JPS6165433A - Inspecting device for object position of objective lens - Google Patents

Inspecting device for object position of objective lens

Info

Publication number
JPS6165433A
JPS6165433A JP59186471A JP18647184A JPS6165433A JP S6165433 A JPS6165433 A JP S6165433A JP 59186471 A JP59186471 A JP 59186471A JP 18647184 A JP18647184 A JP 18647184A JP S6165433 A JPS6165433 A JP S6165433A
Authority
JP
Japan
Prior art keywords
objective lens
electrode
capacitance
target object
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59186471A
Other languages
Japanese (ja)
Inventor
Kazuo Takahashi
一雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59186471A priority Critical patent/JPS6165433A/en
Publication of JPS6165433A publication Critical patent/JPS6165433A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • G03F9/7053Non-optical, e.g. mechanical, capacitive, using an electron beam, acoustic or thermal waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the detecting accuracy from being affected by a sample, by detecting the electrostatic capacitance between the electrode made to coat the surface of the objective lens that is closest to the object and the electrode formed on the surface of the mirror cylinder of the objective lens which is closer to the object. CONSTITUTION:From an oscillating circuit 12, a high frequency is impressed across the connection point of capacitors C2 and C3 and the connection point of capacitors C1 and an electrode 9. When the relative position of an object 3 and the objective lens 6 varies, the capacitance of an electrostatic capacitor C0 between the electrodes 8 and 9 varies, and high frequency is outputted from the bridge under amplitude modulation. Unbalanced voltages are taken out by passing modulated waves, outputted from a detecting circuit 13 and the bridge 11, through a low-pass filter. A DC amplifier 14 amplifies this unbalanced voltage and drives an indicator 15. The indicator 15 the position of the object 3.

Description

【発明の詳細な説明】 U発明の分野J 本発明は、対物レンズに対する対象物体の位置を検出す
る装置に関し、特に、光学式顕微鏡あるいは半導体露光
装置等の焦点深度の浅い対物レンズの物体位置を検出し
自動焦点合せを行なう為の検出系として好適な対物レン
ズの物体位置検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention J The present invention relates to a device for detecting the position of a target object with respect to an objective lens. The present invention relates to an object position detection device for an objective lens suitable as a detection system for detection and automatic focusing.

[発明の荷置] 従来、この種の装置としては、光学式の検出手段やエア
ーセンサによる検出手段などが提案されている。前者の
光学式検出手段においては、第5図に示すように、光源
1からの光を第1の光学系2を通して試料3上に集光さ
せ、試料3からの反射光を第2の光学系4を通して受光
素子5で受光し、反射光の受光素子5における入射位置
から主光学系(対物レンズ)6の位置を検出する方法が
取られている。しかし、この方法では試料3の反射率が
低い場合には、検出誤差が大きくなったり、検出不能と
なる場合もある。さらに第6図に示すように試料が傾む
いた場合にも検出誤差を生じる欠点があった。すなわち
、第6図において、太線で示される試料3は、主光学系
6の光軸上の位置が細線で示されるものと同一であるが
、太線で示すように傾いていると、第2の光学系4に対
する反射光(2点鎖線)の入射位置が上方にずれてしま
い、試料3の位置が細線のものより上側にあるものとし
て検出されてしまう。
[Cargo Storage of the Invention] Conventionally, as this type of device, optical detection means, detection means using an air sensor, and the like have been proposed. In the former optical detection means, as shown in FIG. 5, light from a light source 1 is focused on a sample 3 through a first optical system 2, and reflected light from the sample 3 is focused on a sample 3. 4, the light is received by the light receiving element 5, and the position of the main optical system (objective lens) 6 is detected from the incident position of the reflected light on the light receiving element 5. However, with this method, if the reflectance of the sample 3 is low, the detection error may become large or detection may not be possible. Furthermore, as shown in FIG. 6, there is a drawback that detection errors occur even when the sample is tilted. That is, in FIG. 6, the position of the main optical system 6 on the optical axis of the sample 3 shown by the thick line is the same as that shown by the thin line, but if it is tilted as shown by the thick line, the second The incident position of the reflected light (two-dot chain line) on the optical system 4 shifts upward, and the position of the sample 3 is detected as being above the thin line.

