁性粉の分
散性を向上して磁性粉を高含有量でも良く分散し、機械
的強度を高くする。しかも1分散性の向上によりゴム磁
石の重要な特性の1つである保磁力を高めることができ
る。
It is difficult to mix and disperse ferrite magnetic powder directly into the above-mentioned EPM or EPDM. Therefore, stearic acid, zinc stearate, lauric acid, deficient zinc phosphate, other fatty acids or gold salts thereof are used as the third component. The fatty acid or its metal salt improves the dispersibility of the magnetic powder, allowing the magnetic powder to be well dispersed even at a high content, thereby increasing mechanical strength. Moreover, the coercive force, which is one of the important properties of a rubber magnet, can be increased by improving the monodispersity.

脂肪酸またはその金属塩はゴムやプラスチックの滑剤と
して知られているが、その添加量は一般にQ、3〜0.
5 phr程度に過ぎない。本発明では5−15phr
、すなわちゴム分基準で5−15wtチ用いなければな
らない。この量が5 phr以下では分散効果が低く、
機械的強度の大きいゴム磁石が得られない。一方、この
量が15 phr以上であると、分散効果は飽和するだ
けでなく、ブルーミングを起こすので望ましくない。
Fatty acids or their metal salts are known as lubricants for rubber and plastics, and the amount added is generally Q, 3 to 0.
It is only about 5 phr. In the present invention, 5-15 phr
In other words, 5-15wt based on the rubber content must be used. If this amount is less than 5 phr, the dispersion effect is low;
Rubber magnets with high mechanical strength cannot be obtained. On the other hand, if this amount exceeds 15 phr, the dispersion effect not only becomes saturated but also causes blooming, which is not desirable.

本発明はその他の成分を何ら必要としないが、必要なら
ば他の有機または無機の添加剤を少量添加しても良い。
Although the present invention does not require any other ingredients, small amounts of other organic or inorganic additives may be added if necessary.

本発明の著しい特徴は、エチレン含有量が60wt%以
上のEPMまたはEPDMであって、好ましくはムーニ
ー粘度60以上のゴムベースを用いた点にある。このゴ
ムベースは潜在的に機械的にも分散性にもすぐれたもの
であるが、ステアリン酸やステアリン酸亜鉛のような脂
肪酸または脂肪酸塩を共用することによって初めてその
すぐれた作用効果を発揮することができるのである。
A remarkable feature of the present invention is the use of EPM or EPDM having an ethylene content of 60 wt % or more, preferably a rubber base having a Mooney viscosity of 60 or more. This rubber base potentially has excellent mechanical properties and dispersibility, but its superior effects can only be achieved by co-using fatty acids or fatty acid salts such as stearic acid or zinc stearate. This is possible.

本発明のゴム磁石は例えばモータ用磁石などに用いるこ
とができ、常温〜60℃程度までの強度は加硫型ゴム磁
石と何ら変りがない。
The rubber magnet of the present invention can be used, for example, as a motor magnet, and its strength from room temperature to about 60° C. is no different from that of a vulcanized rubber magnet.

以下に本発明の実施例を詳しく説明する。Examples of the present invention will be described in detail below.

実施例。Example.

ストロンチウムフェライト磁性粉618 vo1%と、
ムーニー粘度(ML   1+4100℃)90で工1
+4 チレン含有率7 s wt% のEPDMと、ステアリ
ン酸亜鉛5−15 phrとの配合物を、ニーダ−中で
約10分間混練りした。溶剤は全く使用しなかった。次
に、この混練物を直径15cIILの2本ロールに約1
0回通し、次いで厚さ約3nに延ばしてシート状のゴム
磁石を得た。これを所定の寸法に切断して試験を行った
。上記の製造工程はすべて常温の環境で行った。
Strontium ferrite magnetic powder 618 vol1%,
Mooney viscosity (ML 1+4100℃) 90
A blend of EPDM with +4 tyrene content of 7 s wt % and 5-15 phr zinc stearate was kneaded in a kneader for about 10 minutes. No solvents were used. Next, this kneaded material was placed on two rolls with a diameter of 15 cIIL for about 1 hour.
It was passed 0 times and then rolled out to a thickness of about 3 nm to obtain a sheet-like rubber magnet. This was cut into predetermined dimensions and tested. All of the above manufacturing steps were performed in an environment at room temperature.

