JPS6166929A - Solid-vapor two-phase flow meter - Google Patents
Solid-vapor two-phase flow meterInfo
- Publication number
- JPS6166929A JPS6166929A JP18916184A JP18916184A JPS6166929A JP S6166929 A JPS6166929 A JP S6166929A JP 18916184 A JP18916184 A JP 18916184A JP 18916184 A JP18916184 A JP 18916184A JP S6166929 A JPS6166929 A JP S6166929A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- solid
- electrodes
- piping
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/74—Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、気体(例えば空気)と固体(例えば微粉炭)
とが、混合して流れるいわゆる固気2相流の中の固体成
分の濃度及び流速を測定し、その値より流量を計算で求
める固気2相流流購計に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applicable to gas (e.g. air) and solid (e.g. pulverized coal)
The present invention relates to a solid-gas two-phase flow meter that measures the concentration and flow velocity of solid components in a so-called solid-gas two-phase flow that flows in a mixed manner, and calculates the flow rate from the measured values.
(従来の技術)
固気2相流中の固体成分の流計な計測するための手段の
1つとして、特開昭58−190’i’19号公報に記
載のような静電容量式流騎計がある。(Prior Art) As one of the means for measuring the solid components in a solid-gas two-phase flow, a capacitive flow method as described in Japanese Patent Application Laid-Open No. 198-190'i'19 is used. There is a countermeasure.
第8図はこの1実施例であって、図に示すように、絶縁
体から成る配管1の外周に、金属板より成る対向電極2
−1,2−2を設け、更に同様の構造の第2の対向電極
3−1.3−2および第3の対向電極4−1.4−2を
、流体の流れ方向に、ある距離を離して設け、夫々の対
向電極の間の静電容量を測定するための電子回路5.6
.7を接続し、第2の電子回路6の出力と、第3の電子
回路7の出)Jとを速度演算器8に接続し、更に第1の
電J′回路S)の出力と、速度演算器8の出力とを乗算
器りに接続している。FIG. 8 shows one embodiment of this. As shown in the figure, a counter electrode 2 made of a metal plate is placed on the outer periphery of a pipe 1 made of an insulator.
-1 and 2-2, and furthermore, a second counter electrode 3-1.3-2 and a third counter electrode 4-1.4-2 having a similar structure are provided at a certain distance in the fluid flow direction. Electronic circuit for measuring the capacitance between the respective opposing electrodes 5.6
.. 7, the output of the second electronic circuit 6 and the output of the third electronic circuit 7) are connected to the speed calculator 8, and the output of the first electronic circuit J' circuit S) and the speed The output of the arithmetic unit 8 is connected to a multiplier.
第1の対向電極2−1.2−2の静電容けは、電子回路
5で測定されるとともに、流体が流れていないときの静
電容+7.. (配管壁及び電極間の空間によるもの)
が相殺されるように構成されているので、電子回路5の
出力は配管工内の固体濃度を示すことになる。又、第2
の対向電極3−1.3−2および第3の対向電極4−1
.4−2の静電容111の変化が、電子回路6および7
で、それぞれ増幅され、速度演算器8により、相関法に
より時IHH1y、Tカ+rt 測すレ、7ti 極間
ノ距離T−ト(7) 間テL /Tのi;’l算が1な
われるので、その111力は固気2相流の速度を示す。The capacitance of the first counter electrode 2-1, 2-2 is measured by the electronic circuit 5, and the capacitance when no fluid is flowing is +7. .. (Due to the space between the pipe wall and electrodes)
are arranged to cancel, so that the output of the electronic circuit 5 will be indicative of the solids concentration within the plumber. Also, the second
counter electrode 3-1.3-2 and third counter electrode 4-1
.. The change in the capacitance 111 of 4-2 is caused by the change in the capacitance 111 of
Then, the velocity calculator 8 uses the correlation method to measure the time IHH1y, T+rt, 7ti, the distance between the poles T-t(7), the distance between the poles, and the i;'l calculation of 1. Therefore, the 111 force indicates the velocity of the solid-gas two-phase flow.
乗算器9は濃度を示す電子回路5の出力4”r z;と
、流速を示す速度演p2に8の出力(INJとの掛算を
?jい流量信号を出力する。The multiplier 9 outputs a flow rate signal obtained by multiplying the output 4''rz; of the electronic circuit 5 indicating the concentration and the velocity operation p2 indicating the flow rate by 8 (INJ).
