JPS6164911A - Steel plate cell type revetment - Google Patents
Steel plate cell type revetmentInfo
- Publication number
- JPS6164911A JPS6164911A JP18704384A JP18704384A JPS6164911A JP S6164911 A JPS6164911 A JP S6164911A JP 18704384 A JP18704384 A JP 18704384A JP 18704384 A JP18704384 A JP 18704384A JP S6164911 A JPS6164911 A JP S6164911A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- cells
- cell
- slag
- slags
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/20—Bulkheads or similar walls made of prefabricated parts and concrete, including reinforced concrete, in situ
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
- Revetment (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、港湾、河川等における護岸構造物、特に水底
の地盤中に下端を貫入させた精根セル内に中詰め材を光
切した構造物を用いるものにおいて、新しい中詰め材を
用いることによって、より軽量かつ低コストであるとと
もに、冒11性に優れかつ安全外の高い護岸が得られる
ようにしたものに関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to seawall structures in ports, rivers, etc., particularly structures in which a filling material is optically cut into seminal root cells whose lower ends penetrate into the ground at the bottom of the water. The present invention relates to a seawall that is lighter and less expensive, has excellent vulnerabilities, and has an extremely high level of safety by using a new filling material.
〈従来技術〉
港湾、河川における護岸の造成に当り、鋼板(鋼矢板を
含む)による円筒形のセル下端を水底の支持地盤中に貫
入させ、該セル内に中詰め材を充用した構造物を列設す
ることにより、目的の護岸を形成するセル工法は、例示
するまでもなく周知である。7tたごのさいセル内に充
填される中詰め材においては、港湾構造物設計基4(、
こおいても知られるように、川砂等を始めとする天然砂
を用いるのが通例である。<Prior art> When constructing seawalls in ports and rivers, the lower ends of cylindrical cells made of steel plates (including steel sheet piles) are penetrated into the supporting ground at the bottom of the water, and structures are constructed in which filler material is filled in the cells. The cell construction method of forming a desired bank by arranging them in rows is well known, needless to be exemplified. The filling material to be filled into the 7t egg cell is based on Port Structure Design Standard 4 (,
As is well known, it is customary to use natural sand such as river sand.
〈発明が解決しようとする問題点〉
従来技術においては、単にセル貫入後、上端の開口部か
ら天然砂を投入充填するのみであるから、地震時にはセ
ル内で引張力に抵抗できす、崩壊の可能性が高く、剛性
と安全性との面てS2かあるのみならず、天然砂自体の
採取可能量は年々逓l戊する顛向にあり、コスト的にも
割高に失ずろのである。更に天然砂はその単位電量が1
.6t/=もあり、セル工法護岸としては全重量か大き
なものになり、このため水底支持地Q1の圧密沈下量か
大きい点等において問題点かある。<Problems to be Solved by the Invention> In the prior art, natural sand is simply poured into the cell through the opening at the top after entering the cell, and therefore the cell cannot resist tensile force during an earthquake, which prevents the cell from collapsing. Not only is there a high possibility that S2 is suitable in terms of rigidity and safety, but the amount of natural sand that can be extracted is decreasing year by year, and the cost is relatively high. Furthermore, the unit electricity of natural sand is 1
.. 6t/=, which means that the total weight is large for a cell construction method revetment, and therefore there are problems in that the amount of consolidation settlement of the underwater support ground Q1 is large.
く問題点を解決するだめの手段〉
本発明は、上記の中詰め(オに天然砂を用いることによ
って生じる問題点を解決し、より低コストで得られると
ともに、中詰め材自体か自硬性を発揮シてセル内で一体
に硬化することにより、より剛性の高い、また安全性の
高い護岸の造成が容易に可能であるようにしたものであ
り、この目的は次の技術的手段の採用によって達成でき
る。The present invention solves the above-mentioned problems caused by using natural sand for filling (e), and can be obtained at a lower cost. By developing and curing integrally within the cells, it is possible to easily create a more rigid and safer seawall.This purpose was achieved by adopting the following technical means. It can be achieved.
