JP2570409B2 - Purification method of chloropolysilane - Google Patents

Purification method of chloropolysilane

Info

Publication number
JP2570409B2
JP2570409B2 JP63306901A JP30690188A JP2570409B2 JP 2570409 B2 JP2570409 B2 JP 2570409B2 JP 63306901 A JP63306901 A JP 63306901A JP 30690188 A JP30690188 A JP 30690188A JP 2570409 B2 JP2570409 B2 JP 2570409B2
Authority
JP
Japan
Prior art keywords
chloropolysilane
activated carbon
impurities
present
purification method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63306901A
Other languages
Japanese (ja)
Other versions
JPH02153815A (en
Inventor
勝実 小木
悦治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP63306901A priority Critical patent/JP2570409B2/en
Publication of JPH02153815A publication Critical patent/JPH02153815A/en
Application granted granted Critical
Publication of JP2570409B2 publication Critical patent/JP2570409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般式SinCl2n+2(n≧2)で表わされる高
級クロロポリシランの精製方法に関する。
The present invention relates to a method for purifying a higher chloropolysilane represented by the general formula Si n Cl 2n + 2 (n ≧ 2).

クロロポリシランは、半導体シリコンの製造原料とし
て最近その重要性を増している。
Chloropolysilane has recently gained importance as a raw material for producing semiconductor silicon.

クロロポリシランはそのまま熱分解してエピタキシャ
ルシリコン等とする事もできるが、ゲルマニウムドープ
率の高い光通信用シリカ源としても用いられる。またク
ロロポリシランはさらに還元してSinH2n+2(n≧2)で
表わされるシランとし、これを熱分解等して半導体シリ
コンやアモルファスシリコンを製造する原料となる。例
えばジシランSi2H6は熱分解、グロー放電分解によりア
モルファスシリコン膜を形成する場合、モノシランSiH4
に比べて、基板上へ形成される膜の堆積速度がはるかに
大きく、且つ、該膜は電気特性に優れている等の利点が
あり、太陽電池用半導体の原料として今後大幅な需要増
加が期待されている。
Chloropolysilane can be directly thermally decomposed into epitaxial silicon or the like, but is also used as a silica source for optical communication having a high germanium doping rate. Further, chloropolysilane is further reduced to silane represented by Si n H 2n + 2 (n ≧ 2), which is used as a raw material for producing semiconductor silicon and amorphous silicon by thermal decomposition or the like. For example, when disilane Si 2 H 6 is used to form an amorphous silicon film by thermal decomposition or glow discharge decomposition, monosilane SiH 4
In comparison with the above, the deposition rate of a film formed on a substrate is much higher, and the film has advantages such as excellent electrical characteristics. Have been.

〔従来技術と問題点〕[Conventional technology and problems]

クロロポリシランは、カルシウムシリコン、マグネシ
ウムシリコン、あるいはフェロシリコン等の珪化物粒子
や金属シリコンの粒子を加熱して塩素ガスを送り込み、
これらを塩素化することによって製造されている。この
方法で得られたクロロポリシランは、用いた原料や装置
に起因する不純物を多く含むため、半導体材料として使
用するためには精留しなければならず、従来は、段数の
多い精留装置を用いて精留を繰り返していた。
Chloropolysilane heats silicide particles such as calcium silicon, magnesium silicon, or ferrosilicon or metal silicon particles and sends chlorine gas.
It is produced by chlorinating them. The chloropolysilane obtained by this method contains a large amount of impurities due to the raw materials and equipment used, and therefore must be rectified in order to be used as a semiconductor material. And rectification was repeated.

〔問題解決に係る知見〕[Knowledge on problem solving]

本発明者等は簡便でかつ効率のよいクロロポリシラン
の精製方法を追求した結果、クロロポリシランを活性炭
と接触させると不純物が効率よく除去されることを知見
した。
The present inventors have pursued a simple and efficient method for purifying chloropolysilane, and as a result, have found that when chloropolysilane is brought into contact with activated carbon, impurities are efficiently removed.

