JPS6163514A - Method of purifying monosilane - Google Patents

Method of purifying monosilane

Info

Publication number
JPS6163514A
JPS6163514A JP18277184A JP18277184A JPS6163514A JP S6163514 A JPS6163514 A JP S6163514A JP 18277184 A JP18277184 A JP 18277184A JP 18277184 A JP18277184 A JP 18277184A JP S6163514 A JPS6163514 A JP S6163514A
Authority
JP
Japan
Prior art keywords
gas
monosilane
condenser
unreduced
condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18277184A
Other languages
Japanese (ja)
Other versions
JPH0436089B2 (en
Inventor
Atsuhiko Hiai
日合 淳彦
Kazuo Wakimura
脇村 和生
Masao Tanaka
田中 将夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP18277184A priority Critical patent/JPS6163514A/en
Publication of JPS6163514A publication Critical patent/JPS6163514A/en
Publication of JPH0436089B2 publication Critical patent/JPH0436089B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high-purity monosilane in high yield, by reducing specific chlorosilane, separating an unreduced substance and an impurity through condensation, condensing an uncondensed gas, evaporating the condensed solution to give a gas, and subjecting it to adsorption treatment. CONSTITUTION:One or more chlorosilanes shown by the formula SiHnCl4-n (n is 0, 1, 2, or 3) are reduced by a well-known means, to give a crude monosilane gas containing an unreduced chlorosilane and a hydrocarbon im purity. The crude monosilane gas is introduced into the first condenser, treated at about -10--80 deg.C, the greater part of unreduced chlorosilane and hydrocar bon are condensed and separated. Then, a remaining uncondensed gas is intro duced into the second condenser, treated at -112--100 deg.C, and the all condensa ble gas is condensed. The condensed solution is partially evaporated, to give a monosilane gas containing a very small amount of unreduced substance and hydrocarbon, and subjected to adsorption treatment with an adsorbent, to give a monosilane having >=about 99.9998% purity.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、モノシランの精製方法に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for purifying monosilane.

(従来技術) エレクトロニクス産業市場の急成、長に伴いモノシラン
は、IC1太陽電池、光感光体ドラム等における半導体
薄膜を形成するための原料ガスとして、近年急激に需要
が増加している。モノシランガスの製造方法としては、
四塩化硅素又は三塩化硅素等のクロロシラン類をアルカ
リ金属ハイドライド又はアルキルアルミニウムハイドラ
イドで還元する方法が一般的である。前記したエレクト
ロニクス分野の用途に使用される原料ガスとしての一モ
ノシランは、極めて高い純度のものが要求される。
(Prior Art) With the rapid growth and growth of the electronics industry market, the demand for monosilane as a raw material gas for forming semiconductor thin films in IC1 solar cells, photosensitive drums, etc. has increased rapidly in recent years. The method for producing monosilane gas is as follows:
A common method is to reduce chlorosilanes such as silicon tetrachloride or silicon trichloride with an alkali metal hydride or alkyl aluminum hydride. Monosilane as a raw material gas used in the electronics field described above is required to have extremely high purity.

そのため、従来、−20℃以下のような低温で冷却処理
したり、活性炭、合成ゼオライトのような吸着剤で処理
したり、あるいはこれらの処理を組み合わせて高純度の
モノシランを製造していた。
For this reason, high purity monosilane has conventionally been produced by cooling at a low temperature of -20° C. or lower, by treating with an adsorbent such as activated carbon or synthetic zeolite, or by combining these treatments.