即ちその技術的手段は、水底地盤にその下端を貫入した
鋼板セル内に中詰め材を光切したは造物によって護岸を
造成するに当り、水砕スラグと、該スラグの硬化促進用
刺激剤としてのアルカリ性物質とによる中詰め材を用い
るごとにある。That is, the technical means is to use granulated slag and a stimulant to accelerate the hardening of the slag when constructing a seawall by optically cutting filler material into steel plate cells whose lower ends penetrate into the underwater ground. Each time a filling material is used with an alkaline substance.
〈作用〉
本発明の技術的手段における水砕スラグは、既知のよう
に型鉄、5#f4業における高炉滓であって、その成分
は、Ca04L、0%、5i0233.4%、31.0
%、Fe2 03 0.4%、MgO6,0%、 八1
22 03 14.5%および不溶残分3.7%から成
るものであり、この水砕スラグは潜在水硬性の特性を持
つのである。<Function> As is known, the granulated slag in the technical means of the present invention is blast furnace slag in type iron, 5#f4 industry, and its components are Ca04L, 0%, 5i0233.4%, 31.0
%, Fe2 03 0.4%, MgO6.0%, 81
The granulated slag consists of 14.5% of 2203 and 3.7% of undissolved residue, and this granulated slag has latent hydraulic properties.
ここに潜在水硬性と称するのは、そのままでは水と接触
させても水硬性を発現しないか、アル刀り性雰囲気、例
えばCa (Oll) 2と共7r、させろと、硬化が
始まる性質をいうのであり、かかる水砕スラグを硬化す
る場合、アルカリ性物質(アルカリ性刺激剤)の添加が
必要である。添加されたアルカリ性刺激剤の作用は、ス
ラグ成分中のガラス構造を形成している5i04のネッ
トワークを切断させることにあり、ネットワークの切断
が一旦開始されると、含有しているCaOやM[0等の
アルカリ性物質が溶出し、アルカリ性雰囲気に保たれる
。従ってネットワークの切断が継i売し、カラス質の水
への溶解が進むとともに、溶出したCaO1Si02、
Aj22Ch等によって、セメントと同様の水和反応が
起生じて、スラグ自体の硬化現象を発現するのである。Here, the term "latent hydraulic property" refers to the property that either it does not develop hydraulic properties even if it comes into contact with water, or it begins to harden when exposed to an alkaline atmosphere, such as Ca (Oll) 2. Therefore, when such granulated slag is hardened, it is necessary to add an alkaline substance (alkaline irritant). The effect of the added alkaline stimulant is to cut the 5i04 network forming the glass structure in the slag component, and once the network cutting starts, the CaO and M[0 Alkaline substances such as these are eluted and an alkaline atmosphere is maintained. Therefore, the network continues to be disconnected, and the dissolution of the glassy substance in water progresses, and the eluted CaO1Si02,
Aj22Ch and the like cause a hydration reaction similar to that of cement, and the slag itself hardens.
以上のように水砕スラグ!11味では、その硬化の発現
は緩慢であり、3ケ月以内にその強度を期待することは
てきないが、前記アルカリ性刺激剤とし、水砕スラグに
対し、スラグ量の1096程度に引目光するセメントを
添加することによって、その硬化は顕著に促進され、4
週程度の材令で30 kg / cr&程度の一軸強度
が期待できるのである。As mentioned above, granulated slag! In case of 11 taste, the onset of hardening is slow and the strength cannot be expected within 3 months. Its curing is significantly accelerated by adding 4
Uniaxial strength of about 30 kg/cr& can be expected at a timber age of about a week.