しかるに、このような方式の流量d1の場合、次のよう
な問題が生じる。すなわち、配管断面の全体に、一様な
電界を作り出す事が難しいので、配管断面の場所により
検出感度が異なる。このため特に傾斜した配管における
ように、流れに濃度の分布が生じると正確な流量測定が
出来なくなる。However, in the case of the flow rate d1 of such a system, the following problem occurs. That is, since it is difficult to create a uniform electric field over the entire cross-section of the pipe, the detection sensitivity differs depending on the location of the cross-section of the pipe. For this reason, when a concentration distribution occurs in the flow, especially in inclined piping, accurate flow rate measurement becomes impossible.
第9図は、前記した従来の流(i(計における電極部の
感度分布の1例で、流計J1の検出部の中に、誘電体(
ガラス)の細い棒(直径数mm )を入れて、指示の変
化を調べたもので、中央部の感度を、1.0としたとき
のr11対値で示しているが、周辺部分で20%程度の
差がある。FIG. 9 shows an example of the sensitivity distribution of the electrode section in the conventional flow meter J1.
A thin rod (several mm in diameter) of glass was inserted to investigate the change in indication.The sensitivity in the center is shown as r11 vs. value when it is 1.0, but it is 20% in the periphery. There are varying degrees of severity.
(発明が解決しようとする問題点)
本発明は、上記した従来の静電容は式固気2相流流川計
の問題点を解決し、配管内固体の濃度分布の影響を受け
る事が少ない固気2相流流晴、?1を提供することを目
的とする。(Problems to be Solved by the Invention) The present invention solves the problems of the conventional capacitance-solid/gas-solid two-phase flowmeter as described above, and solves the problems of the conventional capacitance type solid-gas flowmeter. Qi 2 Phase Ryuharu,? The purpose is to provide 1.
(問題点を解決するための手段・作用)本発明は、電気
的絶縁体の配管の外側に設置した電極間の静電容ntの
変化に基づいて、前記配管内を流れる固気2相流中の固
体成分の流f、fを測定する方式の流[往81において
、配管を包囲するごとく設けた円筒状の第1の電極と、
該第1の電極の軸方向両側に、それぞれ間隔をおいて設
けた円筒状の第2および第3の電極と、該第11第2お
よび第3の電極の外側に、それぞれの電極を囲むよう設
けた電磁遮蔽板と、第1の電極に交流電圧を印加する手
段と、第1の電極と第2の電極との間および第1の電極
と第3の電極との間の静電容晴な検出する手段とを設け
たもので、このような構造の電極の採用により、配管断
面での感度分布をほぼ一様に出来るので、断面での濃度
が一様でないときも市しい測定を行うことが可能となる
。(Means/effects for solving the problems) The present invention provides a method for controlling the solid gas two-phase flow flowing inside the piping, based on the change in the capacitance nt between the electrodes installed outside the piping, which is an electrical insulator. A method of measuring the flow f, f of solid components [in the previous 81, a cylindrical first electrode provided so as to surround the pipe,
Cylindrical second and third electrodes are provided at intervals on both sides of the first electrode in the axial direction; an electromagnetic shielding plate provided, a means for applying an alternating current voltage to the first electrode, and an electrostatic capacity between the first electrode and the second electrode and between the first electrode and the third electrode. By using an electrode with such a structure, the sensitivity distribution in the cross section of the pipe can be made almost uniform, so it is possible to carry out regular measurements even when the concentration in the cross section is not uniform. becomes possible.
以下本発明を図示の実施例にもとづき詳細に説明する。The present invention will be explained in detail below based on illustrated embodiments.
第1図181は本発明による固気2相流流量計の実施例
の構成図であり、第1図[blは第1図(alのA−A
断面図である。FIG. 1 181 is a block diagram of an embodiment of the solid-gas two-phase flow meter according to the present invention, and FIG.
FIG.
配管lの周囲に第1、第2、第3の円筒状電極11.1
2,13を設け、各電極を互いに電磁遮蔽するための導
電体より成る遮蔽板14で覆う。First, second and third cylindrical electrodes 11.1 are placed around the pipe l.
2 and 13 are provided, and each electrode is covered with a shielding plate 14 made of a conductor for electromagnetically shielding each other.
