JPS6166220A - Thin metallic film type magnetic recording medium - Google Patents

Thin metallic film type magnetic recording medium

Info

Publication number
JPS6166220A
JPS6166220A JP18830584A JP18830584A JPS6166220A JP S6166220 A JPS6166220 A JP S6166220A JP 18830584 A JP18830584 A JP 18830584A JP 18830584 A JP18830584 A JP 18830584A JP S6166220 A JPS6166220 A JP S6166220A
Authority
JP
Japan
Prior art keywords
magnetic
saturation magnetization
metal
thin film
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18830584A
Other languages
Japanese (ja)
Inventor
Hideki Yoshida
秀樹 吉田
Mikio Murai
幹夫 村居
Moriji Maezawa
前澤 司治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18830584A priority Critical patent/JPS6166220A/en
Publication of JPS6166220A publication Critical patent/JPS6166220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having good still durability particularly under low humidity and good C/N by incorporating the compd. of a magnetic matal into a thin magnetic metallic layer consisting of said compd. in such a manner that the average quantity of saturation magnetization of the magnetic metal and said magnetic layer attains the specific ratio of the quantity of saturation magnetization of the magnetic metal or below. CONSTITUTION:The magnetic layer 2 consisting essentially of the magnetic metal such as Co. Ni or Cr (including an alloy) and the magnetic compd. such as the oxide, nitride, sulfide or carbide thereof is formed on a substrate 1 consisting of plastic, metal, ceramics, etc. The layer 2 is formed by a sputtering method, vacuum-depositing method, etc. in such a manner that the average quantity of saturation magnetization of the entire layer attains <=60% of the quantity of saturation magnetization of the magnetic metal when the quantity of saturation magnetization changes in the thickness direction. The still life under low humidity is thus remarkably improved and the thin metallic film type magnetic recording medium having the improved C/N is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は低湿時の耐久性と電磁変換特性を両立させた金
属薄膜型磁気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a metal thin film type magnetic recording medium that has both durability at low humidity and electromagnetic conversion characteristics.

従来例の構成とその問題点 近年、金属薄膜型磁気記録媒体は高密度磁気記録媒体と
して注目され、次第に実用化されつつある。金属薄膜型
磁気記録媒体の電磁変換特性は従来用いられてきた塗布
型磁気記録媒体の電磁変換特性と較べ、高密度記録時に
非常に優れた特性を示すことが知られており、次世代の
磁気記録媒体として注目されている。このように金属薄
膜型磁気記録媒体は優れた可能性を持っているが、磁気
記録媒体としてより広く普及させる為には耐久性の向上
が望まれている。従来知られた耐久性向上の手法として
は、 ■オーバーコート ■滑剤 0表面形状制御 などが代表的である。これらの手法を用いることにより
耐久性を向上させることができるが、一方でこれらの手
法はスペーシングロスを生み、高密度記録時の電磁変換
特性を劣化させる。この為電磁変換特性とのバランスを
考慮すると、従来の耐久性向上法では十分な耐久性を得
ることができず特に表面吸着水の保護作用の弱い低湿時
の耐久性が悪いという問題点を有していた。
Conventional Structure and Problems In recent years, metal thin film magnetic recording media have attracted attention as high-density magnetic recording media, and are gradually being put into practical use. It is known that the electromagnetic conversion characteristics of metal thin film magnetic recording media are extremely superior to those of conventionally used coating-type magnetic recording media during high-density recording, and are a promising material for next-generation magnetic recording. It is attracting attention as a recording medium. As described above, metal thin film magnetic recording media have excellent potential, but in order to make them more widespread as magnetic recording media, it is desired that their durability be improved. Typical known methods for improving durability include: (1) Overcoat (2) Surface shape control with no lubricant. Durability can be improved by using these methods, but on the other hand, these methods produce spacing loss and deteriorate electromagnetic conversion characteristics during high-density recording. For this reason, when considering the balance with electromagnetic conversion characteristics, it is not possible to obtain sufficient durability with conventional durability improvement methods, and there is a problem that durability is poor especially at low humidity where the protective effect of surface adsorbed water is weak. Was.