本発明では、このような水砕スラグの潜在水硬性を利用
し、これを鋼板セルにおける中詰め材として用いるので
あり、部ち港湾、河川、湖沼等における水底地盤に鋼板
セルをその下端が貫入するように打設して後、製鉄所等
から高炉滓として排出される処の水砕スラグを、適宜輸
送手段によって護岸工事現場まで搬送し、水砕スラグと
スラグ量の10%程度の量の、例えば通常のポルトラン
ドセメントを混合して、これを中詰め材としてセル内に
充填することにより、充fXAf&、水砕スラグの硬化
が始まり、中詰め材全体が一体に硬化した剛体となり、
かつ水底の支持地盤と接合し、外界より加わる圧縮力、
剪断力、また引張力の何れにも殻となる鋼板セルと一体
となって強大な抵抗力を発揮するのであり、しかもこれ
は充填のみによって得られるのであり、天然砂による中
詰め利を用いる従来護岸に対し、より低コストで、剛性
の高いかつ安全性の高い護岸の造成が得られることにな
るのである。The present invention takes advantage of the latent hydraulic properties of granulated slag and uses it as a filling material in steel plate cells. After pouring, the granulated slag discharged as blast furnace slag from a steelworks, etc. is transported to the revetment construction site by appropriate means of transportation, and the granulated slag is mixed with granulated slag in an amount of about 10% of the slag amount. For example, by mixing ordinary Portland cement and filling it into the cells as a filling material, the granulated slag begins to harden, and the entire filling material becomes a rigid body that hardens as one.
It also connects with the supporting ground at the bottom of the water, and compressive force applied from the outside world.
Together with the steel plate cells that form the shell, it exerts a strong resistance to both shearing force and tensile force, and this can only be obtained by filling, which is different from the conventional method of filling with natural sand. This means that it is possible to construct a seawall that is highly rigid and safe at a lower cost.
〈実施例〉
第1.2図について本発明護岸の標準的な実施例の一つ
を説示する。第1図において3は鋼機セルであり、図例
では鋼板を用いて円筒状のセルとしたものを示している
が、これは多数の指矢仮を列設して所要断面形状のセル
とするものでも同′、J)である。かかる鋼板セル3を
、目的の護岸を造成すべき位置において、例えば港湾に
おける護岸においては、海底支持砂層6上の粘性土層5
において、粘性土層内に例えば生石灰等の地盤改良剤を
混合1u l!l’処理した(既知の11HI改良技術
である)深層混合処理±4に、その下端が貫入止着され
るように打設して後、鋼板セル3内に水砕スラグと、ス
ラグ量の10%程度のポルトランドセメントを混合した
本発明の中詰め材2を充填して後、セル上α1;1には
天蓋コンクリートlを打設するのである。<Embodiment> One of the standard embodiments of the seawall of the present invention will be explained with reference to Fig. 1.2. In Fig. 1, 3 is a steel machine cell, and the example shown in the figure shows a cylindrical cell made of steel plate, but this is made by arranging a large number of finger arrows in a row to form a cell with a desired cross-sectional shape. The same is true for those that do, J). Such steel plate cells 3 are placed in the position where the target seawall is to be constructed, for example, in a seawall at a port, the clay layer 5 is placed on the seabed supporting sand layer 6.
, mix 1 ul of soil conditioner, such as quicklime, into the clayey soil layer. After pouring into the deep mixing treatment (which is a known 11HI improved technology) ±4 so that its lower end is penetrated and fixed, granulated slag and 10 of the slag amount are placed in the steel plate cell 3. After filling the filling material 2 of the present invention mixed with Portland cement in an amount of about 10%, a canopy concrete 1 is placed on the cell top α1;1.
勿論護岸はこの鋼板セル1箇のみで造成されるものでな
く、第2図にその護岸1例を示す。Of course, the seawall is not constructed from only one steel plate cell, and an example of such a seawall is shown in Figure 2.