中央に配置した第1の電極11に、電源20から数10
KHzの高周波電圧を印加する。上流側の第2の電極
12と、下流側の第3の電極13には、増幅器21.2
2、バンドパスフィルタ23.24を介して、速度演算
器25を接続する。Several 10 electrodes are connected to the first electrode 11 placed in the center from the power source 20.
A high frequency voltage of KHz is applied. The second electrode 12 on the upstream side and the third electrode 13 on the downstream side are provided with an amplifier 21.2.
2. Connect the speed calculator 25 via band pass filters 23 and 24.
又、第2の電極12に接続されている増幅器21には、
別のバンドパスフィルタ26および検波増幅器27を接
続する。更に前記速度演算器25の出力と前記検波増幅
器27の出力を乗算器28に接続する。In addition, the amplifier 21 connected to the second electrode 12 has
Another bandpass filter 26 and detection amplifier 27 are connected. Furthermore, the output of the speed calculator 25 and the output of the detection amplifier 27 are connected to a multiplier 28.
本実施例の流量計の動作は、次の通りである。The operation of the flowmeter of this embodiment is as follows.
中央の第1の電極11に印加された交流電圧のため、そ
の両側の第2、第3の電極12.13に電流が流れ、そ
の電流は、増幅器21.22により増幅される。この電
流れる電流は、印加される周波数、電圧、電極の大きさ
、配管材料の誘電率等の他、配管中を流れている固気2
相流中の固体分の量によってきまるが、固体分の量以外
の項目は一定と見なしてよいので、電流の大きさは固体
分の量によってきまると考えてよい。Due to the alternating voltage applied to the central first electrode 11, a current flows through the second and third electrodes 12.13 on either side thereof, and this current is amplified by the amplifier 21.22. This current is determined by the applied frequency, voltage, electrode size, dielectric constant of the piping material, etc., as well as the solid air 2 flowing through the piping.
It is determined by the amount of solids in the phase flow, but since everything else other than the amount of solids can be considered constant, it can be considered that the magnitude of the current is determined by the amount of solids.
また一般に、固気2相流中の固体(特に微粉)の濃度は
、不規則な濃淡(ゆらぎ)を持っており、このため流れ
る電流もゆらぎを持つことになる。In general, the concentration of solids (particularly fine powder) in a solid-gas two-phase flow has irregular shading (fluctuations), and therefore the flowing current also has fluctuations.
ここで電源20から第1の全極11に印加される高周波
電圧は、数10KHz (例えば40 KHz )の周
波数であり、固気2相流のゆらぎは数10 NHzの周
波数をもっているので、第2、第3の電極12.13に
ながれる電流は、数10 K、lHzが数10Hzで変
調された形となっている。そこでバンドパスフィルタ2
3.24を通すことにより、ゆらぎの成分のみを取り出
すことができる。Here, the high frequency voltage applied from the power supply 20 to the first all poles 11 has a frequency of several tens of KHz (for example, 40 KHz), and the fluctuation of the solid-gas two-phase flow has a frequency of several tens of NHz. The current flowing to the third electrode 12.13 is in the form of several tens of K and lHz modulated at several tens of Hz. Therefore, band pass filter 2
3.24, only the fluctuation component can be extracted.
固気2相流のゆらぎは、極く短かい距離の間では殆ど変
化しないので、第2の電極12により検出された出力中
のゆらぎと、第3の電極13によって検出された出力中
のゆらぎとは時間的にずれており、この遅れ時間Tを知
ることにより、固気2相流の流速をもとめることができ
る。Fluctuations in the solid-gas two-phase flow hardly change over a very short distance, so the fluctuations in the output detected by the second electrode 12 and the fluctuations in the output detected by the third electrode 13 By knowing this delay time T, the flow velocity of the solid-gas two-phase flow can be determined.
本実施例では、第2の電極12により検出された出力と
、第3の電極13によって検出された出力を速度演算器
25に導き、相互相関が最大になる時間を求めるように
する。第2の電極12と第3の電極13間の有効距離り
は、電極の構造と大きさで決まるので、L/Tによって
流速かもとめられる。In this embodiment, the output detected by the second electrode 12 and the output detected by the third electrode 13 are led to the speed calculator 25, and the time at which the cross-correlation becomes maximum is determined. Since the effective distance between the second electrode 12 and the third electrode 13 is determined by the structure and size of the electrodes, the flow rate can also be determined by L/T.