これに対処する為、第7図に示すように、主光学系6の
周囲にエアーセンサ7を複数個配置して、各センサの値
から対物レンズと物体の相対位置を検出する方法も実用
化されている。しかし、この方式では、エアー・センサ
の特性上応答速度が遅いという欠点がある。さらに、こ
のようなエアー・センサは主光学系6の周囲にしか配置
できない為、主光学系6の口径が大きくなると各センサ
7の相対間隔も広くなり、試料3に各センサの相対M隔
より小さい領域での凹凸があっても検出できない等の欠
点がある。
In order to deal with this, a method has been put into practical use in which multiple air sensors 7 are arranged around the main optical system 6 and the relative position of the objective lens and the object is detected from the values of each sensor, as shown in Figure 7. has been done. However, this method has the disadvantage that the response speed is slow due to the characteristics of the air sensor. Furthermore, since such an air sensor can only be placed around the main optical system 6, as the aperture of the main optical system 6 becomes larger, the relative spacing between the sensors 7 also becomes wider, and the relative distance M between the sensors 7 and 7 on the sample 3 increases. There are drawbacks such as the inability to detect irregularities in small areas.

[発明の目的] 本発明の目的は、上述の従来例における問題点に鑑み、
検出精度が試料の反射率や表面の傾きおよび凹凸に影響
され難く、かつ高速での物体位置検出が可能な対物レン
ズの物体位置検出装置を提供することにある。また、試
料表面の傾きゃ凹凸を検出可能な装置を提供することを
第2の目的とする。
[Object of the Invention] In view of the problems in the conventional example described above, the object of the present invention is to
It is an object of the present invention to provide an object position detection device for an objective lens whose detection accuracy is not easily affected by the reflectance of a sample and the inclination and unevenness of the surface and which is capable of detecting the object position at high speed. A second object of the present invention is to provide an apparatus capable of detecting inclinations and irregularities on the surface of a sample.

[実施例の説明l 以下、図面を用いて本発明の詳細な説明する。[Explanation of Examples l Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明一実施例(係る付物1〕゛ノアの物体
位置検出装置を適用した対物レンズ部分の構成を示す。
FIG. 1 shows the configuration of an objective lens portion to which Noah's object position detection device is applied (an embodiment of the present invention (appendix 1)).

同図において、3は試料(対象物体)、61ま主光学系
としての対物レンズ、8は第1の電極、9は第2の電極
である。また、61は対物レンズ6の鏡筒、62は対物
レンズ6の光学系を構成している物体3に最も近い位置
のレンズである。
In the figure, 3 is a sample (target object), 61 is an objective lens as a main optical system, 8 is a first electrode, and 9 is a second electrode. Further, 61 is a lens barrel of the objective lens 6, and 62 is a lens located closest to the object 3 constituting the optical system of the objective lens 6.

第1の電極8は、透明で導電性のある薄膜をレンズ62
にコーティングすることにより形成される。
The first electrode 8 is a transparent and conductive thin film that is attached to the lens 62.
It is formed by coating.

この第1の電極8は、光学的損失のできるだけ少ないこ
とが好ましく、例えば、レンズの反射防止コートとして
通常用いられる金属(アルミニウム等)コーティング材
料を用いることができる。また、レンズ62の物体側の
面にこのような反射防止用金属、コートを施す場合、こ
の金属コート周辺部の鏡筒61と接する部分を除去する
等、この金属コートを鏡筒61から絶縁させることによ
り、本発明の第1の電極として用いることができる。
This first electrode 8 preferably has as little optical loss as possible, and can be made of, for example, a metal (aluminum or the like) coating material that is commonly used as an antireflection coating for lenses. In addition, when applying such an anti-reflection metal coating to the object side surface of the lens 62, it is necessary to insulate the metal coating from the lens barrel 61 by, for example, removing the portion around the metal coating that contacts the lens barrel 61. Accordingly, it can be used as the first electrode of the present invention.