発明の目的 本発明は上記従来の問題点を解消するもので、電磁変換
特性の劣化を最小限にとどめながら低湿時の耐久性を向
上した金属薄膜型磁気記録媒体を提供するものである。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides a metal thin film type magnetic recording medium that improves durability at low humidity while minimizing deterioration of electromagnetic conversion characteristics.

発明の構成 本発明は磁性金属及びその化合物を主成分とする磁性層
を持ち、金属薄膜磁性層の平均飽和磁化量が磁性金属の
飽和磁化量の60%以下となるよ。
Structure of the Invention The present invention has a magnetic layer mainly composed of a magnetic metal and its compound, and the average saturation magnetization of the metal thin film magnetic layer is 60% or less of the saturation magnetization of the magnetic metal.

うな割合で磁性金属とその化合物を含むことを特徴とす
る金属薄膜型磁気記録媒体であシ、電磁変換特性の劣化
を最小限にとどめながら低湿時の耐久性を向上すること
のできるものである。
The present invention is a metal thin film type magnetic recording medium characterized by containing a magnetic metal and its compound in a proportion as high as 100%, and is capable of improving durability at low humidity while minimizing deterioration of electromagnetic conversion characteristics. .

実施例の説明 以下本発明の実施例について、図面を参照しながら説明
する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の実施例における金属薄膜型磁気記録媒
体の基本構成を示す図である。第1図において、1は基
板、2は金属薄膜磁性層である。
FIG. 1 is a diagram showing the basic configuration of a metal thin film magnetic recording medium in an embodiment of the present invention. In FIG. 1, 1 is a substrate and 2 is a metal thin film magnetic layer.

ここで基板1としてはプラスチック、金属、セラミック
等の材料から適宜選択される。金属薄膜磁性層2として
はGo系、 GoNl系、 Goat系、 Fe系。
Here, the substrate 1 is appropriately selected from materials such as plastic, metal, and ceramic. The metal thin film magnetic layer 2 is Go-based, GoNl-based, Goat-based, or Fe-based.

Fe−0r系、 Fa −Go−Or系、 Ni糸、N
1−P系等の磁性金属と、その酸化物、窒化物、炭化物
等の化合物から(14成され、金属薄膜磁性層2の形成
方法としては真空蒸着法、スパッタ法、メッキ法。
Fe-0r series, Fa-Go-Or series, Ni thread, N
The metal thin film magnetic layer 2 is formed by a vacuum evaporation method, a sputtering method, or a plating method.

