JPS6163946A - Optical information detector - Google Patents

Optical information detector

Info

Publication number
JPS6163946A
JPS6163946A JP18584284A JP18584284A JPS6163946A JP S6163946 A JPS6163946 A JP S6163946A JP 18584284 A JP18584284 A JP 18584284A JP 18584284 A JP18584284 A JP 18584284A JP S6163946 A JPS6163946 A JP S6163946A
Authority
JP
Japan
Prior art keywords
light
optical information
polarization
modulator
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18584284A
Other languages
Japanese (ja)
Inventor
Osamu Kamata
修 鎌田
Satoshi Ishizuka
石塚 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18584284A priority Critical patent/JPS6163946A/en
Publication of JPS6163946A publication Critical patent/JPS6163946A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Abstract

PURPOSE:To secure the stable detection of signals even to the temperature change with high sensitivity and a compact and light-weight structure of an optical information detector and to improve the reliability, by using a ferromagnetic garnet crystal having the composition of components within a limited range to a modulator for plane of polarization. CONSTITUTION:A semiconductor laser is used to a light source 1, and the parallel plates of TiO2 are used to polarizers 2, 6 and 7 respectively. The modulator 3 for plate of polarization uses a crystal (Tb0.19Y0.81)3Fe5O12. The light transmitted through a mirror 4 is modulated by a magneto-optical recording medium 5. This modulated light is reflected by the mirror 4 and made incident on a detector 8. While the light reflected by the mirror 4 is made incident on a detector 9. Each signal is delivered after undergoing an operation through a differential amplifier 10. Here a garnet crystal having a specific composition of components is used to the modulator 3. This secures the stable detection of signals regardless of the temperature change. In addition, the fluctuation of light quantity can be suppressed by using fibers for reservation of plate of polarization to optical paths 11-a-11-c. This improves the reliability of an optical information detector.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気光学記録媒体の情報を光学的に検出する
装置において、偏波面変調法の利点と、差動増幅法の利
点を合せもつ偏波面変調差動法を用いた光学式情報検出
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a device for optically detecting information on a magneto-optical recording medium. This invention relates to an optical information detection device using a modulated differential method.

従来例の構成とその問題点 最近、磁気光学記録媒体の情報を光学的に検出する方法
において、SNN回向上手段として偏波面変調法が有る
。第1図にその偏波面変調法をの原理図を示す。第1図
(alは光が磁気光学記録媒体を透過(透過形)するも
のであり、第1図(blは反射するもの(反射型)であ
る。原理的には同じものであるので透過するもので従来
例を説明する。
Conventional Structure and Problems Recently, in a method for optically detecting information on a magneto-optical recording medium, a polarization plane modulation method has been used as a means for improving the SNN rate. Figure 1 shows a diagram of the principle of the polarization plane modulation method. Figure 1 (al indicates that the light passes through the magneto-optical recording medium (transmission type), and Figure 1 (bl indicates that the light is reflected (reflection type). Since they are basically the same, the light passes through the magneto-optical recording medium. A conventional example will be explained below.

光源1からの出射光は、光路11−aを透過後幅光子2
て直線偏光にされ、偏波面変調器3に入射する。
The light emitted from the light source 1 has a width of photons 2 after passing through the optical path 11-a.
The light is converted into linearly polarized light and enters the polarization plane modulator 3.

入射光は、八〇〔度〕の偏波面回転により変調を受ける
。変調光は、ミラー4て、2つの光路に分けられる。直
進光は、磁気光学記録媒体5を透過する事によって、φ
〔度〕のff1−r! 波面口Eを受ける。
The incident light is modulated by rotation of the plane of polarization by 80 degrees. The modulated light is divided into two optical paths by the mirror 4. By passing through the magneto-optical recording medium 5, the straight light beam becomes φ
[degrees] ff1-r! Receives wave face E.

磁気光学記録媒体5を経た光は、1lii!光子6を透
過後、光路11−Cを通過して検出器8に入射する。
The light passing through the magneto-optical recording medium 5 is 1lii! After transmitting the photon 6, it passes through the optical path 11-C and enters the detector 8.