比較例 実施例のEPDMの代りに、エチレン含有率が55w1
% のEPDMを用い、ステアリン酸亜鉛10 phr
として実施例と同一の方法でゴム磁石を製作した。
Comparative Example Instead of EPDM in Example, the ethylene content was 55w1
% EPDM and 10 phr zinc stearate.
A rubber magnet was manufactured using the same method as in the example.

〔結果の検討〕[Consideration of results]

実施例により得た各種ゴム磁石におけるステアリン酸亜
鉛含有製と可鋳性及び保磁力(iHc )の関係を調べ
たところ第1図の結果を得た。すなわち、最小曲げ半径
はその半径で曲げてもひびが入らないような限界半径を
表わす。図から明らかなように、ステアリン酸亜鉛が約
5%以下になるとゴム磁石は脆く可撓性が低い。従って
、この量は5%以上が必要なことが分る。なお、15チ
ではプルーミングが見られた。一方、保磁力はステアリ
ン酸亜鉛に比例して大きくなっていることが分る。従っ
て、この量が5チ以上であることは磁気特性の上からも
機械特性の上からも必要なことが分る。
The relationship between zinc stearate content, castability, and coercive force (iHc) of various rubber magnets obtained in Examples was investigated, and the results shown in FIG. 1 were obtained. In other words, the minimum bending radius represents the limit radius at which no cracks will occur even if the material is bent at that radius. As is clear from the figure, when the zinc stearate content is less than about 5%, the rubber magnet becomes brittle and has low flexibility. Therefore, it can be seen that this amount is required to be 5% or more. Pluming was observed at 15 inches. On the other hand, it can be seen that the coercive force increases in proportion to the amount of zinc stearate. Therefore, it can be seen that this amount of 5 or more is necessary from the viewpoint of both magnetic properties and mechanical properties.

次に、ステアリン酸亜鉛10 phrとした実施例のサ
ンプルと比較例のサンプルの引張強度の温度依存性をJ
工56301に従って試験したところ第2図に示す結果
を得た。この結果から分るように、高エチレン含有量の
EPDMが高強度を与えることか分る。なお、第2図に
併記したように60℃以下における引張り強度は加硫型
EPDMのそれよりもすぐれている。
Next, the temperature dependence of the tensile strength of the example sample and the comparative example sample with zinc stearate of 10 phr was determined by J
When the test was carried out according to the method specified in 56301, the results shown in FIG. 2 were obtained. As can be seen from this result, it can be seen that EPDM with a high ethylene content provides high strength. As shown in FIG. 2, the tensile strength at temperatures below 60° C. is superior to that of vulcanized EPDM.

次に、第2図の特性を測定するのに用いたサンプルにつ
いて硬度(シヨアD硬度)を測定したところ、実施例の
ものは38であり九のに対し、比較例のものは28であ
った。硬度28はある程度柔軟性のあるゴム磁石である
。硬度38ははど良い硬度である。一般に硬度20〜5
0程度のものがある程度の曲げを許容し、しかもかなり
の剛性を有するので適当である。
Next, when we measured the hardness (Shore D hardness) of the samples used to measure the characteristics shown in Figure 2, the hardness of the example was 38, which was 9, while the comparative example was 28. . A rubber magnet with a hardness of 28 has some flexibility. A hardness of 38 is a good hardness. Generally hardness 20-5
A material with a diameter of about 0 is suitable because it allows bending to a certain extent and has considerable rigidity.