第2図においては、第11′71ルこ示した?VI I
F;、セル3を中刃かつ直線状に並列した1;り崩形状
を示しているが、同図において第1図と同一符号は同一
構造、邪神を示しており、各鋼板セル3を11列かつ直
線状に並設し、各セル3内に水砕スラグとスラグの1(
1%甲で11・ろポルトランljlメン日、二人?)中
詰め材2を充填するとともに、各セル3の並設間に生じ
る隙間部分には、図示のようにアーク部セル(既知であ
る)7を同(pに貴人打設し、同じく中詰め材2をアー
ク部セルフ内にも先駆する。図において8は護岸背後に
造成される埋立地であり、9は大蓋コンクリート1上に
打設される上部コンクリ−1・を示している。図示のよ
うにttrt haミセルのφは20m、高さは30m
、セフ1}反厚は161、またアーク部セルフの高さは
24m、セル板厚は12丁であり、セル3.7の貫入さ
れる深層混合処理土4は水)朶37m位置から18.5
m位置に亘って、幅45mに造成されている。In Figure 2, 11'71 is shown. VI I
F: 1: The cells 3 are lined up in a straight line with medium blades. In this figure, the same reference numerals as in Fig. 1 indicate the same structures and evil spirits, and each steel plate cell 3 is The granulated slag and the slag 1 (
1% A and 11, Portolan ljl men day, two people? ) Filling material 2 is filled, and arc portion cells (known) 7 are poured into the gaps between the cells 3 arranged side by side as shown in the figure. The material 2 is also placed inside the arc section self. In the figure, 8 is the reclaimed land to be created behind the seawall, and 9 is the upper concrete 1 to be poured on the large cover concrete 1. As in ttrt ha, the φ of the micelle is 20m and the height is 30m.
, Cef 1} thickness is 161, the height of the arc part self is 24 m, the cell plate thickness is 12 pieces, and the deep mixed treated soil 4 penetrated by cell 3.7 is 18. 5
It is constructed with a width of 45 m and extends over m positions.
勿論護岸の形状は単列、直線形のみに止まるものでなく
、任意の複列、曲線形のように、鋼板セル3を配列てき
ろこと・::Lいうtてもないつ尚鋼板セル3およびア
ーク部セルフ内に、本発明に係る中詰め材2の充jt忙
に当っては、第3図に示すように陸上(Pllあるいは
工事船側から、■送コンヘヤ10、水砕スラグ用ホッパ
乃至シュート11、セメント用ホッパ乃至ンユー12を
介し、ズックとセメントを交互に投入ず・乙ようにし′
(もよく、あるいは第4図示のように、既知の土圧fl
Aを利用して、水砕スラク運捜船13、(lメン1〜運
Ij話船14とし、船上設σ1【のクラムシニ1−ル等
の投入機器15を利用し、同様に交互に投入すればよい
。また没入、充填時にはセルはフープテンション手段を
用いて安定性を確保できるように、作業地の′¥z件に
応して任意に選択可能である。Of course, the shape of the seawall is not limited to just a single row or a straight line, but it is also possible to arrange the steel plate cells 3 in any double row or curved shape. When filling the filling material 2 according to the present invention into the arc section self, as shown in FIG. Do not feed the duck and cement alternately through the chute 11, the cement hopper or the cement hopper 12.
(Also, as shown in Figure 4, the known earth pressure fl
A, use the fracking slack transport vessel 13, (lmen 1 to transport vessel 14), and use the onboard loading equipment 15 such as σ1 [crumb tank 1-1] to alternately input the fracking slack in the same way. Also, during immersion and filling, the cell can be selected arbitrarily depending on the conditions of the work site so that stability can be ensured using hoop tension means.
〈発明の効果〉
本発明によれば、従来の天然砂を用いる湾(反セル溝造
物に対し、以下の諸点において大きな利点を持つもので
ある。<Effects of the Invention> According to the present invention, the present invention has the following major advantages over conventional bays (anti-cell groove structures) using natural sand.