検出器8によって光電変換された信号は、差動増幅51
0fこ導かれる。一方、ミラー4ての反射光は偏光子7
を透過後、光路11−bを経て検出器9に入射する。検
出器8によって光電変換された信号は同じく差動増幅器
10に導かれる。
The signal photoelectrically converted by the detector 8 is sent to a differential amplifier 51.
0f is guided. On the other hand, the reflected light from the mirror 4 is reflected by the polarizer 7.
After passing through, the light enters the detector 9 via the optical path 11-b. The signal photoelectrically converted by the detector 8 is also guided to the differential amplifier 10.

差動増幅が行なわれる目的を次に示す。検出器8の出力
は次式で示される。
The purpose of differential amplification is as follows. The output of the detector 8 is expressed by the following equation.

I8(φ、t)=PiK、sxn (φ+&o sin
wo t )    (1)ここてtは時間、Plは光
源1の出力、K1は光学系の損失、w(、は偏波面変調
器3の変調周波数である。
I8(φ, t)=PiK,sxn (φ+&o sin
wo t ) (1) Here, t is time, Pl is the output of the light source 1, K1 is the loss of the optical system, and w(, is the modulation frequency of the polarization plane modulator 3.

φ及びaOが小さい時(1)式は次の様に近似できる。When φ and aO are small, equation (1) can be approximated as follows.

Is(φ、 t )= PiK、 aoシ2 + 2P
IK1 Loφsinw、) t−(PiKI ao2
//2) C082Wo t     (21又、検出
器9の出力は次式で示される。
Is(φ, t) = PiK, ao shi2 + 2P
IK1 Loφsinw,) t-(PiKI ao2
//2) C082Wo t (21 Also, the output of the detector 9 is expressed by the following formula.

I9(φ、t)=PiK2sln (aOslnwot
)’::PiKzao/2−(PIK2ao/2)CO
52Wot (31今、偏光子2と偏光子6、および、
偏光子2と偏光子子を消光配置にすると、aoはかなり
少さくなり光源の雑音及び光検出器のショット雑音は、
全出力に対して無視てきるほどのもの(こなる。差動増
幅は、磁気光学記録媒体6(こおける信号φを含まずか
つ2町で振動する項を消去するために行なうものである
。従って、差動増幅器の出力は次式のに、L、K2′を
に、’/に2’=K 2 / Ktとなる様に利i等を
設定する事によって、 ■(φ、i)−に+’Is (φt)  K2′I9(
φt)=2PiK、’KI a、)  φS工nwo 
t                  (41が得ら
れる。
I9(φ, t)=PiK2sln (aOslnwot
)'::PiKzao/2-(PIK2ao/2)CO
52Wot (31 now, polarizer 2 and polarizer 6, and
When the polarizer 2 and the polarizer are placed in an extinction arrangement, ao becomes considerably smaller, and the noise of the light source and the shot noise of the photodetector become as follows.
This is negligible with respect to the total output. Differential amplification is performed to eliminate terms that do not include the signal φ in the magneto-optical recording medium 6 and that oscillate at two intervals. Therefore, the output of the differential amplifier can be calculated as follows: (φ, i) - +'Is (φt) K2'I9(
φt) = 2PiK, 'KI a,) φS engineering nwo
t (41 is obtained.

従って、この方式によれば、PiK、 (幅2/2)に
よる支配的な雑音、ショット雑音、光源の雑音を除却し
、又信号成分を含まない2Woの成分項も除却できる事
になる。
Therefore, according to this method, it is possible to eliminate the dominant noise due to PiK (width 2/2), shot noise, and light source noise, and also to eliminate the component term of 2Wo that does not include a signal component.

