JPS6166181A - First wall of fusion reactor - Google Patents

First wall of fusion reactor

Info

Publication number
JPS6166181A
JPS6166181A JP59187999A JP18799984A JPS6166181A JP S6166181 A JPS6166181 A JP S6166181A JP 59187999 A JP59187999 A JP 59187999A JP 18799984 A JP18799984 A JP 18799984A JP S6166181 A JPS6166181 A JP S6166181A
Authority
JP
Japan
Prior art keywords
graphite
wall
stainless steel
tritium
fusion reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59187999A
Other languages
Japanese (ja)
Inventor
公親 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59187999A priority Critical patent/JPS6166181A/en
Publication of JPS6166181A publication Critical patent/JPS6166181A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、核融合炉第1壁に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a first wall of a fusion reactor.

〔発明の技術的背景および従来技術〕[Technical background of the invention and prior art]

核融合において、拡散や電荷交換によりプラズマから漏
出した水素同位体は、プラズマを取囲んでいる例えばス
テンレス製の第1壁に照射される。
In nuclear fusion, hydrogen isotopes leaked from the plasma due to diffusion and charge exchange are irradiated onto a first wall made of stainless steel, for example, surrounding the plasma.

材料に照射された水素同位体の大部分は拡散によってプ
ラズマ側へ再放出されたり、格子欠陥に捕捉されたりす
るが、一部は反対側の冷却水側へ透過する。特に、水素
同位体がトリチウムの場合は、冷却水側へ透過すると冷
却系機器の放射能汚染をもたらす恐れがあり、冷却系機
器の保守・補修の障害となる。
Most of the hydrogen isotopes irradiated to the material are re-emitted to the plasma side by diffusion or are trapped in lattice defects, but some of them permeate to the cooling water side on the opposite side. In particular, if the hydrogen isotope is tritium, if it permeates into the cooling water side, there is a risk of radioactive contamination of cooling system equipment, which will impede maintenance and repair of cooling system equipment.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、冷却水側へ透過するトリチウム
を減少させもりて冷却水側の機器の放射能汚染を防止す
る該融合炉第1壁を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to prevent radioactive contamination of equipment on the cooling water side by reducing tritium that permeates into the cooling water side. The goal is to provide the first wall.

〔発明の概要〕[Summary of the invention]

本発明は、第1壁の冷却水側にグラファイトを接合させ
、ステンレス鋼とグラファイトの二重構造にした核融合
炉第1壁である。
The present invention provides a first wall of a nuclear fusion reactor which has a double structure of stainless steel and graphite by bonding graphite to the cooling water side of the first wall.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ステンレス鋼中へ照射されたトリチウ
ムが冷却水側へ透過するにはグラファイトを通過しなけ
ればならない。水素同位体は、ステンレス鋼中では原子
の形で存在するため拡散速度は比較的速いが、グラファ
イトに水素同位体が溶込む場合、グラファイトの水素同
位体に対する保持力は極めて強く拡散はほとんどしない
。才た、ステンレス鋼中の水素同位体がステンレス鋼と
の界面付近のグラファイト中へ高込んだ場合、界面付近
で飽和溶解度に達するとこれ以上は水素同位体はグラフ
ァイト中へ溶込めない。
According to the present invention, tritium irradiated into stainless steel must pass through graphite in order to permeate to the cooling water side. Hydrogen isotopes exist in the form of atoms in stainless steel, so the rate of diffusion is relatively fast, but when hydrogen isotopes dissolve into graphite, graphite has an extremely strong holding power for the hydrogen isotopes, so there is almost no diffusion. When the hydrogen isotope in the stainless steel rises into the graphite near the interface with the stainless steel, once the saturated solubility is reached near the interface, the hydrogen isotope can no longer dissolve into the graphite.

このため、ステンレス鋼中の冷却水側にグラファイトを
接合させることにより、ステンレス鋼中のトリチウムが
冷却水側へ透過する量を減少させ、冷却系のトリチウム
汚染を防止することができ。
Therefore, by bonding graphite to the cooling water side of stainless steel, it is possible to reduce the amount of tritium in the stainless steel that permeates to the cooling water side, and prevent tritium contamination of the cooling system.

冷却系の保守・補修の容易比に寄与できる。This can contribute to the ease of maintenance and repair of the cooling system.

〔発明の実施例〕[Embodiments of the invention]

以下、この伯明の詳細を図示の実施例によって説明する
。槍1図は本発明の実施■を示したものである。図中2
はプラズマ1を囲む婿1壁で例えばステンレス鋼からな
る。3は上記ステンレス鋼に接合したグラファイトであ
る。グラファイトは冷却水Pの側に而している。このよ
うな構成であれば、ステンレス鋼中−\照射されたトリ
チウムがステンレス鋼とグラファイトの界面に達してグ
ラファイトへ溶込んで保持力が強いために容易には動け
ず冷却水側へは出てこない。また界面付近のグラファイ
ト中のトリチウム蓋が飽和溶解度に達するとこれ以上は
トリチウムがグラファイト中へ溶込むことができない。
The details of this method will be explained below with reference to illustrated embodiments. Figure 1 shows implementation (2) of the present invention. 2 in the diagram
is a wall 1 surrounding the plasma 1 and made of stainless steel, for example. 3 is graphite bonded to the stainless steel. Graphite is placed on the cooling water P side. With this configuration, the irradiated tritium in the stainless steel reaches the interface between the stainless steel and graphite, dissolves into the graphite, and has a strong retention force, so it cannot easily move and does not come out to the cooling water side. Not coming. Furthermore, when the tritium cap in the graphite near the interface reaches a saturated solubility, tritium cannot dissolve into the graphite any more.