第2の電極9は鏡筒61の物体3に最も近い位置に構成
される。これは、例えば鏡筒61が金属等の導電製材料
で構成されてぃれば−この1ftFilAIGネのまま
第2の電極として用いればよい。また、鏡筒61の物体
3に近1きする面に曲の材料で構成した上極を取付ける
ようにしてもよい。例えば第2の電極をプリント配線板
で構成すれば、鏡筒61が導電性であっても電1fi9
を鏡筒61から絶縁することができる。
The second electrode 9 is arranged on the lens barrel 61 at a position closest to the object 3. For example, if the lens barrel 61 is made of a conductive material such as metal, the 1 ft Film AIG can be used as the second electrode. Furthermore, an upper pole made of a curved material may be attached to the surface of the lens barrel 61 that is close to the object 3. For example, if the second electrode is made of a printed wiring board, even if the lens barrel 61 is conductive, the electric current will be 1fi9.
can be insulated from the lens barrel 61.

第2図は、本発明の検出子部分の他の実施例を示す。同
図においては、対物レンズ6の一部として対物レンズ6
を構成するレンズのうち対象物体3に最も近いレンズ6
2と物体3との間に平行平面ガラス63を組込み、この
平行平面ガラス63の物体31tlllの面に第1の電
極8としてアルミニウム等、光学的損失の少ない導電性
薄膜をコートしている。
FIG. 2 shows another embodiment of the detector portion of the invention. In the figure, the objective lens 6 is shown as a part of the objective lens 6.
The lens 6 closest to the target object 3 among the lenses constituting the
A parallel plane glass 63 is installed between the parallel plane glass 63 and the object 3, and the surface of the object 31tll of this parallel plane glass 63 is coated with a conductive thin film such as aluminum with low optical loss as the first electrode 8.

第3図は、本発明の検出子部分のさらに他の実施例を示
す底面図である。同図の検出子は、第2図のものに対し
、鏡筒61に構成する第2の電極9を3個に分割したも
のである。これにより、第1の電極8を共通電極として
この第1の電極8と容筒2の電極9との間に3個のコン
デンサが構成され、各コンデンサの容量または容量変化
を測定すれば、物体3の傾きや凹凸を検出することかで
きる。
FIG. 3 is a bottom view showing still another embodiment of the detector portion of the present invention. The detector shown in the figure is different from the detector shown in FIG. 2 in that the second electrode 9 formed on the lens barrel 61 is divided into three parts. As a result, three capacitors are constructed between the first electrode 8 and the electrode 9 of the container 2 using the first electrode 8 as a common electrode, and if the capacitance or capacitance change of each capacitor is measured, it is possible to It is possible to detect the inclination and unevenness of 3.

第4図は、本発明の対物レンズの物体位置検出装置の全
体構成例を示す。この装置は、検出子すなわち第1の電
極8と第2の電極9、それに物体3および両電極8.9
と物体3との間に介在する物質(空気等)によって構成
されるコンデンサGoの静電容量を測定し、この容量ま
たは容量変化をもとに対物レンズ6の物体位置を検出す
るものである。同図において、11はコンデンサC1゜
C2、C3およびCOで構成されたインピーダンスブリ
ッジ、12は発振回路、13は検出回路、14は直流増
幅器、15は物体3の位置または標準位置からのずれを
示す指示計、16は電源である。
FIG. 4 shows an example of the overall configuration of an object position detection device for an objective lens according to the present invention. The device comprises a detector, namely a first electrode 8 and a second electrode 9, as well as an object 3 and both electrodes 8.9.
The capacitance of a capacitor Go formed by a substance (such as air) interposed between the object 3 and the object 3 is measured, and the object position of the objective lens 6 is detected based on this capacitance or a change in capacitance. In the figure, 11 is an impedance bridge composed of capacitors C1, C2, C3 and CO, 12 is an oscillation circuit, 13 is a detection circuit, 14 is a DC amplifier, and 15 is the position of object 3 or the deviation from the standard position. The indicator 16 is a power source.

検出回路13は、発撮器12から発生される高周波電圧
を搬送波として上記コンデンサGoの静電容量もしくは
静電容量の変化により変調される被変調波から変調成分
を検出する不図示の検波回路とこの検波回路の出力信号
から不所望の周波数成分例えば上記搬送波をカットする
不図示のフィルタ回路とで構成され、インピーダンスブ
リッジ11のコンデンサC1とC2との接続点およびコ
ンデンサC3と第1の電極8との接続点の間に発生する
不平衡電圧を検出する。
The detection circuit 13 is a detection circuit (not shown) that detects a modulated component from a modulated wave modulated by the capacitance or a change in capacitance of the capacitor Go using the high frequency voltage generated from the oscillator 12 as a carrier wave. It consists of a filter circuit (not shown) that cuts undesired frequency components such as the carrier wave from the output signal of this detection circuit, and connects the connection point between capacitors C1 and C2 of impedance bridge 11 and the connection point between capacitor C3 and first electrode 8. Detects the unbalanced voltage that occurs between the connection points.