以上の様な特長を持つ方法であるが、(4)式かられか
る様に、偏波面変調器3の変調反動によって感度が決定
されている。また、実際の検出装置にこの方式を用いる
場合、信頼性の観点から周囲温度変化に対して&0が安
定である必要がある。また、装置自体が大型化してしま
うと、連続的に記録媒体からの情報を読みとる場合、駆
動に限界が生じる。現在、温度特性が良好である偏波面
変調用素子として鉛ガラスが代表的なものである。しか
しながら、この鉛ガラスは、ヴエルデ定数が0.Q8X
 10 ”10. Cm (λ−0,82Ztm )と
小さく、例えは通常のaO=1°を得るためには、鉛ガ
ラスの長さが1 (Inとすると交流磁界が12500
e必要であり、長さを長くして例えば10ctnとして
も交流磁界は、12 s Oe  必要であるう従って
交流磁界を発生するためのコイルが大型化するか、鉛ガ
ラスが長くなり装置が大型化するy1工はさけられない
Although this method has the above-mentioned features, the sensitivity is determined by the modulation reaction of the polarization plane modulator 3, as can be seen from equation (4). Furthermore, when this method is used in an actual detection device, &0 needs to be stable against changes in ambient temperature from the viewpoint of reliability. Furthermore, if the device itself becomes large, there will be a limit to its driving ability when reading information from a recording medium continuously. Currently, lead glass is a typical polarization plane modulating element with good temperature characteristics. However, this lead glass has a Werde constant of 0. Q8X
For example, in order to obtain the normal aO = 1°, the length of the lead glass must be 1 (for In, the AC magnetic field is 12500
Even if the length is increased to, for example, 10 ctn, an AC magnetic field of 12 s Oe is required. Therefore, the coil for generating the AC magnetic field will be larger, or the lead glass will be longer and the device will be larger. Y1 workers who do this cannot be avoided.

一方、装置を小へ1.!化するために、コイルを小さく
しかつ鉛ガラスを短くすると幅が少さくなり、従って感
度が小さくなると言う欠点を有する。
On the other hand, set the device to 1. ! If the coil is made smaller and the lead glass is made shorter in order to increase the width, the width becomes smaller and therefore the sensitivity becomes smaller.

発明の目的 本発明は上記の欠点を鑑みてなされたものであり、高感
度でなおかつ、温度特性が良好で、小型軽量化され、駆
動力に富んだ、光学式情報検出装置を提供するものであ
る。
Purpose of the Invention The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide an optical information detection device that is highly sensitive, has good temperature characteristics, is small and lightweight, and has a large driving force. be.

発明の構成 本発明は、偏光面の方位角を振動させる偏波面変調器と
して強磁性ガーネット結晶を用い、差動増幅手段を何す
るものである。
Structure of the Invention The present invention uses a ferromagnetic garnet crystal as a polarization plane modulator that vibrates the azimuth angle of a polarization plane, and is used as a differential amplification means.

具体的には、光源からの入射光を直線偏光にする第1の
偏光子、及び光源と第1の検光子間を結合する第1の光
路、前記直線偏光を振動させる偏波面変調器、前記偏波
面変調器を出射後の光を2つの光路を透過する光に分離
するミラーを有し、前記第2の光路を透過する光が磁気
光学情報媒体を透過又は反射したのちに透過せしめる第
2の検光子、及び第2の検光子を透過後の光を検知する
第1の検出手段をイ1゛シ、1)II記ミラーを反射又
は透過した@3の光路を透過する光を透過せしめる第3
の偏光子、及び第3の偏光子を透過後の光を検知する第
2の検知手段ををし、第1の検出手段による出力と第2
の検出手段の出力を差動増幅する手段を備えた装置にお
いて、前記偏波面変調器に、強磁性ガーネット結晶を用
いるものであり、望むらくは、たとえば、強磁性ガーネ
ット結晶とじて−殺伐(TbXYI−X)3F8sO+
2で示され、Xの値が0.1≦x≦0.3のものを用い
る。又は、強磁性ガーネット結晶に結晶基板上にエビタ
キ/ヤル成長させた結晶を用いるものである。さらに、
望むらくは第1、第2及び第3の光路として偏波面保存
光ファイバを用いるものである。
Specifically, a first polarizer that converts incident light from a light source into linearly polarized light, a first optical path that couples between the light source and the first analyzer, a polarization plane modulator that vibrates the linearly polarized light, and a polarization plane modulator that vibrates the linearly polarized light. A second mirror having a mirror that separates the light emitted from the polarization plane modulator into light that passes through two optical paths, and allows the light that passes through the second optical path to pass through the magneto-optical information medium after being transmitted or reflected. The analyzer and the first detection means for detecting the light after passing through the second analyzer, 1) transmit the light that is reflected or transmitted through the mirror described in II and transmitted through the optical path @3. Third
and a second detecting means for detecting the light after passing through the polarizer and the third polarizer, and the output from the first detecting means and the second detecting means are connected to each other.
In this apparatus, a ferromagnetic garnet crystal is used for the polarization plane modulator, and preferably, for example, a ferromagnetic garnet crystal is -X)3F8sO+
2, and the value of X satisfies 0.1≦x≦0.3. Alternatively, a ferromagnetic garnet crystal grown on a crystal substrate by epitaxial/yellow growth is used. moreover,
Preferably, polarization maintaining optical fibers are used as the first, second and third optical paths.