〔発明の効果〕〔The invention's effect〕

本発明は、一般式SinCl2n+2(n≧2)で表わされる
クロロポリシランを活性炭に接触させて、液中の不純物
を除去することを特徴とするクロロポリシランの精製方
法を提供する。
The present invention provides a method for purifying chloropolysilane, comprising contacting chloropolysilane represented by the general formula Si n Cl 2n + 2 (n ≧ 2) with activated carbon to remove impurities in the liquid.

本発明において除去する不純物はB,P,Al,Fe,Co,Mn,C
r,Cu,Mg,Ti,V,Cである。
The impurities to be removed in the present invention are B, P, Al, Fe, Co, Mn, C
r, Cu, Mg, Ti, V, C.

クロロポリシランはSi2Cl6,Si3Cl8,Si4Cl10,…等 の結合を骨格とする一連の同族体である。本発明におい
てクロロポリシランは上記同族体が夫々単独に分離され
た状態でもよく、もしくはこれら二量体、三量体等の二
種以上の混合物でもよい。更に副生するSiCl4を含んで
いてもよい。
Chloropolysilane is Si 2 Cl 6 , Si 3 Cl 8 , Si 4 Cl 10 , etc. Is a series of homologues whose skeleton is the bond of In the present invention, the chloropolysilane may be in a state where the above homologues are individually separated, or may be a mixture of two or more of these dimers, trimers and the like. Further, it may contain by-product SiCl 4 .

本発明に使用する活性炭は通常市販されているものを
用いることができ、またその形状も、粒状、粉状、繊維
状、シート状、ハニカム状等いづれを形状でもよい。
As the activated carbon used in the present invention, commercially available one can be used, and the shape thereof may be any shape such as a granular shape, a powdery shape, a fibrous shape, a sheet shape, and a honeycomb shape.

クロロポリシランを活性炭と接触させるには、使用活
性炭をカラムに層状に充填し、該層状部分にクロロポリ
シランを通液する方法、あるいは処理槽の内部に活性炭
とクロロポリシランとを混合し撹拌しながら接触させる
方法、またはこれらの方法を併用する方法等いずれの方
法によってもよい。このときのクロロポリシランの温度
は常温から100℃の温度範囲が好適である。常温以下で
は冷却設備を要し、100℃以上では活性炭の吸着能が低
下して除去の効率が落ちる。また、給液速度はSVで0.5
〜10の範囲が好適である。不純物を吸着した活性炭は塩
酸、フッ酸、苛性ソーダ等で処理し、乾燥させることで
再使用できる。
In order to contact chloropolysilane with activated carbon, the activated carbon to be used is packed in a layer in a column, and chloropolysilane is passed through the layered portion. Or any of these methods, such as a method of using these methods in combination. The temperature of the chloropolysilane at this time is preferably in the range of room temperature to 100 ° C. If the temperature is lower than room temperature, cooling equipment is required. If the temperature is higher than 100 ° C., the adsorption capacity of activated carbon is reduced and the efficiency of removal is reduced. The liquid supply speed is 0.5 SV.
A range of ~ 10 is preferred. The activated carbon to which the impurities have been adsorbed can be reused by treating it with hydrochloric acid, hydrofluoric acid, caustic soda, etc., and drying it.

活性炭処理により不純物が除去されたクロロポリシラ
ンは、そのまま製品としても良いし、さらに蒸留するこ
とによって純度をさらにあげることができる。
The chloropolysilane from which impurities have been removed by the activated carbon treatment may be used as a product as it is, or the purity may be further increased by further distillation.

〔発明の効果〕〔The invention's effect〕

本発明の精製方法によれば、クロロポリクロルシラン
からB,P,Al,Fe,Co,Mn,Cr,Cu,Mg,Ti,V,C等の不純物を選
択性良く分離することができるので高純度のクロロポリ
クロルシランを製造することができる。
According to the purification method of the present invention, impurities such as B, P, Al, Fe, Co, Mn, Cr, Cu, Mg, Ti, V, and C can be separated from chloropolychlorosilane with good selectivity. High-purity chloropolychlorosilane can be produced.

更に、本発明は活性炭とクロロポリシランとの接触処
理を行なうためその処理操作が極めて簡便であり、しか
も既存のクロロポリシラン製造における精製プロセスを
大幅に簡略化するものである。
Further, in the present invention, since the contact treatment between activated carbon and chloropolysilane is performed, the treatment operation is extremely simple, and the purification process in the existing chloropolysilane production is greatly simplified.