CVD法、イオン注入法、イオンブレーティング法、含
浸処理法等から適宜選択される。金属薄膜型磁性層2の
厚みは、電磁変換特性と耐久性の観点から600〜50
00人が望ましい。金属薄膜型磁性層2の厚みを厚くす
るとヘッドとの相性に    ゛よるが、高密度記録に
おいては2000〜3000人の厚みに達するまでBr
δの増加によシ再生出力が増加し、更に厚みを増加させ
ると厚み損失によシ再生出力は低下し、so’oo人を
超えると厚み損失による再生出力低下は著しい。又、本
発明による金属薄膜型磁性層2のBrは従来の金属薄膜
型磁性層と較べBrが著しく低い。Brが低い為再生出
力は低下するが、高密度記録時の出力低下はBr依存が
少な(Haに依存するので出力低下は少ない。しかし記
録密度の低下と共にBr低下による再生出力低下が著し
い。そこで低い記録密度での再生出力を確保する為には
金属薄膜磁性層2の厚みδを増やす必要がある。故に金
属薄膜型磁性層2の厚みはSOO〜50oO人が望まし
く、更に望ましくは良好な高密度記録再生出力を得る為
に500〜3000人が望ましく、更に望ましくは良好
な低密度記録出力を得る為に1oOo〜3000人の膜
厚が望ましい。
The method is appropriately selected from CVD method, ion implantation method, ion blating method, impregnation treatment method, etc. The thickness of the metal thin film type magnetic layer 2 is 600 to 50 mm from the viewpoint of electromagnetic conversion characteristics and durability.
00 people is desirable. If the thickness of the metal thin film type magnetic layer 2 is increased, it depends on the compatibility with the head, but in high-density recording, the Br can be increased up to a thickness of 2,000 to 3,000 layers.
As δ increases, the reproduction output increases, and when the thickness is further increased, the reproduction output decreases due to thickness loss, and when the thickness exceeds so'oo, the reproduction output decreases significantly due to thickness loss. Further, the Br of the metal thin film type magnetic layer 2 according to the present invention is significantly lower than that of the conventional metal thin film type magnetic layer. Because the Br is low, the reproduction output decreases, but the output decrease during high-density recording is less dependent on Br (it depends on Ha, so the output decrease is small. However, as the recording density decreases, the reproduction output decreases significantly due to the decrease in Br. In order to ensure reproduction output at low recording density, it is necessary to increase the thickness δ of the metal thin film magnetic layer 2. Therefore, the thickness of the metal thin film magnetic layer 2 is desirably SOO to 50 μm, and more preferably a good high In order to obtain a high density recording/reproduction output, a film thickness of 500 to 3,000 is desirable, and more preferably a film thickness of 1 to 3,000 in order to obtain a good low density recording output.

金属薄膜i性層2は強磁性体の磁性金属とその化合物の
混合物であるが、混合の比率は金属薄膜磁性層2の平均
飽和磁化量が磁性金属の飽和磁化量の60%以下となる
ような割合である。ここで平均飽和磁化量というのは厚
み方向等の差があった場合、金属薄膜磁性層全体の平均
を取るということである。反強磁性体の比率が増えると
平均飽和磁化量は減少するが、平均飽和磁化量の減少に
伴ない抗磁力は増加する。この現象は特にGo系。
The metal thin film magnetic layer 2 is a mixture of a ferromagnetic magnetic metal and its compound, and the mixing ratio is such that the average saturation magnetization of the metal thin film magnetic layer 2 is 60% or less of the saturation magnetization of the magnetic metal. This is a high percentage. Here, the average amount of saturation magnetization means that when there is a difference in the thickness direction, etc., the average amount of saturation magnetization is taken as the average of the entire thin metal film magnetic layer. As the proportion of antiferromagnetic material increases, the average saturation magnetization decreases, but as the average saturation magnetization decreases, the coercive force increases. This phenomenon is especially true for the Go system.

co−Ni系等の場合顕著であるが、抗磁力の増加に効
果があるのは金属薄膜磁性層2の平均飽和磁化量が磁性
金属の飽和磁化量の1oO〜75%程度の場合である。
This is noticeable in the case of co-Ni type materials, etc., but the effect of increasing coercive force is effective when the average saturation magnetization of the metal thin film magnetic layer 2 is about 100 to 75% of the saturation magnetization of the magnetic metal.