実施例の説明 本発明を偏波面変調器に、強磁性ガーネット結晶(Tb
xY+−x)3FesO+2(X−0,19)、及び第
1、第2、第3の光路に偏波面保存光ファイバを用いた
実施例て以Fに説明する。第2図に本発明による実施例
を示すっ第2において、1は光源で、小型化の視点から
半導体レーザを用いている。偏光子2.6及び7は、T
iQzの平行平板を用いており、1.5馴厚さ、2sJ
l程度のものである。これはTlO2の複屈折を利用し
た、空間的な偏光分離板である。
DESCRIPTION OF EMBODIMENTS The present invention is applied to a polarization plane modulator using a ferromagnetic garnet crystal (Tb
xY+-x)3FesO+2(X-0,19), and an embodiment using polarization-maintaining optical fibers in the first, second, and third optical paths will be described below. FIG. 2 shows a second embodiment of the present invention. In the second embodiment, 1 is a light source, and from the viewpoint of miniaturization, a semiconductor laser is used. Polarizers 2.6 and 7 are T
iQz parallel plate is used, 1.5 thickness, 2sJ
It is about l. This is a spatial polarization splitting plate that utilizes the birefringence of TlO2.

偏波面変調器3には前記(Tbo、+9Yo、a+ )
3FesOtz結晶を用いており、厚2.5mmt、2
ml+lφのものである。この長さくこおいてaQ=j
°を得るためには、交流磁界は、5000程度で良い。
The polarization plane modulator 3 has the above (Tbo, +9Yo, a+)
3FesOtz crystal is used, thickness 2.5mm, 2
ml+lφ. Set aside this length, aQ=j
In order to obtain .degree., the alternating current magnetic field may be about 5000.degree.

4はミラーであり、ミラーを透過した光は、磁気光学記
録媒体5によって変調φを受け、ミラー4によって反射
された後検出器8に入る。一方ミラー4(こよって反射
された光は検出器9に入る。それぞれの(言号は、差動
増幅器10によって、演算され出力される。
4 is a mirror, and the light transmitted through the mirror is modulated φ by the magneto-optical recording medium 5, reflected by the mirror 4, and then enters the detector 8. On the other hand, the light reflected by the mirror 4 enters the detector 9.The respective (signs) are calculated and output by the differential amplifier 10.

12−all 2−b、  12−C,12−dは、集
光用のロッドレンズであり、2馴φ、長さ3訓程度のも
のである。又、1l−al 1l−bl 11−Cは、
光路に偏波面保存ファイバを用いており、光源1、検出
器8.9と偏光子2.6.7間の光路による光@変動を
おさえるために用いている。
12-all 2-b, 12-C, and 12-d are rod lenses for condensing light, each having a diameter of 2 mm and a length of about 3 mm. Also, 1l-al 1l-bl 11-C is
A polarization-maintaining fiber is used in the optical path, and is used to suppress light fluctuations due to the optical path between the light source 1, detector 8.9, and polarizer 2.6.7.

