JPS59173715A - Correlation type flow velocity meter - Google Patents

Correlation type flow velocity meter

Info

Publication number
JPS59173715A
JPS59173715A JP4793483A JP4793483A JPS59173715A JP S59173715 A JPS59173715 A JP S59173715A JP 4793483 A JP4793483 A JP 4793483A JP 4793483 A JP4793483 A JP 4793483A JP S59173715 A JPS59173715 A JP S59173715A
Authority
JP
Japan
Prior art keywords
sensors
flow velocity
flow
correlation
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4793483A
Other languages
Japanese (ja)
Other versions
JPH0454892B2 (en
Inventor
Tadaaki Iwamura
岩村 忠昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4793483A priority Critical patent/JPS59173715A/en
Publication of JPS59173715A publication Critical patent/JPS59173715A/en
Publication of JPH0454892B2 publication Critical patent/JPH0454892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/712Measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure a velocity of flow by a mutual correlation without dropping the accuracy by installing three or more sensors responding to a fluid physical quantity at different intervals in a duct line, and selecting freely a combination of an optimum interval to a velocity of flow. CONSTITUTION:Three pieces, etc. of sensors 3, 4 and 7 responding to a fluid physical quantity are installed at different intervals L1, L2 and L3 in a duct line 1. Also, correlation function operators 5a, 5b and 5c which connect the sensors such as 3 and 4, 4 and 7, 3 and 7, etc. are provided. Accordingly, a combination of the sensors whose interval is optimum in accordance with a velocity of flow is selected, and by a delay time based on a correlation function whose similarity and resolution are good, a velocity of flow can be measured without dropping the accuracy.

Description

【発明の詳細な説明】 (技術分野〕 気体や液体、さらにはこれらの流体中に微粉炭などの固
体粒子類を混入した2相流の如き、主に管路輸送中の流
体の流速を、相互相関法1ノにより測定する場合におい
て、その測定精度を流速の如何に拘らず有利に改善する
開発成果につき以下のべるところは、流体の計量に関す
る技術の分野を占める。
[Detailed Description of the Invention] (Technical Field) The flow rate of fluids mainly transported through pipes, such as gases, liquids, and two-phase flows in which solid particles such as pulverized coal are mixed into these fluids, is The following description of the development results that advantageously improve the measurement accuracy regardless of the flow velocity when measuring by the cross-correlation method 1 is in the field of technology related to fluid metering.

(従来技術とその問題点〕 管路を流れる流体中のある物理量たとえば静電容量のゆ
らぎに注目し、第1図(a)に示すように距離りを該管
路に沿ってへたてる2点間における上記のゆらぎの伝達
遅れτ。全相反相関法により求めて、その間の流速■=
L/τ。を得ることは相関型流速計において良く知られ
た方法である。
(Prior art and its problems) Focusing on the fluctuation of a certain physical quantity, such as capacitance, in a fluid flowing through a pipe, the distance is varied along the pipe as shown in Figure 1(a)2. Transmission delay τ of the above fluctuation between points. Obtained by the total reciprocal correlation method, the flow velocity between them ■ =
L/τ. is a well-known method in correlation type anemometers.

第1図(a)において1は流体の流れる管路、2は流体
、3.4は管路に沿い距離りだけ離れてそれぞれ設置し
たセンサであり、5は、2つのセンサの信号U工、u2
の相互相関を計算する演算器、また6は得られた遅れ時
間τ。を流速Vに換算する演算器である。
In FIG. 1(a), 1 is a pipe through which fluid flows, 2 is a fluid, 3.4 is a sensor installed at a distance along the pipe, and 5 is a signal U of the two sensors; u2
and 6 is the obtained delay time τ. This is a calculation unit that converts the flow velocity V into the flow velocity V.

センサ3,4としては、流体の物理量のうち何のゆらぎ
に注目するかによっても異なるが、上記静電容量のほか
温度や放射線さらには超音波などの検知器などが良く知
られた例である。
The sensors 3 and 4 vary depending on which fluctuation of the physical quantity of the fluid is to be focused on, but in addition to the above-mentioned capacitance, well-known examples include detectors for temperature, radiation, and ultrasonic waves. .

第1図(b)にはセンサ3,4における信号の状態を示
し、例えば静電容量の微小な変化(ゆらぎ〕がセンサ3
側で先行し、少し遅れてセンサ4側にもあられれている
。これは微粉炭の固気2相流の静電容量を実際に測定し
た例である。
FIG. 1(b) shows the state of the signals at the sensors 3 and 4. For example, a minute change (fluctuation) in the capacitance of the sensor 3
It was ahead on the side, and a little later there was also hail on the sensor 4 side. This is an example of actually measuring the capacitance of solid-gas two-phase flow of pulverized coal.