金属薄膜磁性層2の平均飽和磁化量が磁性金属の飽和磁
化11にの70〜0%の領域では平均飽和磁化量減少に
よる抗磁力上昇の効果と、結晶性の乱れによる抗磁力減
少の効果が打ち消し合うものと思われ、抗磁力はあまり
変化しない。故に平均飽和磁化量の変化と抗磁力の変化
から高密度記録時の再生出力は金属薄膜磁性層2の平均
飽和磁化量が磁性金属の飽和磁化量の80〜76%の時
に最大となシ、それ以上化合物が増えると高密度記録時
の再生出力は低下する。平均飽和磁化量の低下による抗
磁力上昇の効果が顕著でない場合には、磁性金属単体で
化合物を含まない時に、最も高密度記録時の再生出力が
大きい。
In a region where the average saturation magnetization of the metal thin film magnetic layer 2 is 70% to 0% of the saturation magnetization 11 of the magnetic metal, there is an effect of increasing coercive force due to a decrease in the average saturation magnetization and an effect of decreasing coercive force due to disordered crystallinity. It is thought that they cancel each other out, and the coercive force does not change much. Therefore, due to changes in average saturation magnetization and changes in coercive force, the reproduction output during high-density recording is maximum when the average saturation magnetization of the metal thin film magnetic layer 2 is 80 to 76% of the saturation magnetization of the magnetic metal. If the amount of compounds increases further, the reproduction output during high-density recording will decrease. If the effect of increasing coercive force due to a decrease in average saturation magnetization is not significant, the reproduction output during high-density recording is highest when the magnetic metal is a single substance and does not contain any compound.

CO系やGo −Ni系の磁性金属の場合、平均飽和磁
化量の低下による磁性ノイズ低減の効果も知られている
。この為、平均飽和磁化量が低下し高密度記録時の再生
出力が低下しても、それ以上に磁性ノイズが低減されC
/Nが向上する場合がある。
In the case of CO-based and Go-Ni-based magnetic metals, it is also known that magnetic noise can be reduced by reducing the average saturation magnetization amount. For this reason, even if the average saturation magnetization decreases and the reproduction output during high-density recording decreases, magnetic noise is further reduced.
/N may be improved.

このような効果から、高密度記録時に最も高いC/N 
を得る為には金属薄膜磁性層2の平均飽和磁化量が磁性
金属の飽和磁化量の75〜70%程度の場合である。
Due to these effects, the highest C/N during high-density recording
In order to obtain this, the average saturation magnetization of the metal thin film magnetic layer 2 is about 75 to 70% of the saturation magnetization of the magnetic metal.

本発明は、このようなGo系、Go−Ni系における電
磁変換特性の向上とはまったく異なる効果であり、高密
度記録時の再生出力、C/N のみの観点からすると、
金属薄膜磁性層2の平均飽和磁化量は磁性金属の飽和磁
化量の90〜7Q%が望ましく、60%以下では電磁変
化特性の劣化が認められ、又、電磁変換特性が同等でも
Bs又はBrが低下すると、同等のBrδを得る為には
膜厚δが増加し、生産性の面で不利である。しかし金属
薄膜磁性層2の平均飽和磁化量が磁性金属の飽和磁化量
の60%以下の場合低湿時の耐久性改善の効果は著しく
、従来まったく知られていなかった効果を示し低湿時の
耐久性と電磁変換特性が両立する。本発明の耐久性の改
善効果は磁性金属とその化合物との混合比率が1:1に
近づくことにより、磁性金属単体としての特性が薄れ、
結晶構造が変化する為であると推察される。
The present invention has an effect completely different from the improvement of electromagnetic conversion characteristics in Go-based and Go-Ni-based systems, and from the perspective of only reproduction output and C/N during high-density recording,
It is desirable that the average saturation magnetization of the metal thin film magnetic layer 2 is 90 to 7Q% of the saturation magnetization of the magnetic metal.If it is less than 60%, deterioration of electromagnetic change characteristics is observed, and even if the electromagnetic conversion characteristics are the same, Bs or Br is If it decreases, the film thickness δ will increase in order to obtain the same Brδ, which is disadvantageous in terms of productivity. However, when the average saturation magnetization of the metal thin film magnetic layer 2 is 60% or less of the saturation magnetization of the magnetic metal, the effect of improving durability at low humidity is remarkable, and this shows an effect that was completely unknown in the past. and electromagnetic conversion characteristics. The durability improvement effect of the present invention is due to the fact that as the mixing ratio of the magnetic metal and its compound approaches 1:1, the characteristics of the magnetic metal as a single substance become weaker.
It is presumed that this is due to a change in the crystal structure.