〔実施例〕〔Example〕

実施例1 直径30mmのパイレックス(商品名)製カラムによく乾
燥させた活性炭(クラレケミカル社製;クラレコールP
W)を充填し、第1表の不純物を有する常温のSi2Cl6,Si
3Cl8,Si4Cl10,及びこれらの混合物を給液速度0.1〜2l/h
r,SV比〔通液量(m3)/充填物容積(m3)〕0.5〜10で
給液した。
Example 1 A well-dried activated carbon (Kuraray Chemical P .; Kuraray Coal P
W), room temperature Si 2 Cl 6 , Si
3 Cl 8 , Si 4 Cl 10 , and their mixtures were fed at a feed rate of 0.1 to 2 l / h.
The liquid was supplied at an r / SV ratio of [liquid flow rate (m 3 ) / filled volume (m 3 )] of 0.5 to 10.

カラムに通液後、カラムから排出されるクロロポリシ
ラン中の不純物の含有率を分析した。その結果を第2表
に示す。
After passing through the column, the content of impurities in the chloropolysilane discharged from the column was analyzed. Table 2 shows the results.

第2表から明らかなように、非常に広いSV比の範囲に
わたって、B,P,Al,Fe,Co,Mn,Cr,Cu,Mg,Ti,V,Cの不純物
が高い除去率で分離されている。
As is clear from Table 2, the impurities of B, P, Al, Fe, Co, Mn, Cr, Cu, Mg, Ti, V, and C were separated at a high removal rate over a very wide range of SV ratio. ing.

実施例2 実施例1で用いた石油コークス系活性炭(クラレコー
ルPW)に代えてやしがら系、木くず系、石炭コークス系
の活性炭を用い、SV比を2に固定した以外は実施例1と
同様に活性炭処理を行ない、各活性炭の種類について上
記各クロロポリシランからの不純物の除去効果を調べた
ところ、活性炭処理したものは、いずれの種類の活性炭
についてもB,0.0001ppm以下、P,0.001ppm以下、Al,Fe,C
o,Mn,Cr,Cu,Mg,Ti,VおよびCのいずれの元素についても
0.1ppm以下であった。この結果から明らかのように本発
明の処理方法は活性炭の種類を変えても高い不純物除去
効果を達成しうる。
Example 2 Instead of petroleum coke-based activated carbon (Kuraray Coal PW) used in Example 1, activated carbon of palm, wood chip, or coal coke was used and the SV ratio was fixed at 2, except that the SV ratio was fixed at 2. Activated carbon treatment was performed in the same manner, and the effect of removing impurities from each of the above chloropolysilanes for each type of activated carbon was examined.Both activated carbon treatments showed that B, 0.0001 ppm or less, P, 0.001 ppm Below, Al, Fe, C
o, Mn, Cr, Cu, Mg, Ti, V and C
It was 0.1 ppm or less. As is clear from these results, the treatment method of the present invention can achieve a high impurity removal effect even when the type of activated carbon is changed.

実施例3 SV比を2に固定し、クロロポリシランの温度を20,50,
100℃に設定した以外は実施例1と同様に活性炭処理を
行ない、各液温について上記クロロポリシランからの不
純物の除去効果を調べた。この結果を第3表に示す。上
記結果から明らかなように本発明の処理方法は上記いず
れにおいても高い不純物除去効果を達成している。
Example 3 The SV ratio was fixed at 2 and the temperature of chloropolysilane was 20, 50,
Activated carbon treatment was performed in the same manner as in Example 1 except that the temperature was set to 100 ° C., and the effect of removing impurities from the chloropolysilane at each liquid temperature was examined. Table 3 shows the results. As is clear from the above results, the treatment method of the present invention achieves a high impurity removing effect in any of the above.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式SinCl2n+2(n≧2)で表わされる
クロロポリシランを活性炭に接触させて、液中の不純物
を除去することを特徴とするクロロポリシランの精製方
法。
1. A method for purifying chloropolysilane, comprising contacting chloropolysilane represented by the general formula Si n Cl 2n + 2 (n ≧ 2) with activated carbon to remove impurities in the liquid.
JP63306901A 1988-12-06 1988-12-06 Purification method of chloropolysilane Expired - Lifetime JP2570409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306901A JP2570409B2 (en) 1988-12-06 1988-12-06 Purification method of chloropolysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306901A JP2570409B2 (en) 1988-12-06 1988-12-06 Purification method of chloropolysilane