偏波面保存ファイバを用いると、ファイバ長を長くする
事により、光学式情報防出装置の検出部を独立させるこ
とが可能となり、実効的に検出部を小さくする事ができ
、また、使用する場合にも三次元的な自由度を与える事
ができる。又、偏波面変調器に(Tbo、t9Yo、s
+ )3Fs5O12を用いる事によって、aoの温度
特性が向上し、周囲温度変化に対して安定な検出が行な
える、実測例としては、a(。
When polarization maintaining fiber is used, by increasing the length of the fiber, it becomes possible to make the detection section of the optical information prevention device independent, effectively reducing the size of the detection section, and when using it. can also be given three-dimensional freedom. Also, in the polarization plane modulator (Tbo, t9Yo, s
+) By using 3Fs5O12, the temperature characteristics of ao are improved and stable detection can be performed against changes in ambient temperature.As an actual measurement example, a(.

=1°、φ=15′、及び、周囲温度−20℃〜+80
℃において、SNRが50 dB以上の感度及び、φの
測定精度上10I)以内が得られた。
=1°, φ=15', and ambient temperature -20℃~+80
℃, a sensitivity with an SNR of 50 dB or more and a measurement accuracy of φ within 10 I) were obtained.

なお、実施例では、偏波面変調器3に(Tbo19Yo
、g+ )3 Fe5O12を用いたが、ヴエルデ定数
の大きな強磁性ガーネット結晶、特(こ結晶基板上にエ
ピタキンヤル成長させたbl入りカーネット結晶を用い
れは、さらに効果は大きい。また光路1l−Jll−b
、11−Cに偏波面保存ファイバを用いたが、半導体レ
ーザ、又は、半導体フォトダイオード等の小型のものを
用いれば、1而光子2,6゜7に直接付加する事が出来
、光路用ファイバは不用となる。
In addition, in the embodiment, the polarization plane modulator 3 (Tbo19Yo
, g+ )3 Fe5O12 was used, but the effect is even greater if a ferromagnetic garnet crystal with a large Welde's constant, especially a BL-containing Carnet crystal grown epitaxially on this crystal substrate, is used. b
, 11-C was used with a polarization maintaining fiber, but if a small device such as a semiconductor laser or a semiconductor photodiode is used, one photon can be added directly to 2.6°7, and the optical path fiber can be used. becomes unnecessary.

発明の効果 以上述へたことから明らかな様に、本発明の光学式情報
検出装置′角によれば、高感度で小型軽量、及び、lA
A度変比変化して安定な1g′+検出が行なわれ、信頼
性に優れたものであり、その工業的価値は犬なるもので
ある。
Effects of the Invention As is clear from what has been described above, the optical information detection device of the present invention is highly sensitive, small and lightweight, and has a
Stable 1g'+ detection is performed by changing the ratio by A degree, and it is highly reliable and has great industrial value.

4、図1月の1;4゛j単f、i説明 第11財は描書の怪堂式悄’Kl徐出ケ11〆を企iζ
シ明する図、第2図は本発明の一実施例における光学式
情報検出装置を説明するための図である。
4, Figure January 1; 4゛j Single f, i Explanation The 11th item is the Kaido style of the drawing 'Kl Xu out ke 11〆 Iζ
FIG. 2 is a diagram for explaining an optical information detection device according to an embodiment of the present invention.