第1図(0)はそれらの相互相関関数を示し、それlが
ピーク値をとる遅れ時間τ。が距離りをへだてる2点間
でのゆらぎの伝達遅れであり、相互相関関数は次式(1
)で計算gれる。
FIG. 1(0) shows their cross-correlation function, and the delay time τ at which l reaches its peak value. is the transmission delay of fluctuation between two points that separate the distance, and the cross-correlation function is expressed by the following equation (1
) can be calculated.

ピーク値τ。はグ□yj(τ)をτで微分し、それが零
のように変形されるため具体的にはu2の微分信号とu
oの光信号の相互相関を求めることが多い。
Peak value τ. differentiates yj(τ) with respect to τ, and since it is transformed to zero, specifically, the differential signal of u2 and u
The cross-correlation of optical signals of o is often determined.

さて第1図において両信号U□、 u2は、距離りが大
きい程、また流速Vが小さい程、すなわち空間的時間的
に差が大きい程、その同一性が保存されにくい。
Now, in FIG. 1, the identity of both signals U□ and u2 is less likely to be preserved as the distance between them increases and as the flow velocity V decreases, that is, as the difference in space and time increases.

例えば第2図(a)、Φ)は、流速Vが約iのときの第
1図中1’、(C1に対応する関係を示し、相互相関関
数へ2(τ)の波形は崩れて、そのピーク値を求めるの
は非常に難しくなっている。
For example, Fig. 2(a), Φ) shows the relationship corresponding to 1', (C1) in Fig. 1 when the flow velocity V is about i, and the waveform of 2(τ) collapses to the cross-correlation function. It has become extremely difficult to determine the peak value.

また流速■が非常に大きい場合に距離りが小さすぎると
信号の類似性は非常に良いが遅れ時間τ。
Also, if the flow velocity ■ is very large and the distance is too small, the signal similarity is very good, but the delay time τ.

が短かすぎてその分解能が悪くなり、流速測定の精度が
極めて悪くな−る。
If the length is too short, its resolution will be poor, and the accuracy of flow rate measurement will be extremely poor.

以上のことから相関法による測定方法では距離りの選択
が極めて重要であり、流れの状態によシ適切に選択しな
ければならないことがわかる。
From the above, it can be seen that the selection of the distance is extremely important in the measurement method using the correlation method, and must be selected appropriately depending on the flow condition.

(発明の目的) 上述の従来の相関型流速計における問題点についてこの
発明は、以下のべるようにしてとくに有利な解決を図る
ことを目的とする。
(Objective of the Invention) It is an object of the present invention to provide a particularly advantageous solution to the above-mentioned problems in the conventional correlation type current meter as described below.

(発明の構成) すなわち、この発明は、管路中の流体の物理量に応答す
るセンサを該管路中における流体の流れの向きに沿う3
箇所以上で互いに異なる間隔上へだてて設置し、該流体
の流速に応じて最適なセンサ間距離の組み合せを選択し
て相互相関法を適用し9、流速を求めることからなる相
関型流速計である。
(Structure of the Invention) That is, the present invention provides a sensor that responds to a physical quantity of fluid in a pipe by three sensors along the direction of fluid flow in the pipe.
This is a correlation-type current meter that is installed at different intervals at different locations, selects an optimal combination of distances between sensors according to the flow velocity of the fluid, applies a cross-correlation method, and calculates the flow velocity. .

いま第3図にセンサ314間の距離りが5cIrLと1
(1mヤある場合の止揚微粉炭流れの相互相関関数の比
較を示す。流速の大きい(14〜15/S)場合、同図
(alのように距111Lの長い万が、これに反して流
速の小さい(7〜8に)場合、同図(0>のように距離
りの短い方が、それぞれ安定した相互相関関数を得るこ
とができ、遅れ時間τ。の測定が精度良くできる。
Now in Figure 3, the distance between the sensors 314 is 5 cIrL and 1.
(This shows a comparison of the cross-correlation functions of the unloaded pulverized coal flow when the flow is 1 m long.) When the flow velocity is large (14 to 15/S), the flow velocity is When the distance is small (7 to 8), the shorter the distance as shown in the figure (0>), the more stable the cross-correlation function can be obtained, and the delay time τ can be measured with high accuracy.

なお同図(b)は流速Vが10〜l 1 m/sのとき
、距離りが5c7nと10cInの双方で安定した相互
相関1.・関数を得ることを示している。
The figure (b) shows stable cross-correlation for both distances of 5c7n and 10cIn when the flow velocity V is 10 to l 1 m/s.・It shows that a function is obtained.

したがって測定対象の流速■の変動が大きい場合は、流
速に応じて適切な距離りを選択すれば・大きなレンジで
高精度の流速測定を行なうことができるわけである。
Therefore, if there is a large variation in the flow velocity (2) of the object to be measured, by selecting an appropriate distance according to the flow velocity, it is possible to measure the flow velocity with high precision over a wide range.