次に、同図の装置の動作を説明する。Next, the operation of the apparatus shown in the figure will be explained.

この装置においては、発振回路12で周波数の安定した
高周波を作り、これをインピーダンスブリッジ11のコ
ンデンサC2とC3との接続点およびコンデンサC1と
第2の電極9との接続点の間に印加する。したがって、
物体3と対物レンズ6の相対位置が変化すると、電極8
およびって構成されたコンデンサCOの容量が変化し、
発振回路12からブリッジ11に印加された高周波は、
この高周波が搬送波として振幅変調(AM)されたかた
らとなってブリッジ11から出力される。検出回路13
は、このブリッジ11より入力される変調波を上記検波
回路および搬送波を除去する為のローパスフィルタを通
すことにより、その変調成分すなわち不平衡電圧を取り
出し、直流増幅器14は、この不平衡電圧を増幅して、
指示計15を駆動する。これにより、指示計15は、対
象物体3の位置を表示する。ここで、予め物体3を合焦
位置にセットした状態でインピーダンスブリッジ11が
平衡づるようにコンデンサC1の容量を調整すれば、指
示計15は対客物体3の合焦位置からのずれ吊を表示す
ることになる。
In this device, an oscillation circuit 12 generates a high frequency with a stable frequency, and this is applied between the connection point between the capacitors C2 and C3 of the impedance bridge 11 and the connection point between the capacitor C1 and the second electrode 9. therefore,
When the relative position between the object 3 and the objective lens 6 changes, the electrode 8
and the capacitance of the configured capacitor CO changes,
The high frequency applied to the bridge 11 from the oscillation circuit 12 is
This high frequency wave is amplitude modulated (AM) as a carrier wave and output from the bridge 11. Detection circuit 13
The modulated wave input from this bridge 11 is passed through the above-mentioned detection circuit and a low-pass filter for removing the carrier wave to extract its modulation component, that is, an unbalanced voltage, and the DC amplifier 14 amplifies this unbalanced voltage. do,
The indicator 15 is driven. Thereby, the indicator 15 displays the position of the target object 3. Here, if the capacitance of the capacitor C1 is adjusted so that the impedance bridge 11 is balanced with the object 3 set in the in-focus position in advance, the indicator 15 will display the deviation of the object 3 from the in-focus position. I will do it.

なお、上記電極8および9で構成されるコンデンサCo
を発振回路12の発掘に寄与する可変客間素子として用
いるようにすれば、発掘回路12からの出力は周波数変
調されることになるが、この場合は、検出回路13とし
てはFM検波回路を使用すれば、コンデンサCOの容量
または容量変化を検出することができる。
Note that the capacitor Co composed of the electrodes 8 and 9
If it is used as a variable space element that contributes to the excavation of the oscillation circuit 12, the output from the excavation circuit 12 will be frequency modulated, but in this case, an FM detection circuit should be used as the detection circuit 13. For example, the capacitance or capacitance change of capacitor CO can be detected.

[発明の適用例1 なお、上述の実施例においては、本発明を、対物レンズ
の物体位置検出装置として説明しているが、本発明は、
特に、半導体製造装置として使用される縮小投影露光装
置の焼付は用メインレンズのオートフォーカス用の計測
装置として使用すると一層の効果がある。この場合、レ
ンズの最適ビント位置でインピーダンスブリッジ11の
バリアプルキャパシタンスC1の容(6)を調整して出
力電圧をOに設定しておき、何らかの原因でピントがず
れた場合、出力が01.:なるようにレンズ6あるいは
物体3を自動制御すれば、常に最適ピント位置での露光
が可能となる。
[Application Example 1 of the Invention In the above-described embodiments, the present invention is described as an object position detection device for an objective lens.
In particular, it is more effective when used as a measuring device for autofocusing a main lens for printing in a reduction projection exposure apparatus used as a semiconductor manufacturing device. In this case, the output voltage is set to 0 by adjusting the capacitance (6) of the barrier pull capacitance C1 of the impedance bridge 11 at the optimal bin position of the lens, and if the focus shifts for some reason, the output will be 0.1. : By automatically controlling the lens 6 or the object 3 so that the following occurs, exposure can always be performed at the optimum focus position.