以下に本発明のさらに具体的な一実施例を説明する。A more specific embodiment of the present invention will be described below.

(実施例1) 基板として厚み10μmのポリエチレンテレフルレート
を用い、CoCo−N1(2o%)を直径600 mm
の円筒キャンに沿って蒸着した。蒸着は入射角が90’
となる接線方向から開始され、次第に入射角は低くなり
40’  の入射角となるまで行われる。蒸着中に雰囲
気ガスとして02ガスを導入し、02ガス導入量を変化
させ第1表に示すような試料を得た。
(Example 1) Using polyethylene terefluoride with a thickness of 10 μm as a substrate, CoCo-N1 (20%) was coated with a diameter of 600 mm.
was deposited along the cylindrical can. For vapor deposition, the incident angle is 90'
The angle of incidence is started from the tangential direction, and the angle of incidence gradually decreases until the angle of incidence reaches 40'. 02 gas was introduced as an atmospheric gas during vapor deposition, and samples as shown in Table 1 were obtained by varying the amount of 02 gas introduced.

(以 下 余 白) 〔第1 表〕 第1表に示す試料の抗磁力H0,23°C10%Rh 
におけるスチル寿命、記録波長0.8μmの再生出力、
記録波長0.8μmのC/Nを第2図にまとめる。測定
にはフェライトヘッドを有したφ4゜の回転シリンダー
を用いて測定を行ない、再生出力、C/N は試料Eを
OdBとして表示した。
(Margin below) [Table 1] Coercive force H0, 23°C 10%Rh of the samples shown in Table 1
Still life in , reproduction output at recording wavelength 0.8 μm,
Figure 2 summarizes the C/N at a recording wavelength of 0.8 μm. The measurement was carried out using a rotating cylinder of φ4° having a ferrite head, and the reproduced output and C/N were expressed as OdB for sample E.

第1表から明らかな様に再生出力、C/N の点からは
磁性金属に近く、化合物があまり多くない領域に最適点
があるが、23°C10%でのスチル寿命を考慮すると
化合物が多い方が有利である。
As is clear from Table 1, in terms of reproduction output and C/N, the optimal point is close to that of magnetic metals and there are not many compounds, but when considering the still life at 23°C 10%, there are many compounds. It is more advantageous.

以上のように本実施例によれば金属薄膜磁性層の平均飽
和磁化量が磁性材料の飽和磁化量の60%以下の場合、
低湿時のスチル寿命は1著しく改善され、再生出力はや
や低いもののC/Nの観点からするとC/Hの最大値よ
り−0,8(iBから一211B程度であシ、電磁変換
特性の劣化は非常に小さい。
As described above, according to this embodiment, when the average saturation magnetization of the metal thin film magnetic layer is 60% or less of the saturation magnetization of the magnetic material,
The still life at low humidity has been significantly improved by 1, and although the playback output is somewhat low, from the C/N perspective, it is -0.8 (from iB to -211B) from the maximum C/H value, and the electromagnetic conversion characteristics have deteriorated. is very small.