本発明において用いる水砕スラグは、天然砂のように採
取条件か年々制約されるものと相違し、製鉄、製鋼業に
おいて日常的に排出されるいわば廃棄物に屈するので、
コスト的に有利であり、未粉砕スラグでもそのまま利用
できるのである。しかもこの中詰め材2は、鋼板セル内
に充填して後、硬化以前でも天然砂と同等の強度がある
ので、実用上の不安は全く生じないのである。かつアル
カリ性物質(セメント)の添加によって自硬した後は、
セル内で完全な剛体として哉能し、セルと一体に外界よ
りの圧縮力、剪断力、引張力に対して強固な抵抗性を発
揮し、耐震外大であって、天然砂に対しはるかに高い剛
性と安全性か得られるのめならず、水砕スラグの単位体
積重量は1.1t/−と軽いので、セル護岸として天然
砂のものに比し軽量化され、これによって支持地器の圧
密沈下■を小さくでき、護岸構造物の不等沈下等の欠陥
を生じろおそれもなく、しかもその施工に当っても、セ
メント等のアルカリ性物質のγ6.ミ加は、水砕スラグ
と混和する必要なく、セル内をアルカリ雰囲気に保って
硬化を促進(スラグの水硬性の発現を促進する)させる
ためのものであるから、単に水砕スラグとセメント等を
交互にセル内に投入すれば、混合攪拌処理等の必要がな
いだけ、その施工は何等面例でなく、実施の結果では1
0%のセメント添加によって、スラグは確実に自硬し、
2〜3ケ月後は、コンクリ−1−並みの強度で一軸圧縮
強度100 kg / cA以上とし、あたかもセルを
型枠とし、内部は軽量コンクリート並みのゲーソン伏の
セルとなるのであり、工法的にも、設計的にも、従来の
天然砂による中詰め材使用セルエl丑に対し、その効果
から見ればより優れたシンプルで確実な工法といえるも
ので、各種目的のセル護岸に新生面を開いたものとして
(凭れたものである。The granulated slag used in the present invention differs from natural sand, which is subject to yearly restrictions on extraction conditions, and succumbs to the waste that is routinely discharged in the iron and steel industry.
It is advantageous in terms of cost, and even unpulverized slag can be used as is. Moreover, since this filler material 2 has the same strength as natural sand even before hardening after being filled into the steel plate cells, there will be no practical concerns at all. And after self-hardening by adding an alkaline substance (cement),
It functions as a completely rigid body within the cell, exhibiting strong resistance to compressive force, shearing force, and tensile force from the outside world together with the cell, and is highly earthquake resistant and far more resistant to natural sand. In addition to providing high rigidity and safety, granulated slag has a light unit volume weight of 1.1 t/-, so it is lighter than natural sand for cell revetments, and this makes it easier to support earthen structures. Consolidation settlement ■ can be reduced, there is no risk of defects such as uneven settlement of the revetment structure, and even during construction, γ6. Mika does not need to be mixed with granulated slag, and is used to maintain an alkaline atmosphere inside the cell to promote hardening (promote the development of hydraulic properties in slag), so it can simply be mixed with granulated slag, cement, etc. If they are put into the cell alternately, there is no need for mixing and agitation, but the construction is not an example, and the results of the implementation are 1.
By adding 0% cement, the slag will definitely self-harden.
After 2 to 3 months, the strength will be comparable to that of concrete 1, and the unconfined compressive strength will be 100 kg/cA or more, and the cells will be used as formwork, with the inside being a geson-like cell similar to that of lightweight concrete. In terms of design, it can be said to be a simpler and more reliable construction method that is superior to the conventional construction method, which uses natural sand as a filling material, and has opened up new possibilities for cell revetments for various purposes. As a thing (something that was supported).
第1図は本発明による鉗1板セル構造物の縦断正面図、
第2図は同護岸−例の一部断面を含む斜面図、第3.4
図は中詰め材投入充填手段の各説明図である。
1 =−天蓋コンクリート、2 中詰め財、3−鋼板セ
ル、4−深層混合処理土、5 [占性土層、6・−支持
砂層。
≦7 口
′°・3′l
第2図
;へ4 ロFIG. 1 is a longitudinal sectional front view of a forceps single-plate cell structure according to the present invention;
Figure 2 is a slope view including a partial cross section of the same seawall, as shown in Figure 3.4.