さらに、鏡筒に構成する上極を複数個に分割1ノで、各
々について前記のような検出装置を構成すれば、各セン
昏すからの出力によって物体の傾向きも計測可能となる
Furthermore, if the upper pole of the lens barrel is divided into a plurality of parts and a detection device as described above is constructed for each part, it becomes possible to measure the tendency of the object based on the output from each sensor.

[発明の効果] 以上のように本発明によれば、対物レンズを構成するガ
ラス面のうち対象物体に最も近いガラス面と、レンズ鏡
筒の物体に近接する面にそれぞれ形成された電極と、こ
れらの電極および対象物体の間に介在する物質とで構成
されるコンデンサの静電容量により対象物体までの距離
を測定するようにしているため、検出精度が試料の反射
率や表面の傾きおよび凹凸に影響され難い。また、エア
ーセンナ等を用いる場合に比べ、検出速度が速い。
[Effects of the Invention] As described above, according to the present invention, the electrodes are formed on the glass surface closest to the target object among the glass surfaces constituting the objective lens, and on the surface of the lens barrel that is close to the object, respectively. Since the distance to the target object is measured by the capacitance of a capacitor made up of these electrodes and the material intervening between the target object, the detection accuracy is dependent on the reflectance of the sample and the slope and unevenness of the surface. not easily influenced by Furthermore, the detection speed is faster than when using an air sensor or the like.

さらに、主光学系の光学素子の一部を検出子の一部とし
て利用している為に、検出系の安定性が向上し、コスト
も低減できる利点がある。さらに、一方の電極を複数個
に分割し、他方の電極を共通電極とするコンデンサを複
数個構成するようにすれば、対象物体の表面の傾きや凹
凸を検出することも可能である。
Furthermore, since a part of the optical element of the main optical system is used as a part of the detector, there is an advantage that the stability of the detection system is improved and the cost can be reduced. Furthermore, by configuring a plurality of capacitors in which one electrode is divided into a plurality of parts and the other electrode is used as a common electrode, it is also possible to detect the inclination or unevenness of the surface of the target object.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を適用した対物レンズ部分の概略の構
成を示す縦断面図、 第2図は、本発明の他の実施例に係る対物レンズ部分の
縦断面図、 第3図は、本発明のさらに他の実施例に係る対物レンズ
部分の底面図、 第4図は、本発明の対物レンズの物体位置検出装置の実
施例の全体構成を示すブロック図、第5図は、従来の光
学式フォーカス検出機構の概略構成図、 第6図は、第5図の機構の動作を説明する為の図、 第7図はエアーセンサ方式のフォーカス検出機構の概略
構成図である。 3・・・試料(対象物体)、6・・・対物レンズ、61
・・・鏡筒、62・・・対象物体に最も近いレンズ、6
3・・・平行平面ガラス、8・・・第1の電極、9山第
2の電極、12・・・発振回路、13・・・検出回路、
14・・・直流増幅器、・・・指示計。
FIG. 1 is a vertical cross-sectional view showing a schematic configuration of an objective lens portion to which the present invention is applied; FIG. 2 is a vertical cross-sectional view of an objective lens portion according to another embodiment of the present invention; FIG. A bottom view of an objective lens portion according to still another embodiment of the present invention, FIG. 4 is a block diagram showing the overall configuration of an embodiment of an object position detection device for an objective lens of the present invention, and FIG. FIG. 6 is a diagram for explaining the operation of the mechanism shown in FIG. 5. FIG. 7 is a schematic diagram of the air sensor type focus detection mechanism. 3... Sample (target object), 6... Objective lens, 61
... Lens barrel, 62 ... Lens closest to the target object, 6
3... Parallel plane glass, 8... First electrode, 9 second electrode, 12... Oscillation circuit, 13... Detection circuit,
14...DC amplifier,...indicator.