(実施例2) 基板として厚み20μmの芳香族ポリアミドを用い、G
o を直径500 mnの円筒キャンに沿って蒸着した
。蒸着は入射角が90° となる接線方向から開始され
、次第に入射角は低くなり36° の入射角まで行われ
る。蒸着中に雰囲気ガスとしてN2 ガスを導入し、蒸
着膜厚、02  ガス導入量を変化させ第2表に示すよ
うな試料を得た。第2表においてム、B、C,Dは各々
蒸着膜厚δを変化させたものであシ、A、B、C,Dに
ついて各々6水準窒素化合物の比率を変化させた。第3
図にはこれら試料の23°C10%Rh環境下における
スチル寿命、第4図には0.8μmの記録波長における
再生信号のC/Nである。測定にはアモルファスヘッド
を有するφ40の回転シリンダーを用いた。07Hの標
準としては最もC/Nの悪かったム−6の試料をOdB
として表現した。
(Example 2) Using aromatic polyamide with a thickness of 20 μm as a substrate, G
o was deposited along a cylindrical can with a diameter of 500 mn. The deposition begins in the tangential direction at an angle of incidence of 90°, and gradually decreases to an angle of incidence of 36°. N2 gas was introduced as an atmospheric gas during vapor deposition, and the thickness of the deposited film and the amount of 02 gas introduced were varied to obtain samples as shown in Table 2. In Table 2, M, B, C, and D are obtained by changing the deposited film thickness δ, and A, B, C, and D are obtained by changing the ratio of six levels of nitrogen compounds, respectively. Third
The figure shows the still life of these samples under an environment of 23° C. and 10% Rh, and FIG. 4 shows the C/N of the reproduced signal at a recording wavelength of 0.8 μm. A rotating cylinder of φ40 having an amorphous head was used for the measurement. As a standard for 07H, the Mu-6 sample with the worst C/N was set to OdB.
Expressed as.

(以下 余 白) 〔第2表〕 第3図、第4図から明らかな様に、再生出力のC/Nの
観点からすると、化合物をあまり多く含まない方が良く
、23°C10%Rh環境下でのス千ル寿命の観点から
は化合物が多い方が良い。しかしスチル寿命が良い領域
でもG/Hの劣化は0.6〜2dB程度であり、スチル
寿命とC/Nを両立させることができる。
(Margin below) [Table 2] As is clear from Figures 3 and 4, from the viewpoint of the C/N of the reproduced output, it is better not to contain too many compounds, and in a 23°C 10% Rh environment. From the viewpoint of the life expectancy under the conditions, it is better to have more compounds. However, even in the region where the still life is good, the G/H deterioration is about 0.6 to 2 dB, and it is possible to achieve both the still life and the C/N.

以上のように本実施例によれば金属薄膜磁性層の平均飽
和磁化量を磁性金属の飽和磁化量の60%以下とするこ
とによシ、低湿時のスチル寿命と再生出力のC/Hとを
両立させることができる。
As described above, according to this embodiment, by setting the average saturation magnetization of the metal thin film magnetic layer to 60% or less of the saturation magnetization of the magnetic metal, the still life at low humidity and the C/H of the reproduction output can be improved. It is possible to achieve both.

なお、本実施例では2種類の試料について、具体的に効
果を示したが、本発明を構成する前述の他の材料の組み
合わせにおいても、同様の効果を有することを確認した
。さらに前記実施例では磁気記録媒体として磁気テープ
を例にして説明したが、本発明の要旨を逸脱しない範囲
で磁気ディスク、磁気シートの形態をとることもできる
ものである。又、本発明における耐久性の向上に加え、
従来知られたオーバーコート、滑剤2表面形状制御等を
併用し、様々な使用環境での耐久性向上もできるもので
ある。
In this example, the effects were specifically shown for two types of samples, but it was confirmed that the same effects were obtained in combinations of the other materials mentioned above that constitute the present invention. Further, in the above embodiments, a magnetic tape was used as an example of the magnetic recording medium, but it may also take the form of a magnetic disk or a magnetic sheet without departing from the gist of the present invention. In addition to improving the durability of the present invention,
By using conventionally known overcoat, lubricant 2 surface shape control, etc., durability can be improved in various usage environments.