又、第2の電極12又は第3の電極13に流れる電流の
大きさは、固気2相流中の固体の濃度に応じて変化する
ので、この出力により固体の濃度を知ることが出来る。Further, since the magnitude of the current flowing through the second electrode 12 or the third electrode 13 changes depending on the concentration of solid in the solid-gas two-phase flow, the concentration of the solid can be determined from this output.
本実施例では、第2の電極の出力を用いバンドパスフィ
ルタ26によってゆらぎ成分を除去した後、検波増幅器
27により直流成分のみを取り出すことにより、固体濃
度を検出するようにしている。In this embodiment, the solid concentration is detected by using the output of the second electrode and removing the fluctuation component by the band pass filter 26, and then extracting only the DC component by the detection amplifier 27.
なお、検波増幅器27の中で、流体が流れていないとき
の出力に相当する値を相殺するようにしている。そして
乗算器28で、検波増幅器27の出力である固体濃度と
、速度演算器25の出力である速度を掛合わすことによ
り、固気2相流中の固体成分の流量を求める。Note that in the detection amplifier 27, a value corresponding to the output when no fluid is flowing is canceled out. Then, the multiplier 28 multiplies the solid concentration, which is the output of the detection amplifier 27, by the velocity, which is the output of the velocity calculator 25, to obtain the flow rate of the solid component in the solid gas two-phase flow.
第2図は、本実施例の流量計における電極部の感度分布
例で、第9図の場合と同様に、流量計の検出部のなかに
、誘電体のガラスの細い棒を入れて、指示の変化を調べ
たもので、中央部の感度な1.0としたときの相対値で
示しているが、全体の感度差は1%未満となっており、
第9図に示した従来の流量計の場合に比べて、大巾に改
善されていることがわかる。Figure 2 shows an example of the sensitivity distribution of the electrode section in the flowmeter of this embodiment.Similar to the case of Figure 9, a thin dielectric glass rod is inserted into the detection section of the flowmeter, and the The change in sensitivity is shown as a relative value when the sensitivity in the center is set to 1.0, but the overall sensitivity difference is less than 1%.
It can be seen that this is greatly improved compared to the conventional flowmeter shown in FIG.
ところで固気2相流において、配管が乗置でないときに
は、第3図に示すように、管内下部の濃度の高いゆっく
りした流れと、管内上部の濃度の低い早い流れに分離す
る場合がある。この場合には、第1図に示した実施例の
流量計でも、正しい流量を測定することはできない。こ
のような流れの場合、固体濃度は管内断面Sでの平均値
が測定されるので問題はないが、流速はゆらぎの大きさ
が最も大きい流速成分が検知され、流速分布の正しい代
表値は検知されない。By the way, in a solid-gas two-phase flow, when the pipe is not installed, the flow may be separated into a slow flow with high concentration in the lower part of the pipe and a fast flow with low concentration in the upper part of the pipe, as shown in FIG. In this case, even the flowmeter of the embodiment shown in FIG. 1 cannot measure the correct flow rate. In the case of such a flow, there is no problem because the solid concentration is measured as the average value at the pipe cross section S, but the flow velocity component with the largest fluctuation is detected, and the correct representative value of the flow velocity distribution is detected. Not done.
第4図は、このような場合に適用される本発明の@2の
実施例の構成図である。上流側の第2の電極および下流
側の第3の電極を、それぞれ円周方向に4分割し、第2
の電極として(12−a、12−b、 12−c、 1
2−d )第3の電極として(13−a、 13−b、
13−c、 13−d)を構成し、第1図の第1の実
施例の場合と同様に、中央の第1の電極11に、電源2
oから数10KHzの高周波電圧を印加し、第2、第3
の分割したそれぞれの電極(12−a 〜12−d、
13−a 〜13−d)に、増巾器(21−a 〜2l
−d22−a〜22−a)およびバンドパスフィルタ(
23−a 〜23−d、 24−a 〜24−d、 2
6−a−26−a)を接続し、また速度演算器(25−
a 〜25−a)検波増幅器(27−a 〜27−d)
乗算器(2B−a 〜2 B−d )を設けて、前述第
1の実施例の場合と同様の方法で電極(12−aと13
−a)(12−bと13−b)(12−Cと12−c
) (12−dと13−d)の4組の電極の間に、流量
測定回路4組(図には1組だけを表示)を構成する。FIG. 4 is a block diagram of the @2 embodiment of the present invention applied to such a case. The second electrode on the upstream side and the third electrode on the downstream side are each divided into four in the circumferential direction.