第4図は上記果験の結果に従う、新しい測定系の構成に
つきこの発明の具体化例を示す。
FIG. 4 shows an embodiment of the present invention based on the configuration of a new measurement system based on the results of the above experiments.

すなわち従来の構成のセンサ3,4に加えて下流側にさ
らにセンサ7を加える。そのときセンサ3.4間の距離
L0に対し、七ンサ4,7間の距離り、 ’i 2 L
、程度に、従ってセンサ3,7間の距離L8は3Lτ程
度にするのが良い。
That is, in addition to the sensors 3 and 4 of the conventional configuration, a sensor 7 is further added on the downstream side. At that time, for the distance L0 between sensors 3 and 4, the distance between sensors 4 and 7, 'i 2 L
Therefore, the distance L8 between the sensors 3 and 7 is preferably about 3Lτ.

ここに相互関数演算器5a 、 5bおよび5Cはそれ
ぞれU□とu2. uaとu8、そしてU□とu8の相
互相関関数0 .0 .0  を計算する。
Here, the interaction function calculators 5a, 5b and 5C are U□ and u2. The cross-correlation function of ua and u8 and U□ and u8 is 0. 0. Calculate 0.

12    28    18 図中8は、それぞれ演算器5a ’、 pbおよび5C
から、信号ダ、21 τOI ”28−1”、:Pおよ
び”111 ’ ”を受けて流速Vを決定する論理回路
である。
12 28 18 In the figure, 8 denotes arithmetic units 5a', pb and 5C, respectively.
This is a logic circuit that receives signals DA, 21 τOI "28-1", :P and "111'" to determine the flow velocity V.

流速Vの決定論理には種々の方法をとることができるが
最も単純な方法を第5図に示すように1相互関数演算器
5a 、 5bおよび5Cの出力τ。。
Various methods can be used to determine the flow velocity V, but the simplest method is shown in FIG. .

τ。、τ0 がそれぞれ、次式(3) %式%(3) のときのみ(すなわちそれぞれの上下限内のときのみ)
採用し次式(4) %式%) によってv、(i=1.2.3)を求める。そしてこの
有効なV4(’i=1.2.8)からのみ平均値を求め
て、次式(5) によって正規のV=<求める。
τ. , τ0 respectively satisfy the following formula (3) % formula % (3) (i.e., only when within their respective upper and lower limits)
Then, v, (i=1.2.3) is determined by the following equation (4). Then, the average value is determined only from this effective V4 ('i=1.2.8), and the normal V=< is determined by the following equation (5).

なおこの方法以外に以下のような論理回路の採用ももち
ろん可能である。
In addition to this method, it is of course possible to employ the following logic circuit.

■ 相関関数’121 ’2111 ”121の形状の
正しいもののみ選択する方法 ■ τ0.τ。、τ0゜の多数決論理を採る方法■ ダ
0.(τと、 0.、j(偕)、ダ0.(τ0゜)が下
限以上のもののみ採用する方法 また第4図では8つのセンサ3,4および7を用いる例
を示しているが、4つ以上でも良く、前述のものと全く
同じ論理で真の流速v2より高い精反にて求めることが
できる。
■ Method of selecting only the correct shape of correlation function '121 '2111 ``121 ■ Method of adopting majority logic of τ0.τ., τ0゜■ Da0.(τ and 0., j (偕), da0 .(τ0°) is above the lower limit.Also, Fig. 4 shows an example of using eight sensors 3, 4, and 7, but it is also possible to use four or more sensors, using exactly the same logic as above. It can be determined with a higher flow velocity than the true flow velocity v2.

この発明は、以上のべfCように、センサ間距離を互い
に異ならせて、3箇所以上にセンサを設置し、流速の大
小に応じて最適なセンナ間距離の組み合せを選択して流
速を求めるから、流速が大きく変化しても常に正確な流
速を測定することができる。
In this invention, as described above, the distances between the sensors are made different and the sensors are installed at three or more locations, and the flow velocity is determined by selecting the optimal combination of the distances between the sensors depending on the magnitude of the flow velocity. , the flow rate can always be accurately measured even if the flow rate changes greatly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b) 、、 (0)は、相関法に
よる流速測定要領を示す、センサ配置図と各センナによ
る信号の波形図および相互相関関数のグラフであり、第
2図(a)、 (b)は不適切なセンサ間距離りの場合
における各センサによる信号の波形図および相互相関関
数のグラフそして、 第3図(a) 、 (b)、 (C)は、距離りと流速
Vによる相互相関関数の波形変化のありさまを示した比
較グラフであり、 第4図はこの発明の詳細な説明図、 第5図は流速■の決定論理を示すフローチャートである
。 8.4.7・・・センサ Ll、 L2.’ L8・・・センサ間距離。
Figures 1 (a), (b), (0) are sensor layout diagrams, waveform diagrams of signals from each sensor, and graphs of cross-correlation functions, showing the procedure for measuring flow velocity using the correlation method. a) and (b) are graphs of signal waveforms and cross-correlation functions from each sensor when the distance between the sensors is inappropriate; FIG. 4 is a detailed explanatory diagram of the present invention, and FIG. 5 is a flowchart showing the logic for determining the flow velocity. 8.4.7...Sensor Ll, L2. ' L8... Distance between sensors.