しかしながら、前記のような精製方法では、吸着剤を多
量に必要とし、かつ、そのライフも短い等々非常に問題
がある。例えば、粗モノシランガスを一20℃以下で冷
却処理しても、処理されたガス中には、未反応のクロロ
7ラン類、炭素数3以上の炭化水素がかなり残存してお
り、これをそのまま活性炭のような吸着剤で処理すると
きは、大量の活性炭が必要となる。活性炭は、不純物で
あるクロロシラン類のほかモノシランをも吸着するので
、活性炭の再生時に製品であるモノシランを損失するの
みならず、これらを吸着した活性炭は、空気に触れると
容易に着火し、取扱い上非常に手間がかかり危険を伴う
However, the purification method described above requires a large amount of adsorbent and has a short life. For example, even if crude monosilane gas is cooled to temperatures below -20°C, a considerable amount of unreacted chloro-7ranes and hydrocarbons with 3 or more carbon atoms remain in the treated gas, which is then directly transferred to activated carbon. When treating with adsorbents such as , large amounts of activated carbon are required. Activated carbon adsorbs monosilane as well as chlorosilanes, which are impurities, so not only is the product monosilane lost when activated carbon is regenerated, but activated carbon that has adsorbed these can easily ignite when exposed to air, making it difficult to handle. It is very time consuming and dangerous.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、吸着剤の使用量をできるだけ少量にし
、安全に、かつ高収率で高純度のモノシランを製造する
精製方法を提供することである。
An object of the present invention is to provide a purification method that uses as little amount of adsorbent as possible to produce high-purity monosilane safely and in high yield.

〔発明の開示〕[Disclosure of the invention]

本発明の上記目的は、一般式5iHC1!   (n 
   4−n ここに、nは、 0.1.2又は3を表わす。)で示さ
れる一種又は二種以上のクロロシラン類を還元して得た
粗モノシランガスを精製するにあたり、該粗モノシラン
ガスを第1凝縮器に導入して未還元物質及び不純物の大
部分を凝縮分離し、該第1凝縮器から得られる未凝縮ガ
スを第2凝縮器に導入して凝縮性ガスを実質的に全量凝
縮せしめて凝縮液を得、次いで該凝縮液の一部を再蒸発
せしめて実質的にモノシランからなるガスを得、該ガス
を吸着剤により吸着処理することにより達成される。
The above object of the present invention is based on the general formula 5iHC1! (n
4-n Here, n represents 0.1.2 or 3. ) In purifying the crude monosilane gas obtained by reducing one or more types of chlorosilanes, the crude monosilane gas is introduced into a first condenser to condense and separate most of the unreduced substances and impurities, The uncondensed gas obtained from the first condenser is introduced into a second condenser to condense substantially all of the condensable gas to obtain a condensate, and then a portion of the condensate is reevaporated to substantially This is achieved by obtaining a gas consisting of monosilane and adsorbing the gas with an adsorbent.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

一般式SiHC1で示されるクロロシランn    4
−n 類は、四塩化硅素、トリクロロシラン、ジクロロシラン
、モノクロロシランである。これらのクロロシラン類を
アルカリ金属ハイドライド又はアルキルアルミニウムハ
イドライドを用いて公知の手段で還元すると粗モノシラ
ンガスが得られる。この粗モノシランガス中には、未還
元のクロロシラン類がn、1〜40%、炭化水素0.0
1〜5%が含有されている。この粗モノシランガスを第
1凝縮器に導入する。第1凝縮器では、主として未還元
のクロロシラン類及び炭化水素の大部分が凝縮するよう
な温度、例えば−10°C〜−80℃で処理される。第
1凝縮器で凝縮分離された凝縮物は、そのまま、あるい
は、炭化水素を分離して、還元反応系に循環使用するこ
とができる。
Chlorosilane n 4 represented by the general formula SiHC1
-n groups are silicon tetrachloride, trichlorosilane, dichlorosilane, and monochlorosilane. Crude monosilane gas is obtained by reducing these chlorosilanes by a known method using an alkali metal hydride or an alkyl aluminum hydride. This crude monosilane gas contains n, 1 to 40% of unreduced chlorosilanes and 0.0% of hydrocarbons.
It contains 1 to 5%. This crude monosilane gas is introduced into the first condenser. In the first condenser, the treatment is performed at a temperature such that most of the unreduced chlorosilanes and hydrocarbons are condensed, for example, from -10°C to -80°C. The condensate condensed and separated in the first condenser can be recycled to the reduction reaction system either as it is or after separating the hydrocarbons.