As electrodes (12-a, 12-b, 12-c, 1
2-d) As the third electrode (13-a, 13-b,
13-c, 13-d), and as in the case of the first embodiment shown in FIG.
A high frequency voltage of several tens of KHz is applied from the second and third
Each divided electrode (12-a to 12-d,
13-a to 13-d), amplifiers (21-a to 2l
-d22-a to 22-a) and bandpass filters (
23-a to 23-d, 24-a to 24-d, 2
6-a-26-a), and also a speed calculator (25-
a ~ 25-a) Detection amplifier (27-a ~ 27-d)
Multipliers (2B-a to 2B-d) are provided, and the electrodes (12-a and 13) are connected in the same manner as in the first embodiment.
-a) (12-b and 13-b) (12-C and 12-c
) Four sets of flow rate measuring circuits (only one set is shown in the figure) are constructed between the four sets of electrodes (12-d and 13-d).
円周方向に分割されたそれぞれの電極は、配管断面のそ
れぞれ分割された各部の濃度および流速を検出し、その
結果として、それぞれの各部に対応する流量が求められ
る。各組の流量測定回路で得られた値は、加算器30に
入力されて、配管全断面に対応する流量が求められる。Each electrode divided in the circumferential direction detects the concentration and flow velocity of each divided part of the pipe cross section, and as a result, the flow rate corresponding to each part is determined. The values obtained by each set of flow rate measurement circuits are input to the adder 30, and the flow rate corresponding to the entire cross section of the pipe is determined.
第5図に示す第3の実施例は、第4図に示した第2の実
施例の信号処理回路を変更したもので、分割した各4個
の電極からの入力を、順次切替えるための切替スイッチ
31および32を設けることにより、流量測定回路を1
組とし、切替え毎に求めた4個の流量値を、加算器33
で処理して配管断面の総流量を求める。The third embodiment shown in FIG. 5 is a modification of the signal processing circuit of the second embodiment shown in FIG. By providing switches 31 and 32, the flow rate measurement circuit can be
The adder 33 adds the four flow rate values obtained each time the switch is made into a set.
to calculate the total flow rate of the pipe cross section.
なお、第2および第3の実施例において、円周方向に分
割された各電極は、配管断面を正確に4等分して測定す
る訳ではないので、前記4つの流量の合計が正しい総流
量を示さないことがあるので、このようなときには、別
の方法、たとえば重用法によって計測した正しい流量に
より、較正するようにすればよい。In addition, in the second and third embodiments, each electrode divided in the circumferential direction does not measure the piping cross section by accurately dividing it into four equal parts, so the sum of the four flow rates is the correct total flow rate. In such cases, it is best to calibrate using the correct flow rate measured by another method, such as the heavy duty method.
第6図に示すのは、第4の実施例で、電極の構成は前出
の第4図、第5図の場合と同様である。FIG. 6 shows a fourth embodiment, and the structure of the electrodes is the same as that shown in FIGS. 4 and 5 above.
濃度測定のための回路は、4個の電極(13−a〜13
−a)に対応して4個設けられており(図示は2組のみ
)、流速測定のための回路は、4個の電極(12−a〜
12−d)からの各入力を切換える切換えスイッチ37
を介して、1個だけ設けられている。The circuit for concentration measurement consists of four electrodes (13-a to 13-1).
-a) (only two sets are shown), and the circuit for measuring the flow velocity consists of four electrodes (12-a to 12-a).
A changeover switch 37 that switches each input from 12-d)
Only one is provided through the.
本実施例においては、下流側の4個の電極(13−a〜
13−d)に、それぞれ増巾器(21−a〜2l−4)
が接続され、濃度検出用のバンドパスフィルタ(26−
a〜26−d)を介して検波増巾器(27−a〜27−
d)が接続されている。In this example, four downstream electrodes (13-a to
13-d), each amplifier (21-a to 2l-4)
is connected, and a bandpass filter (26-
a to 26-d) to detection amplifiers (27-a to 27-
d) is connected.