Publications (2)

Publication Number Publication Date
JPH02153815A JPH02153815A (en) 1990-06-13
JP2570409B2 true JP2570409B2 (en) 1997-01-08

Family

ID=17962627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306901A Expired - Lifetime JP2570409B2 (en) 1988-12-06 1988-12-06 Purification method of chloropolysilane

Country Status (1)

Country Link
JP (1) JP2570409B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232602A (en) * 1992-07-01 1993-08-03 Hemlock Semiconductor Corporation Phosphorous removal from tetrachlorosilane
US5723644A (en) * 1997-04-28 1998-03-03 Dow Corning Corporation Phosphorous removal from chlorosilane
US6935050B2 (en) * 2002-12-04 2005-08-30 Corning Incorporated Method and apparatus reducing metal impurities in optical fiber soot preforms
EP1867604B1 (en) * 2005-04-07 2013-05-15 Toagosei Co., Ltd. Method for purification of disilicon hexachloride and high purity disilicon hexachloride
DE102007050199A1 (en) * 2007-10-20 2009-04-23 Evonik Degussa Gmbh Removal of foreign metals from inorganic silanes
JP5206185B2 (en) * 2008-07-14 2013-06-12 東亞合成株式会社 Method for producing high purity chloropolysilane
DE102008054537A1 (en) * 2008-12-11 2010-06-17 Evonik Degussa Gmbh Removal of foreign metals from silicon compounds by adsorption and / or filtration
US20120148471A1 (en) * 2009-08-27 2012-06-14 Denki Kagaku Kogyo Kabushiki Kaisha Method for purifying chlorosilane
DE102013207447A1 (en) * 2013-04-24 2014-10-30 Evonik Degussa Gmbh Process and apparatus for the preparation of octachlorotrisilane
DE102014203810A1 (en) * 2014-03-03 2015-09-03 Evonik Degussa Gmbh Process for the preparation of pure octachlorotrisilanes and decachlorotetrasilanes

Also Published As

Publication number Publication date
JPH02153815A (en) 1990-06-13

Similar Documents

Publication Publication Date Title
US2971607A (en) Method for purifying silance
US4112057A (en) Process for purifying halogenosilanes
RU2368568C2 (en) Method of obtaining silicon
JP5632362B2 (en) Method and system for producing pure silicon
JP2570409B2 (en) Purification method of chloropolysilane
WO2015059919A1 (en) Method for manufacturing polycrystalline silicon
JP2004149351A (en) Chlorosilane and method for purifying the same
US8404205B2 (en) Apparatus and method for producing polycrystalline silicon having a reduced amount of boron compounds by forming phosphorus-boron compounds
JPH07315829A (en) Recovering method for chloride in vent gas stram
US4892568A (en) Process for removing n-type impurities from liquid or gaseous substances produced in the gas-phase deposition of silicon
JP2710382B2 (en) Method for producing high-purity dichlorosilane
JPH10316691A (en) Removal of phosphorus from chlorosilane
JPH04300206A (en) Purification of silicon chloride
JPH09263405A (en) Production of mixture reduced in hydrogen chloride
KR960014903B1 (en) Hydrogen, purification process
JP7028604B2 (en) Method for producing hexachlorodisilane
RU2274602C1 (en) Trichlorosilane production process
JPH0471007B2 (en)
JPS641405B2 (en)
TWI773121B (en) Process for obtaining hexachlorodisilane
JPS63151608A (en) Purification of nitrogen trifluoride gas
JPH0297415A (en) Method for increasing amount of silicon tetrachloride in reaction of hydrogen chloride or mixture of hydrogen chloride and chlorine with metal silicon-containing substance
RU2637690C1 (en) Method of producing chlorosilanes from amorphous silica to produce high purity silicon
JPH0436089B2 (en)
JPS61275125A (en) Stabilizing method for hexachlorodisilane