なお、いずれのサンプルも残留磁束密度Br =240
0(Q)、保磁力1Hc=3500(Oe)であった。
In addition, all samples have a residual magnetic flux density Br = 240
0 (Q), and coercive force 1Hc = 3500 (Oe).

〔作用効果〕[Effect]

以上のように、本発明はエチレン含有量の大きいEPM
またはEPDMと脂肪酸またはその金属塩とを用いたの
で分散性が改善されて曲げ強度及び引張り強度が高く、
保磁力も大きいゴム磁石が得られた。本発明の磁石は無
加硫型であるにも拘らず60℃以下の温度で十分に大き
い機械的強度を有するものであり、製造工程、製造時間
、原料コストの面でいずれも有利である。
As described above, the present invention utilizes EPM with a high ethylene content.
Or, by using EPDM and a fatty acid or its metal salt, the dispersibility is improved and the bending strength and tensile strength are high.
A rubber magnet with a large coercive force was obtained. Although the magnet of the present invention is a non-vulcanized type, it has sufficiently high mechanical strength at a temperature of 60° C. or lower, and is advantageous in terms of manufacturing process, manufacturing time, and raw material cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のゴム磁石における脂肪酸金属塩と曲げ
強度及び保磁力の関係を示すグラフ、及び第2図はエチ
レン含有量と引張り強度の温度依存性を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between fatty acid metal salt, bending strength and coercive force in the rubber magnet of the present invention, and FIG. 2 is a graph showing the temperature dependence of ethylene content and tensile strength.

Claims (1)

【特許請求の範囲】 1、62−68vol%のバリウムフェライト、ストロ
ンチウムフェライト磁性粉末等の金属酸化物磁性粉末の
1種又は2種以上と、エチレン含有量が60wt%以上
のEPMまたはEPDMより成るエチレンプロピレンゴ
ムベースと、前記ゴムベース分の5−15wt%の脂肪
酸またはその金属塩との均一混合体より成る無加硫型ゴ
ム磁石。 2、エチレンプロピレンゴムのムーニー粘度(ML_1
_+_4100℃)が60以上である前記第1項記載の
ゴム磁石。
[Claims] 1. Ethylene consisting of one or more metal oxide magnetic powders such as barium ferrite and strontium ferrite magnetic powder of 62-68 vol% and EPM or EPDM with an ethylene content of 60 wt% or more. An unvulcanized rubber magnet made of a homogeneous mixture of a propylene rubber base and 5 to 15 wt% of a fatty acid or a metal salt thereof corresponding to the rubber base. 2. Mooney viscosity of ethylene propylene rubber (ML_1
_+_4100°C) is 60 or more.
JP18821984A 1984-09-10 1984-09-10 Non-vulcanized type rubber magnet Pending JPS6167203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18821984A JPS6167203A (en) 1984-09-10 1984-09-10 Non-vulcanized type rubber magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18821984A JPS6167203A (en) 1984-09-10 1984-09-10 Non-vulcanized type rubber magnet

Publications (1)

Publication Number Publication Date
JPS6167203A true JPS6167203A (en) 1986-04-07

Family

ID=16219849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18821984A Pending JPS6167203A (en) 1984-09-10 1984-09-10 Non-vulcanized type rubber magnet

Country Status (1)