1・・・・光源、2,6.7・・・・偏光子、3・・・
・・偏波面変調器、4− ミラー、5・・・・磁気光学
記録媒体、8.9・・・・検出器、1o・・・差動増幅
器、11−& 、 b 、 C・・・光路、12−z、
b、c。
1...Light source, 2,6.7...Polarizer, 3...
...Polarization plane modulator, 4-Mirror, 5...Magneto-optical recording medium, 8.9...Detector, 1o...Differential amplifier, 11-&, b, C... Optical path , 12-z,
b, c.

d ・・・・ロッドレンズ、d...Rod lens,

Claims (4)

【特許請求の範囲】[Claims] (1)偏光面の方位角を振動させる偏波面変調器と差動
増幅する手段を備えて磁気光学情報を検出するとともに
、前記偏波面変調器に、強磁性ガーネット結晶を用いる
事を特徴とした光学式情報検出装置。
(1) A polarization plane modulator that vibrates the azimuth angle of the polarization plane and means for differential amplification are provided to detect magneto-optical information, and the polarization plane modulator is characterized by using a ferromagnetic garnet crystal. Optical information detection device.
(2)強磁性ガーネット結晶として一般式(TbxY_
1−x)_3Fe_5O_1_2で示され、xの値が(
0.1≦x≦0.3)のものを用いる事を特徴とする特
許請求の範囲第1項記載の光学式情報検出装置。
(2) As a ferromagnetic garnet crystal, the general formula (TbxY_
1-x)_3Fe_5O_1_2, and the value of x is (
The optical information detection device according to claim 1, characterized in that an optical information detection device is used that satisfies the following: 0.1≦x≦0.3.
(3)強磁性ガーネット結晶として、結晶基板上にエピ
タキシャル成長させた結晶を用いる事を特徴とする特許
請求の範囲第1項記載の光学式情報検出装置。
(3) The optical information detection device according to claim 1, wherein a crystal epitaxially grown on a crystal substrate is used as the ferromagnetic garnet crystal.
(4)光路に偏波面保存光ファイバーを用いる事を特徴
とする特許請求の範囲第1項記載の光学式情報検出装置
(4) The optical information detection device according to claim 1, characterized in that a polarization maintaining optical fiber is used in the optical path.
JP18584284A 1984-09-05 1984-09-05 Optical information detector Pending JPS6163946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18584284A JPS6163946A (en) 1984-09-05 1984-09-05 Optical information detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18584284A JPS6163946A (en) 1984-09-05 1984-09-05 Optical information detector

Publications (1)

Publication Number Publication Date
JPS6163946A true JPS6163946A (en) 1986-04-02

Family

ID=16177829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18584284A Pending JPS6163946A (en) 1984-09-05 1984-09-05 Optical information detector

Country Status (1)

Country Link
JP (1) JPS6163946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009287A1 (en) * 1996-08-27 1998-03-05 Quinta Corporation Data storage system having an optical flying head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009287A1 (en) * 1996-08-27 1998-03-05 Quinta Corporation Data storage system having an optical flying head

Similar Documents

Publication Publication Date Title
US4560932A (en) Magneto-optical converter utilizing Faraday effect
US4682311A (en) Photomagnetic differential reproducing system
JPS58103674A (en) Measuring head for magnetometer and magnetometer containing said head
JPS6080779A (en) Magnetic field sensor
JPH05249207A (en) Photosensor
CA2190915C (en) High efficiency polarization diversity receiver system
JPH02276045A (en) Magneto-optical reproducing device
JPS6163946A (en) Optical information detector
JPS5979446A (en) Magneto-optical head
JPS63113337A (en) Method and device for compensating fiber optic lead loss and connector loss in fiber optic sensor
JPH06223433A (en) Method and device for detecting magneto-optical signal
JP4071723B2 (en) Electric field sensor and electric field detection method
JP2003270591A (en) Polarization-independent optical equipment
JPH0812231B2 (en) Optical interference device utilizing magnetic field dependence of refractive index of magnetic fluid
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JPS6162882A (en) Magnetic field detector
JPH07280900A (en) Magnetic field sensor
JPS58146858A (en) Optical current and magnetic field measuring device
JP2005106590A (en) Radio sensor
JPH09119821A (en) Method and device for measuring parallax of incident angle of ray
JP3435584B2 (en) Electric field sensor head and electric field sensor
JPS6110777A (en) Measuring device for current
JPH0248868B2 (en)
JP2580443B2 (en) Optical voltage sensor
JPH04355323A (en) Optical fiber sensor