Claims (1)

【特許請求の範囲】 1、対象物体の対物レンズに対する位置を検出する装置
であつて、対物レンズの光学系を構成するガラス面のう
ち対象物体に最も近い面にコートされた導電性薄膜から
なる第1の電極と、該対物レンズの鏡筒の対象物体に近
接した面に形成された第2の電極と、これら第1および
第2の電極間の静電容量を測定する手段とを具備し、こ
の静電容量をもとに上記対象物体の対物レンズに対する
位置を検出することを特徴とする対物レンズの物体位置
検出装置。 2、前記対象物体に最も近いガラス面が、前記対物レン
ズの上記対象物体に最も近いレンズ面であることを特徴
とする特許請求の範囲第1項記載の対物レンズの物体位
置検出装置。 3、前記対物レンズの前記対象物体に最も近いレンズと
該対象物体との間に前記対物レンズの光学系の一部とし
て平行平面ガラスを組込み、該平行平面ガラスの物体に
近接する面に光学的損失の少ない導電性薄膜をコートし
てこれを第1の電極としたことを特徴とする特許請求の
範囲第1項記載の対物レンズの物体位置検出装置。 4、前記第2の電極を複数個に分割したことを特徴とす
る特許請求の範囲第1〜3項のいずれか1つに記載の対
物レンズの物体位置検出装置。 5、前記第1および第2の電極間の静電容量を測定する
手段が、第1および第2の電極間に高周波電圧を印加す
る発振器と、第1および第2の電極間の静電容量もしく
は静電容量の変化を検出する検出回路とを有することを
特徴とする特許請求の範囲第1〜4項のいずれか1つに
記載の対物レンズの物体位置検出装置。 6、前記検出回路が、前記第1および第2の電極間に印
加された高周波電圧を搬送波として該第1および第2の
電極間の静電容量もしくは静電容量の変化により変調さ
れた被変調波から変調成分を検出する検波回路と、該検
波回路の出力信号から不所望の周波数成分をカットする
フィルタ回路と、該フィルタ回路の出力信号を増幅する
直流増幅器と、該直流増幅器の出力により前記対象物体
の位置を表示する指示計とからなることを特徴とする特
許請求の範囲第5項記載の対物レンズの物体位置検出装
置。 7、前記第1および第2の電極の外周に第3の電極を設
けたことを特徴とする特許請求の範囲第1〜6項のいず
れか1つに記載の対物レンズの物体位置検出装置。
[Claims] 1. A device for detecting the position of a target object with respect to an objective lens, which comprises a conductive thin film coated on the surface closest to the target object among the glass surfaces constituting the optical system of the objective lens. A first electrode, a second electrode formed on a surface of the lens barrel of the objective lens close to the target object, and means for measuring capacitance between the first and second electrodes. An object position detection device for an objective lens, characterized in that the position of the target object with respect to the objective lens is detected based on this capacitance. 2. The object position detection device for an objective lens according to claim 1, wherein the glass surface closest to the target object is the lens surface of the objective lens closest to the target object. 3. A parallel plane glass is incorporated as part of the optical system of the objective lens between the lens closest to the target object of the objective lens and the target object, and an optical An object position detection device for an objective lens according to claim 1, characterized in that the first electrode is coated with a conductive thin film with low loss. 4. The object position detection device for an objective lens according to any one of claims 1 to 3, wherein the second electrode is divided into a plurality of parts. 5. The means for measuring the capacitance between the first and second electrodes includes an oscillator that applies a high frequency voltage between the first and second electrodes, and a capacitance between the first and second electrodes. 5. The object position detection device for an objective lens according to claim 1, further comprising a detection circuit for detecting a change in capacitance. 6. A modulated device in which the detection circuit modulates the electrostatic capacitance between the first and second electrodes or a change in electrostatic capacitance using the high frequency voltage applied between the first and second electrodes as a carrier wave. a detection circuit that detects a modulation component from a wave; a filter circuit that cuts an undesired frequency component from the output signal of the detection circuit; a DC amplifier that amplifies the output signal of the filter circuit; 6. The objective lens object position detection device according to claim 5, further comprising an indicator that displays the position of the target object. 7. The object position detection device for an objective lens according to any one of claims 1 to 6, characterized in that a third electrode is provided on the outer periphery of the first and second electrodes.
JP59186471A 1984-09-07 1984-09-07 Inspecting device for object position of objective lens Pending JPS6165433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186471A JPS6165433A (en) 1984-09-07 1984-09-07 Inspecting device for object position of objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186471A JPS6165433A (en) 1984-09-07 1984-09-07 Inspecting device for object position of objective lens