これらの検波増巾器(2’i’−a〜2’7−d)の出
力は、それぞれの電極(13−a〜13−d)に対応す
る断面の濃度を示す。平均演算器34で、検波増1]器
(2’i’−a 〜27−d)ノ各出力の平均を求める
ことにより、1管断面での平均濃度が得られる。The outputs of these detection amplifiers (2'i'-a to 2'7-d) indicate the concentrations of the cross sections corresponding to the respective electrodes (13-a to 13-d). By calculating the average of each output of the detection amplifier 1] (2'i'-a to 27-d) using the average calculator 34, the average concentration in the cross section of one tube can be obtained.
シーケンス回路35は、検波増巾器(27−a〜27−
a)の各出力のうちの最も大きな信号がどれであるかを
判定し、その最も大きな信号に対応する電極部、すなわ
ち配管断面内で固体濃度の最も高い部位の流速を検知す
るように、切換スイッチ36.37を作動させる。The sequence circuit 35 includes detection amplifiers (27-a to 27-
Determine which of the outputs in a) has the largest signal, and switch to detect the flow velocity at the electrode part corresponding to the largest signal, that is, the part with the highest solids concentration within the pipe cross section. Activate switches 36,37.
たとえば金電極(13−a)の部位の固体濃度が最も大
きいとすると、切換スイッチ36によって、増巾器(2
1−a)の出力のみがバンドパスフィルタ27に接続さ
れ、又切換スイッチ37によって、電極(12−a )
の出力のみが増巾器22を介して、バンドパスフィルタ
24に接続され、速度演算器25に導かれる。For example, if the solid concentration at the gold electrode (13-a) is the highest, the changeover switch 36
Only the output of electrode (12-a) is connected to the bandpass filter 27, and the selector switch 37 connects the output of electrode (12-a)
Only the output of is connected to a bandpass filter 24 via an amplifier 22 and guided to a speed calculator 25.
従ってこの場合速度器25の出力は、配管断面内で最も
濃度の高い部位の流速を示すことになる。Therefore, in this case, the output of the speed meter 25 will indicate the flow velocity at the region with the highest concentration within the pipe cross section.
この場合乗算器28で得られる流量は、配管断面各部の
正しい総和とはならないが、各部の固体濃度に著しい差
があるときには、濃度が最も高い部分の流速により流量
を求めても実用上大きな誤差とはならない。In this case, the flow rate obtained by the multiplier 28 will not be the correct sum of the parts of the pipe cross section, but if there is a significant difference in the solids concentration in each part, there will be a large error in practical terms even if the flow rate is calculated from the flow velocity of the part with the highest concentration. It is not.
なお、以上の説明では第2、第3の電極を円周方向に4
分割しに例について説明したが、配管の口径、流れの状
況などに応じて、他の分割数でもよいことはもちろんで
ある。また以上の実施例では、上流側の電極又は下流側
の電極のみにより濃度を求めたが、上流側の電極並びに
下流側の電極の双方により、夫々濃度を求めてその平均
値を使ってもよい。In addition, in the above explanation, the second and third electrodes are arranged in four directions in the circumferential direction.
Although an example of division has been described, it goes without saying that other division numbers may be used depending on the pipe diameter, flow conditions, etc. In addition, in the above examples, the concentration was determined only by the upstream electrode or the downstream electrode, but the concentration may be determined by both the upstream electrode and the downstream electrode and the average value thereof may be used. .
以上の実施例においては、電極は全て配管の周囲に設け
たが、このような構造では、電極に流れる電流の大きさ
は、配管により形成される静電容量の影響を受ける。配
管による静電容量は、配管の形状、寸法および配管を構
成する絶縁物の誘電率によって決まるが、絶縁物の誘電
率は温度によって変化することが多い。従って流量計を
流れる流体の温度が変化したり、流量計の周囲の温度が
変化すると流量計の指示が変化する。In the above embodiments, all the electrodes were provided around the pipes, but in such a structure, the magnitude of the current flowing through the electrodes is affected by the capacitance formed by the pipes. The capacitance caused by piping is determined by the shape and dimensions of the piping and the dielectric constant of the insulator that makes up the piping, but the dielectric constant of the insulator often changes depending on the temperature. Therefore, when the temperature of the fluid flowing through the flowmeter changes or the temperature around the flowmeter changes, the reading on the flowmeter changes.