Country Link
JP (1) JPS6167203A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497121U (en) * 1990-10-30 1992-08-21
US5247980A (en) * 1985-08-19 1993-09-28 Okamoto Industries, Inc. Anti-skid net body attachment for an automobile tire
EP1081671A2 (en) * 1999-09-01 2001-03-07 Toda Kogyo Corporation Magnetic display sheet
US6436520B1 (en) 1999-09-01 2002-08-20 Toda Kogyo Corporation Magnetic display device
CN103578683A (en) * 2013-09-29 2014-02-12 浙江省东阳市诚基电机有限公司 Rubber magnetic strip used under low temperature and preparation method thereof
CN104629193A (en) * 2015-02-02 2015-05-20 柳州市二和汽车零部件有限公司 Rubber with magnetism
CN107383631A (en) * 2017-07-14 2017-11-24 青岛科技大学 A kind of high magnetic rubber sealing strip composite of excellent processability and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820131A (en) * 1981-07-25 1983-02-05 株式会社三通 Litter material for domestic animal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820131A (en) * 1981-07-25 1983-02-05 株式会社三通 Litter material for domestic animal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247980A (en) * 1985-08-19 1993-09-28 Okamoto Industries, Inc. Anti-skid net body attachment for an automobile tire
US5343610A (en) * 1985-08-19 1994-09-06 Okamoto Industries, Inc. Method of making an anti-skid apparatus for an automobile tire
JPH0497121U (en) * 1990-10-30 1992-08-21
EP1081721A3 (en) * 1999-09-01 2001-07-25 Toda Kogyo Corporation Magnetic sheet
EP1081721A2 (en) * 1999-09-01 2001-03-07 Toda Kogyo Corp. Magnetic sheet
EP1081671A3 (en) * 1999-09-01 2001-07-18 Toda Kogyo Corporation Magnetic display sheet
EP1081671A2 (en) * 1999-09-01 2001-03-07 Toda Kogyo Corporation Magnetic display sheet
US6312795B1 (en) 1999-09-01 2001-11-06 Toda Kogyo Corporation Magnetic sheet
US6436520B1 (en) 1999-09-01 2002-08-20 Toda Kogyo Corporation Magnetic display device
CN103578683A (en) * 2013-09-29 2014-02-12 浙江省东阳市诚基电机有限公司 Rubber magnetic strip used under low temperature and preparation method thereof
CN104629193A (en) * 2015-02-02 2015-05-20 柳州市二和汽车零部件有限公司 Rubber with magnetism
CN107383631A (en) * 2017-07-14 2017-11-24 青岛科技大学 A kind of high magnetic rubber sealing strip composite of excellent processability and preparation method thereof
CN107383631B (en) * 2017-07-14 2020-05-05 青岛科技大学 High-magnetism rubber sealing strip composite material with excellent processability and preparation method thereof

Similar Documents

Publication Publication Date Title
DE102014112647A1 (en) Rubber composition and pneumatic tires of this composition
DE60019271T2 (en) ELASTOMER COMPOSITIONS FOR CUSHIONING
US4187207A (en) Flameproofed polyamide containing red phosphorous
JPS6167203A (en) Non-vulcanized type rubber magnet
US2461349A (en) Compounds modified by abietic nitriles
US4126567A (en) Permanent magnet composites and method therefor
US2808386A (en) Low-water absorption high-impact polystyrene molding compositions
JP3129423B2 (en) Composition for synthetic resin magnet
US3085989A (en) Process for incorporating a polymercoated acidic pigment in polyethylene
JPS6167204A (en) Non-vulcanized type rubber magnet
KR102165983B1 (en) Scratch Free and harmless non-toxic TPU cutting board manufacturing method thereof
JPS6053560A (en) Conductive polyphenylene sulfide resin composition
US10584242B2 (en) Natural rubber based electrically conductive thermoplastic vulcanisates and the device for manufacturing the same
JPH01236270A (en) Resin composition
US3888814A (en) Rubber compositions with improved performance at sub-zero temperatures
US2991268A (en) Curable composition of polyethylene, di-alpha-cumyl peroxide, carbon black, coal dust and cured product thereof
JPS6044806B2 (en) Method for producing a composition for permanent magnets
JPS60223859A (en) Magnetic plastic composition
JPH069166B2 (en) Plastic magnet composition
JPH1030048A (en) Phenolic resin molding material and its moldings
US2311605A (en) Manufacture of hard rubber articles
JPS6127605A (en) Flexible permanent magnet
JP3669800B2 (en) Polyolefin blend
US4775724A (en) Rubber compositions with granules of sulfur, oil and methylstyrene
US3202629A (en) Cross-linked composition of polyethylene with pigment of the group consisting of lithopone and antimony oxide