Publications (1)

Publication Number Publication Date
JPS6165433A true JPS6165433A (en) 1986-04-04

Family

ID=16189052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186471A Pending JPS6165433A (en) 1984-09-07 1984-09-07 Inspecting device for object position of objective lens

Country Status (1)

Country Link
JP (1) JPS6165433A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984329A2 (en) * 1998-09-04 2000-03-08 Canon Kabushiki Kaisha Position detection apparatus having a plurality of detection sections, and exposure apparatus
JP2002116136A (en) * 2000-05-23 2002-04-19 General Electric Co <Ge> Method and apparatus for high cycle fatigue life test
JP2013187206A (en) * 2012-03-05 2013-09-19 Canon Inc Detection device, exposure device, and method for manufacturing device
EP3413114A1 (en) * 2017-06-06 2018-12-12 United Arab Emirates University Functionalized optical lens and method of manufacturing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984329A2 (en) * 1998-09-04 2000-03-08 Canon Kabushiki Kaisha Position detection apparatus having a plurality of detection sections, and exposure apparatus
EP0984329A3 (en) * 1998-09-04 2002-05-02 Canon Kabushiki Kaisha Position detection apparatus having a plurality of detection sections, and exposure apparatus
US6529263B2 (en) 1998-09-04 2003-03-04 Canon Kabushiki Kaisha Position detection apparatus having a plurality of detection sections, and exposure apparatus
US7072023B2 (en) 1998-09-04 2006-07-04 Canon Kabushiki Kaisha Position detection apparatus having a plurality of detection sections, and exposure apparatus
JP2002116136A (en) * 2000-05-23 2002-04-19 General Electric Co <Ge> Method and apparatus for high cycle fatigue life test
JP4647836B2 (en) * 2000-05-23 2011-03-09 ゼネラル・エレクトリック・カンパニイ Method and apparatus for high cycle fatigue life test
JP2013187206A (en) * 2012-03-05 2013-09-19 Canon Inc Detection device, exposure device, and method for manufacturing device
EP3413114A1 (en) * 2017-06-06 2018-12-12 United Arab Emirates University Functionalized optical lens and method of manufacturing
CN109001113A (en) * 2017-06-06 2018-12-14 阿拉伯联合酋长国大学 Functionalization optical lens and manufacturing method
US10809513B2 (en) * 2017-06-06 2020-10-20 United Arab Emirates University Functionalized optical lens and method of manufacturing

Similar Documents

Publication Publication Date Title
US4786815A (en) Non-contact sensor with particular utility for measurement of road profile
JPS5852514A (en) Measuring device for distance between light source and surface of observation
US4878017A (en) High speed D.C. non-contacting electrostatic voltage follower
RU2586269C2 (en) Detection of concealed dielectric object
US4928057A (en) High speed D.C. non-contacting electrostatic voltage follower
US4698513A (en) Position detector by vibrating a light beam for averaging the reflected light
US4861975A (en) Variable focus optical system and method using electro-optic material
JPS6165433A (en) Inspecting device for object position of objective lens
EP0401909A1 (en) Method of and device for determining the position of a surface
US5642040A (en) Electrooptic probe for measuring voltage of an object having a high permittivity film fixed on an end face of a reflecting film fixed on an electrooptic material
JPH0115832B2 (en)
US3544222A (en) Optical instrument for determining layer thickness
KR20020000769A (en) Optical scanning head
JP2003075128A (en) Thickness measuring device of material and its method using focal length of optical fiber lens
JPH11109273A (en) Laser plotting device having light quantity detecting/ adjusting function
JPS5935817Y2 (en) Automatic light control device for light wave ranging equipment
JP2772495B2 (en) Capacity measuring device
US20050174339A1 (en) Liquid crystal device, its driving method, and driving apparatus
US3353027A (en) Aiming device
JPH10103915A (en) Apparatus for detecting position of face
JP2813755B2 (en) Sensor for non-contact electric measurement of semiconductor wafer
JPS58133641A (en) Measuring device for surface runout of rotating disc
KR0160694B1 (en) Tilt measuring device of optical pick up object lens
JPH0820208B2 (en) Position measurement method
JPH06274924A (en) Optical information detecting circuit