第9図ta) tb月二示すのは、このような問題を軽
減するための電極構造の実施例で配管1の内側に電極1
1.12.13を設け、更にその内面を、絶縁膜15で
コーティングしたもので、このような構造の場合、電極
間に流れる電流の大きさは絶縁膜15の誘電率の変化の
影響を受けるのみであり、温度変化の大きさを大きく軽
減できる。なお、この絶縁膜は、流体によって電極が相
互に短絡されることを防止するためのもので、流体が絶
縁体のJ4.!、合には省くことができる。Figure 9 shows an example of an electrode structure to alleviate such problems.
1.12.13 is provided, and its inner surface is further coated with an insulating film 15. In the case of such a structure, the magnitude of the current flowing between the electrodes is affected by the change in the dielectric constant of the insulating film 15. The magnitude of temperature change can be greatly reduced. Note that this insulating film is for preventing the electrodes from being shorted together by the fluid, and the fluid is an insulator J4. ! , it can be omitted in some cases.
(発明の効果)
以り実施例で説明したように、本発明は静電容l11弐
固気2相流流11計において、配管を包囲するごとく設
けた円筒状電極を用い、交流電圧を印加する円筒状電極
に隣り合う円筒状電極との間の静電容購を検出すること
により、配管内を流れる固気2相流中の固体成分の流量
を測定するものであるから、配管断面内の固体成分の濃
度分布が偏っていても、流量が正確に測定でき、また配
管自体の濃度変化による誘電率変化の影響を受けないの
で、流■測定の精度が高いという優れた効果を有するも
のである。(Effects of the Invention) As explained in the examples, the present invention applies an alternating voltage using a cylindrical electrode provided to surround the piping in a capacitance 112 solid gas two-phase flow meter. By detecting the electrostatic capacitance between cylindrical electrodes and adjacent cylindrical electrodes, the flow rate of solid components in the solid-gas two-phase flow flowing inside the pipe is measured. Even if the concentration distribution of components is uneven, the flow rate can be accurately measured, and since it is not affected by dielectric constant changes due to concentration changes in the piping itself, it has the excellent effect of high accuracy in flow measurement. .
第1図1alは本発明の詳細な説明図、(blは(al
のA−A断面図、第2図は本発明の配管断面の感度分布
図、第3図は、本発明の配管内の濃度の偏りを示す模式
図、第4図、第5図、第6図、第7図は本発明の詳細な
説明図、第8図は従来装置の説明図、第9図は従来例の
配管断面の感度分布図である。FIG. 1 1al is a detailed explanatory diagram of the present invention, (bl is (al
FIG. 2 is a sensitivity distribution diagram of the cross section of the piping of the present invention, FIG. 3 is a schematic diagram showing concentration bias in the piping of the present invention, FIGS. 4, 5, and 6 7 are detailed explanatory diagrams of the present invention, FIG. 8 is an explanatory diagram of a conventional device, and FIG. 9 is a sensitivity distribution diagram of a cross section of a pipe in a conventional example.