このようにしてステンレス鋼からグラファイト側へのト
リチウム移行量を減少させることができ、またグラファ
イト中のトリチウムも保持されたまま動けないので、結
局冷却水側へ透過してくるトリチウムの量を減らすこと
ができる。
In this way, the amount of tritium transferred from the stainless steel to the graphite side can be reduced, and since the tritium in the graphite is also retained and does not move, the amount of tritium that eventually permeates into the cooling water side can be reduced. Can be done.

以上詳述したように、この発明によれば、トリチウム透
過量の少ない核融合炉第1壁を提供することができその
実用的価値は大なるものがある。
As described in detail above, according to the present invention, it is possible to provide the first wall of a fusion reactor with a small amount of tritium permeated, which has great practical value.

尚、本発明は第1壁に限定されるものではない。Note that the present invention is not limited to the first wall.

水素同位体の透過量を防止したい核融合炉の機器であっ
てもよく、また核融合炉でなくとも水素同位体の透過量
を防止したい一般的な機器であってもよい。また材料は
グラファイトとしたが単なる炭素やシリコンやゲルマニ
ウムであってもよくまた、これらの元素の多い化合物材
料であってもよい。更に一般的に水素保持力が強く水素
が動きにくい他の材料であってもよい。また、接合材料
でなくステンレス鋼をコーティングするものであっても
よい。
The device may be a device for a nuclear fusion reactor in which it is desired to prevent the amount of hydrogen isotopes permeating, or it may be a general device other than a nuclear fusion reactor, in which it is desired to prevent the amount of hydrogen isotopes permeating. Further, although the material is graphite, it may be simply carbon, silicon, or germanium, or it may be a compound material containing a large amount of these elements. Furthermore, other materials that generally have a strong hydrogen retention ability and in which hydrogen is difficult to move may also be used. Alternatively, stainless steel may be coated instead of the bonding material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る核融合炉第1壁の縦断
面図である。 1・・・プラズマ、2・・・第1壁、3・・・グラファ
イト、4・・・冷却水。 代理人弁理士  則 近 憲 佑(ほか1名)第1図
FIG. 1 is a longitudinal sectional view of a first wall of a fusion reactor according to an embodiment of the present invention. 1... Plasma, 2... First wall, 3... Graphite, 4... Cooling water. Representative Patent Attorney Noriyuki Chika (and 1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] プラズマを囲む面と反対側の面にグラファイトを接合し
たことを特徴とする核融合炉第1壁。
The first wall of a nuclear fusion reactor is characterized by having graphite bonded to the surface opposite to the surface surrounding the plasma.
JP59187999A 1984-09-10 1984-09-10 First wall of fusion reactor Pending JPS6166181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59187999A JPS6166181A (en) 1984-09-10 1984-09-10 First wall of fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59187999A JPS6166181A (en) 1984-09-10 1984-09-10 First wall of fusion reactor

Publications (1)

Publication Number Publication Date
JPS6166181A true JPS6166181A (en) 1986-04-04

Family

ID=16215864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59187999A Pending JPS6166181A (en) 1984-09-10 1984-09-10 First wall of fusion reactor

Country Status (1)

Country Link
JP (1) JPS6166181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309288A (en) * 1989-05-24 1990-12-25 Hitachi Ltd Nuclear fusion reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309288A (en) * 1989-05-24 1990-12-25 Hitachi Ltd Nuclear fusion reactor

Similar Documents

Publication Publication Date Title
ES8702046A1 (en) Method for minimizing the permeation release of tritrium through a nuclear reactor component.
JPS6166181A (en) First wall of fusion reactor
JPS6147583A (en) Nuclear fuel aggregate
Vook Effects of radiation on materials
JP2595179B2 (en) Metal-coated Li-containing ceramics
Kurosaki et al. Developing combined fission track analysis and alpha track analysis to study the spatial distribution of U and Pu sorbed to environmental particles
JPS61294389A (en) Hydrogen permeation preventive structure material
JPS62263979A (en) Structural material preventing permeation of hydrogen
JPH0283498A (en) Method and apparatus for suppressing diffusion of tritium
JPS61294390A (en) Hydrogen permeation preventive structure material
JPS62263980A (en) Structural material preventing permeation of hydrogen
JPS63151893A (en) Hydrogen permeation preventive structural material
JPH0252237B2 (en)
Pankratov et al. The experience in handling of lead-bismuth coolant contaminated by Polonium-210
JPS6256474B2 (en)
Ogard et al. Eh and fission product solubilities: Two factors in the leaching of UO2?
JPS6344198A (en) Pebble for manufacturing tritium and tritium production unit
Corlew Interim storage of radioactive xenon and krypton gas
JPS6234093A (en) Tritium breeding material for nuclear fusion reactor
GB1303762A (en)
Hiraga et al. Analysis of offshore atmospheric diffusion characteristics
Zebroski Vented fuel system
Amorosi et al. Overview of fuel handling requirements and systems
JPS6344199A (en) Tritium production unit
Takayasu et al. Autoradiograph of tritium in neutron-irradiated LiF