Claims (1)

【特許請求の範囲】[Claims] L 管路中の流体の物理量に応答するセンサを、該管路
中における流体の流れの向きに沿う3箇所以上で互いに
異なる間隔をへだてて設置し、該流体の流速に応じて最
適なセンサ間距離の組み合せを選択して相互相関法を適
用し、流速を求めることを特徴とする相関型流速計。
L Sensors that respond to the physical quantity of the fluid in the pipeline are installed at three or more locations along the direction of fluid flow in the pipeline at different intervals, and the optimal distance between the sensors is determined according to the flow rate of the fluid. A correlation-type current meter characterized by selecting a combination of distances and applying a cross-correlation method to determine the flow velocity.
JP4793483A 1983-03-24 1983-03-24 Correlation type flow velocity meter Granted JPS59173715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4793483A JPS59173715A (en) 1983-03-24 1983-03-24 Correlation type flow velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4793483A JPS59173715A (en) 1983-03-24 1983-03-24 Correlation type flow velocity meter

Publications (2)

Publication Number Publication Date
JPS59173715A true JPS59173715A (en) 1984-10-01
JPH0454892B2 JPH0454892B2 (en) 1992-09-01

Family

ID=12789199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4793483A Granted JPS59173715A (en) 1983-03-24 1983-03-24 Correlation type flow velocity meter

Country Status (1)

Country Link
JP (1) JPS59173715A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841780A (en) * 1986-05-16 1989-06-27 Tokico Ltd. Cross correlation flowmeter
JP2009505091A (en) * 2005-08-16 2009-02-05 コミサリア、ア、レネルジ、アトミク Displacement speed measurement method
JP2009168688A (en) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd Fluid measuring device
JP2018537213A (en) * 2015-12-14 2018-12-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Imaging system and method for determining translational speed of a catheter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555021B2 (en) * 2015-09-01 2019-08-07 セイコーエプソン株式会社 Medium speed detection apparatus and printing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841780A (en) * 1986-05-16 1989-06-27 Tokico Ltd. Cross correlation flowmeter
JP2009505091A (en) * 2005-08-16 2009-02-05 コミサリア、ア、レネルジ、アトミク Displacement speed measurement method
JP2009168688A (en) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd Fluid measuring device
JP2018537213A (en) * 2015-12-14 2018-12-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Imaging system and method for determining translational speed of a catheter

Also Published As

Publication number Publication date
JPH0454892B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
US4317178A (en) Multiple velocity traverse flow rate measuring technique
CA1095163A (en) Method and system for measuring flow rate
US3819919A (en) Tracking system for time-displaced signals
US6553844B2 (en) Property-independent volumetric flowmeter and sonic velocimeter
US3370463A (en) Mass flow meter
JPS59173715A (en) Correlation type flow velocity meter
Rychagov et al. Multipath flowrate measurements of symmetric and asymmetric flows
Cascetta et al. Field test of a swirlmeter for gas flow measurement
Brain et al. Survey of pipeline flowmeters
Frank et al. Point-velocity methods for flow-rate measurements in asymmetric pipe flow
US3314289A (en) Swirl flow meter transducer system
US3543578A (en) Flow metering system
Yeh et al. Special ultrasonic flowmeters for in-situ diagnosis of swirl and cross flow
Lee et al. An implementation of ultrasonic water meter using dToF measurement
Coulthard Cross-correlation flow measurement—a history and the state of the art
CN207622811U (en) A kind of fluid measuring sensor and system
Waluś Mathematical modelling of an ultrasonic flowmeter primary device
CN205861133U (en) Venturi double difference pressure ultrasonic flow rate measurement apparatus
Mahadeva et al. Studies of the accuracy of clamp-on transit time ultrasonic flowmeters
Roshanaei et al. Theoretical and experimental evaluation of small flow rate ultrasonic flowmeter
WO2018079269A1 (en) Fluid measuring device
Sanderson Electromagnetic and ultrasonic flowmeters: their present states and future possibilities
Vidyarthia et al. Ultrasonic transit-time flowmeters for pipes: A short review
SU712670A1 (en) Method of measuring electroconducting media rate-of-flow
Zhu et al. Time of Flight Measurement Method Combining Threshold Method and Cross-Correlation Method