発明の効果 以上のように本発明は、磁性金属及びその化合物を主成
分とする金属薄膜磁性層を持ち、金属薄膜磁性層の平均
飽和磁化量が磁性金属の飽和磁化量の60%以下となる
ような割合で磁性金属とその化合物を含むことにより、
電磁変換特性の劣化を最小限にとどめながら低湿時の耐
久性を向上させた金属薄膜型磁気記録媒体を提供するこ
とができ、その実用的効果は大きい。
Effects of the Invention As described above, the present invention has a metal thin film magnetic layer mainly composed of a magnetic metal and its compound, and the average saturation magnetization of the metal thin film magnetic layer is 60% or less of the saturation magnetization of the magnetic metal. By containing magnetic metals and their compounds in such proportions,
It is possible to provide a metal thin film magnetic recording medium that has improved durability at low humidity while minimizing deterioration of electromagnetic conversion characteristics, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における金属薄膜型磁気記録媒
体を示す断面図、第2図は本発明の実施例における電磁
変換特性と耐久性を示す図、第3図は本発明の実施例に
おける耐久性を示す図、第4図は本発明の実施例におけ
る電磁変換特性を示す図である。 1・・・・・・基板、2・・・・・・金属薄膜磁性層。 代理人の氏名 弁理士中 尾 敏 男 ほか1名第 1
 図 第2図 1ン鳴遍’[6M−ρつ創1f橋fζV1瞼卆支愈具−
421曽fこ量第3図 1ン−もtygケ生/腎の4m1i7℃磁イとl計/I
去ヂ五μ句考と禾’41Af乙]1第4図
FIG. 1 is a sectional view showing a metal thin film magnetic recording medium in an embodiment of the present invention, FIG. 2 is a diagram showing electromagnetic conversion characteristics and durability in an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a diagram showing the electromagnetic conversion characteristics in an example of the present invention. 1...Substrate, 2...Metal thin film magnetic layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig.2
421 So f volume Fig. 3 1 n-motyg raw/kidney 4m1i 7℃ magnetic and l meter/I
1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 磁性金属及びその化合物を主成分とする金属薄膜磁性層
を持ち、金属薄膜磁性層の平均飽和磁化量が磁性金属の
飽和磁化量の60%以下となるような割合で磁性金属と
その化合物を含むことを特徴とする金属薄膜型磁気記録
媒体。
It has a metal thin film magnetic layer mainly composed of magnetic metals and their compounds, and contains magnetic metals and their compounds in such a proportion that the average saturation magnetization of the metal thin film magnetic layer is 60% or less of the saturation magnetization of the magnetic metal. A metal thin film type magnetic recording medium characterized by the following.
JP18830584A 1984-09-07 1984-09-07 Thin metallic film type magnetic recording medium Pending JPS6166220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18830584A JPS6166220A (en) 1984-09-07 1984-09-07 Thin metallic film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18830584A JPS6166220A (en) 1984-09-07 1984-09-07 Thin metallic film type magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6166220A true JPS6166220A (en) 1986-04-05

Family

ID=16221284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18830584A Pending JPS6166220A (en) 1984-09-07 1984-09-07 Thin metallic film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6166220A (en)

Similar Documents

Publication Publication Date Title
US4743491A (en) Perpendicular magnetic recording medium and fabrication method therefor
JPH01158618A (en) Magnetic recording medium
US5432645A (en) Magnetic head-forming thin film
US5252367A (en) Method of manufacturing a magnetic recording medium
US4609593A (en) Magnetic recording medium
JPS6166220A (en) Thin metallic film type magnetic recording medium
JPS60145524A (en) Magnetic recording medium
JPS6313256B2 (en)
JPS6153769B2 (en)
JPS61115229A (en) Magnetic recording medium
JPH0315245B2 (en)
JPH0485716A (en) Thin magnetic film for magnetic head
JPH065574B2 (en) Magnetic recording medium
JPH056327B2 (en)
JPS619824A (en) Magnetic recording medium
JPS6333286B2 (en)
JPS62150518A (en) Magnetic recording medium
JPH0268712A (en) Thin film magnetic recording medium
JPS59157830A (en) Magnetic recording medium
JPS59157829A (en) Magnetic recording medium
JPS59157827A (en) Magnetic recording medium
JPS61229228A (en) Magnetic recording medium
JPS6386111A (en) Magnetic recording medium
JPS61253626A (en) Magnetic recording medium
JPH04143925A (en) Production of magnetic recording medium