第1凝縮器から得られる未凝縮ガスは、第2凝縮器に導
入される。第2凝縮器では一1126C〜−100℃で
処理され、未還元物質、炭化水素及びモノシランは実質
的に全量凝縮される。なお、第2凝縮器に随伴されてく
る窒素、水素等の不活性ガスは、ここで凝縮せず分離除
去される。第2凝縮器内の凝縮物のうち、未還元物質を
含有する部分は、第1凝縮器及び/又は還元反応系に、
そのまま、あるいは適当な処理を施して循環することが
できる。
Uncondensed gas obtained from the first condenser is introduced into the second condenser. In the second condenser, the process is carried out at -1126C to -100C, and substantially all of the unreduced substances, hydrocarbons and monosilane are condensed. Note that inert gases such as nitrogen and hydrogen that are entrained in the second condenser are separated and removed without being condensed here. Of the condensate in the second condenser, a portion containing unreduced substances is transferred to the first condenser and/or the reduction reaction system.
It can be recycled as is or after being subjected to appropriate treatment.

次いで第2凝縮器の凝縮液の一部を再蒸発せしめる。再
蒸発は、例えば、第2凝縮器の吸熱、あるいはスチーム
、熱媒等による加熱の如き方法で行なわれる。
A portion of the condensate in the second condenser is then reevaporated. Re-evaporation is carried out, for example, by heat absorption in the second condenser, or by heating with steam, heat medium, or the like.

該再蒸発により得られる実質的にモノシランからなるガ
スには、極微量の未還元物質、炭化水素が含まれている
。これを除去するため、吸着剤により吸着処理する。吸
着剤としては、例えば、未還元物質を除去するためには
活性炭が用いられ、炭化水素を除去するには、モレキュ
ラーシーブが用いられる。通常は、活性炭を充填した吸
着塔及びモレキュラーシープを充填した吸着塔を直列に
設置して吸着処理を行なう。
The gas substantially consisting of monosilane obtained by the re-evaporation contains trace amounts of unreduced substances and hydrocarbons. In order to remove this, adsorption treatment is performed using an adsorbent. As the adsorbent, for example, activated carbon is used to remove unreduced substances, and molecular sieve is used to remove hydrocarbons. Usually, an adsorption tower filled with activated carbon and an adsorption tower filled with molecular sheep are installed in series to perform adsorption treatment.

高純度に精製されたモノシランガスは、そのまま、ある
いは凝縮せしめて、ボンベ等に充填される。
The highly purified monosilane gas is filled into a cylinder or the like either as it is or after being condensed.

本発明の方法により得られるモノ7ランの純度は、実質
的に99.9998%以上である。
The purity of Mono7 run obtained by the method of the present invention is substantially 99.9998% or higher.

〔発明の効果〕 本発明の凝縮を二段階に分けて行った後吸着処理・する
という方法によれば、吸着剤の使用量を増やすことなく
、極めて高純度のモノ7ランが得られ、かつ、吸着処理
域には、未還元物質や炭化水素等の不純物の大部分があ
らかじめ除去されているので、吸着剤のライフが長くな
るうえ、吸着剤の再生、廃棄等の処理も、安全かつ効率
的に行なえるという作用効果を奏する。
[Effects of the Invention] According to the method of the present invention, in which condensation is carried out in two stages and then adsorption treatment is carried out, extremely high purity mono 7 run can be obtained without increasing the amount of adsorbent used. Since most of the impurities such as unreduced substances and hydrocarbons are removed in advance from the adsorption treatment zone, the life of the adsorbent is extended, and the regeneration and disposal of the adsorbent is also safe and efficient. It has the effect of being able to be carried out.

(実施例) 以下水−発明を実施例により具体的に説明する。(Example) The water invention will be specifically explained below with reference to Examples.