The figures are each explanatory diagram of the filling material charging means. 1 = - canopy concrete, 2 - filling material, 3 - steel plate cell, 4 - deep mixed treated soil, 5 [occupied soil layer, 6 - supporting sand layer. ≦7 口′°・3′l Figure 2;
Claims (1)
材を充填した構造物によって護岸を造成するに当り、水
砕スラグと、該スラグの硬化促進用刺激剤としてのアル
カリ性物質とによる中詰め材を用いることを特徴とする
鋼板セル式護岸。1. When constructing a revetment with a structure in which filler is filled in steel plate cells whose lower ends penetrate into the underwater ground, a medium is used that uses granulated slag and an alkaline substance as a stimulant to accelerate hardening of the slag. A steel plate cell type seawall characterized by the use of filler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18704384A JPS6164911A (en) | 1984-09-05 | 1984-09-05 | Steel plate cell type revetment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18704384A JPS6164911A (en) | 1984-09-05 | 1984-09-05 | Steel plate cell type revetment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6164911A true JPS6164911A (en) | 1986-04-03 |
Family
ID=16199172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18704384A Pending JPS6164911A (en) | 1984-09-05 | 1984-09-05 | Steel plate cell type revetment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6164911A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002227166A (en) * | 2001-02-02 | 2002-08-14 | Nkk Corp | Impermeable revetment structure using solidified earth |
JP2008303584A (en) * | 2007-06-06 | 2008-12-18 | Public Works Research Institute | Structure of artificial ground and its construction method |
BE1024670B1 (en) * | 2016-10-20 | 2018-05-24 | Chiaverotti Bvba | Method for placing a pole wall and template element for use in such a method |
-
1984
- 1984-09-05 JP JP18704384A patent/JPS6164911A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002227166A (en) * | 2001-02-02 | 2002-08-14 | Nkk Corp | Impermeable revetment structure using solidified earth |
JP2008303584A (en) * | 2007-06-06 | 2008-12-18 | Public Works Research Institute | Structure of artificial ground and its construction method |
BE1024670B1 (en) * | 2016-10-20 | 2018-05-24 | Chiaverotti Bvba | Method for placing a pole wall and template element for use in such a method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brandon et al. | Building for eternity: the history and technology of Roman concrete engineering in the sea | |
Bruce et al. | An introduction to the deep soil mixing methods as used in geotechnical applications | |
Oleson et al. | Reproducing a Roman maritime structure with Vitruvian pozzolanic concrete | |
US4089183A (en) | Consolidation construction for improving soft, unstable foundation | |
JPS6164911A (en) | Steel plate cell type revetment | |
GB263997A (en) | Improvements in and relating to the construction of quay walls, piers and other marine structures | |
JP5125037B2 (en) | Construction method for underwater installation of steel slag | |
CN205475280U (en) | Interim dock entrance cofferdam structure convenient to resume | |
JP5728206B2 (en) | Construction method of partition revetment | |
JPH0571730B2 (en) | ||
Lahtinen et al. | Mass stabilisation as a method of treatment of contaminated sediments | |
CN206768731U (en) | A kind of armoured type lightweight dock structure | |
JP3710218B2 (en) | Construction method of impermeable revetment at seaside plant | |
Neves et al. | The use of CSM technology in permanent or temporary retaining structures with a cofferdam effect | |
JP7525828B2 (en) | Quay or revetment structure | |
JPS61142219A (en) | Construction of cell at great deep of water | |
JP2022041360A (en) | Sea surface landfill method | |
Yamauchi et al. | Improvement of soft ground bearing capacity using synthetic meshes | |
JP2581602B2 (en) | Waste treatment method | |
JP6389596B2 (en) | Impermeable material | |
JPH07100822A (en) | Manufacture of hydraulic material | |
JPH01158106A (en) | Light-weight composite material | |
JP2020066911A (en) | Forming material and forming method for structure including sloping section | |
JPS6095023A (en) | Constructing method for steel superstructure work in mixing treatment improved ground of deep layer | |
Shields | A Treatise on Engineering Construction: Embracing Discussions of the Principles Involved, and Descriptions of the Material Employed, in Tunnelling, Bridging, Canal and Road Building, Etc., Etc |