Claims (1)
容量の変化に基づいて、前記配管内を流れる固気2相流
中の固体成分の流量を測定する方式の流量計において、
流路を包囲するごとく設けた円筒状の第1の電極と、該
第1の電極の軸方向両側に、それぞれ間隔をおいて設け
た円筒状の第2および第3の電極と、該第1、第2およ
び第3の電極の外側に、それぞれの電極を囲むように設
けた電磁遮蔽板と、第1の電極に交流電圧を印加する手
段と、第1の電極と、第2の電極との間および第1の電
極と第3の電極との間の静電容量を検出する手段とを設
けたことを特徴とする固気2相流流量計。 2 第2および第3の電極が、円周方向に複数個に分割
された特許請求の範囲第1項記載の固気2相流流量計。[Claims] 1. A method for measuring the flow rate of a solid component in a solid-gas two-phase flow flowing inside an electrically insulating pipe based on changes in capacitance between electrodes installed outside the pipe. In the flowmeter of
A cylindrical first electrode provided so as to surround the flow path, cylindrical second and third electrodes provided at intervals on both sides of the first electrode in the axial direction, and the first electrode. , an electromagnetic shielding plate provided outside the second and third electrodes so as to surround each electrode, means for applying an alternating current voltage to the first electrode, the first electrode, and the second electrode. A solid-gas two-phase flowmeter comprising: means for detecting capacitance between the first electrode and the third electrode. 2. The solid-gas two-phase flowmeter according to claim 1, wherein the second and third electrodes are divided into a plurality of electrodes in the circumferential direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18916184A JPS6166929A (en) | 1984-09-10 | 1984-09-10 | Solid-vapor two-phase flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18916184A JPS6166929A (en) | 1984-09-10 | 1984-09-10 | Solid-vapor two-phase flow meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6166929A true JPS6166929A (en) | 1986-04-05 |
Family
ID=16236473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18916184A Pending JPS6166929A (en) | 1984-09-10 | 1984-09-10 | Solid-vapor two-phase flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6166929A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0511651A2 (en) * | 1991-04-30 | 1992-11-04 | Ivac Corporation | In-line fluid monitor system and method |
JP4750895B1 (en) * | 2010-04-27 | 2011-08-17 | 株式会社インステック | Powder flow measuring device |
JP2012025799A (en) * | 2010-07-20 | 2012-02-09 | Electric Power Dev Co Ltd | Coal gasification furnace system |
JP2015161609A (en) * | 2014-02-27 | 2015-09-07 | 電源開発株式会社 | Powder flow measurement instrument and powder flow measurement method |
-
1984
- 1984-09-10 JP JP18916184A patent/JPS6166929A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0511651A2 (en) * | 1991-04-30 | 1992-11-04 | Ivac Corporation | In-line fluid monitor system and method |
JP4750895B1 (en) * | 2010-04-27 | 2011-08-17 | 株式会社インステック | Powder flow measuring device |
JP2011232142A (en) * | 2010-04-27 | 2011-11-17 | Good Will Instrument Co Ltd | Powder flow rate measuring device |
JP2012025799A (en) * | 2010-07-20 | 2012-02-09 | Electric Power Dev Co Ltd | Coal gasification furnace system |
JP2015161609A (en) * | 2014-02-27 | 2015-09-07 | 電源開発株式会社 | Powder flow measurement instrument and powder flow measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109374071B (en) | Capacitance gas-solid two-phase flow measuring device and method | |
CN102608350B (en) | Method and device for detecting gas-solid two-phase flow velocity distribution by multielectrode electrostatic method | |
US4592240A (en) | Electrical-charge sensing flowmeter | |
CN104316720B (en) | Charging sensing online dust detecting device for self-adaption flow velocity change and method thereof | |
US3967500A (en) | Magnetic transit-time flowmeter | |
US8037774B2 (en) | State detection device | |
CN108037309B (en) | Differential type plane capacitance sensor array measuring method for particle velocity distribution | |
JPH0516536B2 (en) | ||
CN110579622B (en) | Metal particle flow velocity measuring device and method based on triangular electrode capacitance sensor | |
JPS6166929A (en) | Solid-vapor two-phase flow meter | |
US8453516B2 (en) | Electromagnetic flowmeter with automatic span correction | |
JPH033164B2 (en) | ||
CN209214689U (en) | A kind of capacitor Measurement device | |
US4524627A (en) | Electromagnetic flow meter | |
Horner | A novel profile-insensitive multi-electrode induction flowmeter suitable for industrial use | |
CN109839412A (en) | The synchronous measuring device and method for obtaining capacitor and electrostatic signal in Dual-Phrase Distribution of Gas olid | |
Yu et al. | Research on nonlinearity in in situ calibration of permanent magnet sodium flowmeter without bluff body | |
CN212410376U (en) | Online pulverized coal fineness measuring device based on charge induction | |
EP3770560A1 (en) | Magnetic flowmeter assembly with glitch removing capability | |
CN207557052U (en) | A kind of plane capacitance array measurement device of Dual-Phrase Distribution of Gas olid Particle velocity | |
JP2003065816A (en) | Electromagnetic flowmeter | |
SU901826A1 (en) | Electromagnetic flowmeter | |
JPS6011461Y2 (en) | Flow velocity flow measuring device | |
SU712670A1 (en) | Method of measuring electroconducting media rate-of-flow | |
CN116124235A (en) | Refrigerant two-phase flowmeter device and detection method |