実施例1 1m゛の反応器を用い、四塩化硅素を還元剤としてアル
ミニウムジエチルハイドライドを用いて還元し、2ON
rIL′の粗モノシランガスを得た。この粗モノシラン
ガスの容積組成は、モノシラン69%、クロロシラン類
30%、エタン200ppm1ブタン、40flOpp
mであった。この粗モノシランガスを5ONm3の水素
をキャリア・ガスに使用して、第1凝縮器に導入した。
Example 1 Using a 1 m2 reactor, silicon tetrachloride was reduced using aluminum diethyl hydride as a reducing agent, and 2ON
Crude monosilane gas of rIL' was obtained. The volume composition of this crude monosilane gas is 69% monosilane, 30% chlorosilanes, 200 ppm ethane, 1 butane, 40 fl Opp
It was m. This crude monosilane gas was introduced into the first condenser using 5ONm3 of hydrogen as carrier gas.

−25°Cで未還元物質及びエタン、ブタン等の不純物
を凝縮分離し、この凝縮物は反応器に循環使用した。第
1凝縮器から得られる未凝縮ガスの容積組成は、モノシ
ラン90.3%、クロロシラン類8.7%、エタン19
0ppm、ブタン3000ppmであった。この未凝縮
ガスを第2凝縮器に導入した。−175°Cで凝縮性ガ
スを完全に凝縮回収した。凝縮物は、モノシラン19.
0に9、未還元物質及び不純物2.5に9であった。
Unreduced substances and impurities such as ethane and butane were condensed and separated at -25°C, and the condensate was recycled to the reactor. The volumetric composition of the uncondensed gas obtained from the first condenser is 90.3% monosilane, 8.7% chlorosilanes, and 19% ethane.
0 ppm, butane 3000 ppm. This uncondensed gas was introduced into the second condenser. The condensable gas was completely condensed and recovered at -175°C. The condensate is monosilane 19.
0 to 9, and unreduced substances and impurities 2.5 to 9.

次いで、この凝縮物を80%蒸発したところ、蒸発ガス
の組成は、モノシラ/L7.okg、未還元物質及び不
純物0.2 Jc9であった。この操作により不純物は
92%除去されたことになる。次いで、活性炭を充填し
た吸着塔及びモレキュラーシープを充填した吸着塔妃導
入して吸着処理した。得られたモノ7ランの純度は99
.9998%であった。
Then, when 80% of this condensate was evaporated, the composition of the evaporated gas was monosilica/L7. okg, unreduced substances and impurities were 0.2 Jc9. This operation removed 92% of impurities. Next, an adsorption tower filled with activated carbon and an adsorption tower filled with molecular sheep were introduced for adsorption treatment. The purity of the obtained mono 7 run was 99
.. It was 9998%.

実施例2 第2凝縮器から得られる凝縮物を90%蒸発せしめた以
外は、実施例1と同様にして精製した。
Example 2 Purification was carried out in the same manner as in Example 1, except that 90% of the condensate obtained from the second condenser was evaporated.

蒸発ガスは、モノシラン18.31c9、未還元物質及
び不純物1.1 kgであり、蒸発の操作により、未還
元物質及び不純物は56%除去されたことになる。
The evaporated gas was 18.31c9 of monosilane, 1.1 kg of unreduced substances and impurities, and 56% of the unreduced substances and impurities were removed by the evaporation operation.

実施例1と同様にして吸着処理を行ない、純度99.9
998%のモノシランを得た。
Adsorption treatment was performed in the same manner as in Example 1, and the purity was 99.9.
998% monosilane was obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式SiH_nCl_4_−_n(ここに、n
は0、1、2又は3を表わす)で示される一種又は二種
以上のクロロシラン類を還元して得た未還元のクロロシ
ラン類および炭化水素を主たる不純物として含有する粗
モノシランガスを精製するにあたり、該粗モノシランガ
スを第1凝縮器に導入して未還元のクロロシラン類及び
炭化水素不純物の大部分を凝縮分離し、該第1凝縮器か
ら得られる未凝縮ガスを第2凝縮器に導入して凝縮性ガ
スを実質的に全量凝縮せしめて凝縮液を得、次いで該凝
縮液の一部を再蒸発せしめて極微量の不純物を含有する
実質的にモノシランのみからなるガスを得、該ガスを吸
着剤により吸着処理することを特徴とするモノシランの
精製方法。
(1) General formula SiH_nCl_4_-_n (where n
represents 0, 1, 2 or 3) When purifying crude monosilane gas containing unreduced chlorosilanes and hydrocarbons as main impurities obtained by reducing one or more chlorosilanes represented by Crude monosilane gas is introduced into a first condenser to condense and separate most of the unreduced chlorosilanes and hydrocarbon impurities, and the uncondensed gas obtained from the first condenser is introduced into a second condenser to reduce condensability. Substantially the entire amount of the gas is condensed to obtain a condensate, a portion of the condensate is then re-evaporated to obtain a gas consisting essentially only of monosilane containing extremely small amounts of impurities, and the gas is absorbed by an adsorbent. A method for purifying monosilane characterized by adsorption treatment.
JP18277184A 1984-09-03 1984-09-03 Method of purifying monosilane Granted JPS6163514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18277184A JPS6163514A (en) 1984-09-03 1984-09-03 Method of purifying monosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18277184A JPS6163514A (en) 1984-09-03 1984-09-03 Method of purifying monosilane

Publications (2)

Publication Number Publication Date
JPS6163514A true JPS6163514A (en) 1986-04-01
JPH0436089B2 JPH0436089B2 (en) 1992-06-15

Family

ID=16124130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18277184A Granted JPS6163514A (en) 1984-09-03 1984-09-03 Method of purifying monosilane

Country Status (1)

Country Link
JP (1) JPS6163514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012837A1 (en) * 1992-12-01 1994-06-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ultra-high purity monosilane producing process and unit
WO1995026927A1 (en) * 1994-03-30 1995-10-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of producing ultra high purity monosilane and apparatus therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869715A (en) * 1981-10-21 1983-04-26 Mitsui Toatsu Chem Inc Purification of monosilane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869715A (en) * 1981-10-21 1983-04-26 Mitsui Toatsu Chem Inc Purification of monosilane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012837A1 (en) * 1992-12-01 1994-06-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ultra-high purity monosilane producing process and unit
US5499506A (en) * 1992-12-01 1996-03-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ultra-high purity monosilane producing process and unit
WO1995026927A1 (en) * 1994-03-30 1995-10-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of producing ultra high purity monosilane and apparatus therefor

Also Published As

Publication number Publication date
JPH0436089B2 (en) 1992-06-15

Similar Documents

Publication Publication Date Title
US5118485A (en) Recovery of lower-boiling silanes in a cvd process
US5051117A (en) Process for removing gaseous contaminating compounds from carrier gases containing halosilane compounds
JP6433867B2 (en) Hydrogen gas recovery system and hydrogen gas separation and recovery method
US4112057A (en) Process for purifying halogenosilanes
KR100591521B1 (en) Method for purifying semiconductor gases
US9669400B2 (en) Method for purifying silane compound or chlorosilane compound, method for producing polycrystalline silicon, and method for regenerating weakly basic ion-exchange resin
WO2015059919A1 (en) Method for manufacturing polycrystalline silicon
JP2570409B2 (en) Purification method of chloropolysilane
US20040042949A1 (en) Method for removing aluminum from chlorosilanes
JPS6163514A (en) Method of purifying monosilane
US4871524A (en) Hydrogen purification process
JPH0353017B2 (en)
JPH026318A (en) Method of removing n type doping impurity from liquefied or gaseous substance generated by vapor phase precipitation of silicon
JP2018203617A (en) System of recovering hydrogen gas, and method of recovering hydrogen gas
JPH0471007B2 (en)
JPS5869715A (en) Purification of monosilane
CN219291372U (en) Preparation facilities of electronic grade tetramethyl silane
JPH01190676A (en) Method for purifying 2,2,3,3-tetrafluorooxetane
JPH0135774B2 (en)
JP2940120B2 (en) Method for producing high-purity disilane
JPS623762B2 (en)
JPH0436090B2 (en)
KR20120106290A (en) Method for purification of trichlorosilane
JPS59156907A (en) Manufacture of silane
JPH05261282A (en) Method for regenerating adsorbent