JP2004149351A - Chlorosilane and method for purifying the same - Google Patents

Chlorosilane and method for purifying the same Download PDF

Info

Publication number
JP2004149351A
JP2004149351A JP2002315636A JP2002315636A JP2004149351A JP 2004149351 A JP2004149351 A JP 2004149351A JP 2002315636 A JP2002315636 A JP 2002315636A JP 2002315636 A JP2002315636 A JP 2002315636A JP 2004149351 A JP2004149351 A JP 2004149351A
Authority
JP
Japan
Prior art keywords
chlorosilane
less
ppmw
carbon
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002315636A
Other languages
Japanese (ja)
Other versions
JP3892794B2 (en
Inventor
Noboru Okamoto
昇 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2002315636A priority Critical patent/JP3892794B2/en
Publication of JP2004149351A publication Critical patent/JP2004149351A/en
Application granted granted Critical
Publication of JP3892794B2 publication Critical patent/JP3892794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide trichlorosilane that is capable of effecting the reduction of a concentration of carbon impurities to the conventional level or less at a relatively low cost, and to provide a method for purifying the same. <P>SOLUTION: A chlorosilane is purified in a distillation tower 1 and then is passed through a treatment vessel 2 packed with an adsorbent 3. By contacting the chlorosilane after the purification with the adsorbent 3, comprehensive and efficient removal of the carbon containing silicon chloride compound which is hard to be removed by distillation is attained to cause following results: methyldichlorosilane[(CH<SB>3</SB>)SiHCl<SB>2</SB>],0.3 ppmw or less; trimethylchlorosilane[(CH<SB>3</SB>)<SB>3</SB>SiCl],0.1 ppmw or less; methyltrichlorosilane[(CH<SB>3</SB>)SiCl<SB>3</SB>],0.5 ppmw or less; dimethyldichlorosilane[(CH<SB>3</SB>)<SB>2</SB>SiCl<SB>2</SB>],0.3 ppmw or less. A silicagel is used as the adsorbent. It is preferable that the particle size of the silicagel is particularly within a range of 100-5,000μm and the inner specific surface area is 400 m<SP>2</SP>/g. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体級高純度多結晶シリコン又は光ファイバーの製造原料に好適に使用される四塩化珪素(SiCl)、トリクロロシラン(SiHCl)、ジクロロシラン(SiHCl)などのクロロシラン及びその精製方法に関する。
【0002】
【従来の技術】
半導体デバイスの製造原料となるシリコン単結晶中のカーボン不純物は、半導体デバイスの電気特性に悪影響を与えるため、そのカーボン不純物量を極力抑制することが望まれている。シリコン単結晶中へのカーボン不純物の混入の原因の一つは、シリコン単結晶の製造原料である多結晶シリコンに含まれるカーボン不純物である。このため、カーボン不純物の少ない多結晶シリコンが望まれている。
【0003】
シリコン単結晶の製造原料である多結晶シリコンは、工業的にはクロロシラン(通常はトリクロロシラン)と水素の混合ガスを原料とするシーメンス法により製造されている。このため、クロロシラン中のカーボン不純物を減少させることが、多結晶シリコン中のカーボン不純物を減らす上で重要になる。
【0004】
一般に、クロロシラン中においては、カーボン不純物は、メチルジクロロシラン〔(CH)SiHCl〕、トリメチルクロロシラン〔(CHSiCl〕、メチルトリクロロシラン〔(CH)SiCl〕、ジメチルジクロロシラン〔(CHSiCl〕などの塩化珪素化合物として存在する。クロロシラン中のこれら炭素含有塩化珪素化合物を除去するために、従来から蒸留による精製が実施されてきた。
【0005】
蒸留以外では、金属珪素と塩化水素を反応させてクロロシランを製造する際に、金属珪素中の炭素含有量を低減することにより、メチルクロロシラン類の副生を阻止する方法が特許文献1に記載されている。また、クロロシランではないが、メチルトリクロロシラン中に不純物として含まれるジメチルジクロロシランを吸着剤により除去する方法は、特許文献2に記載されている。
【0006】
【特許文献1】
特開平4−238805号公報
【0007】
【特許文献2】
特開平9−173701号公報
【0008】
【発明が解決しようとする課題】
ところで、蒸留操作は、物質間の沸点の差を利用する分離法であるため、沸点の近い物質においては分離が困難である。例えばトリクロロシランとメチルジクロロシランの大気圧下での沸点はそれぞれ約32℃と約40℃であり、比較的近い。このため、トリクロロシラン中のメチルジクロロシラン濃度を低下させるためには、還流比を大きくし且つ棚段数を多くした蒸留塔を幾本も通す必要があり、多大のエネルギー消費を余儀なくされる。
【0009】
ただ、現実問題として、クロロシラン中の炭素含有塩化珪素化合物は、カーボン不純物として総量的に規制されていればよく、メチルジクロロシラン濃度は高いものの、カーボン不純物濃度としては問題のないクロロシランが、複数の蒸留塔で連続的に精製を行うことで得られていた。ちなみに、メチルジクロロシラン以外の炭素含有塩化珪素化合物の大気圧下での沸点は、いずれもメチルジクロロシランより高く、トリメチルクロロシランで約58℃、メチルトリクロロシランで約66℃、ジメチルジクロロシランで約70℃である。
【0010】
しかしながら、半導体級高純度多結晶シリコンや光ファイバーの製造原料に使用されるクロロシランに要求される純度は年々高まっており、今後要求されることが予想される更に高い純度を考えると、膨大な設備投資と膨大なランニングコストが必要になり、製品は極めて高価になることが予想される。
【0011】
炭素含有量が少ない金属珪素を使用する方法は、メチルクロロシラン類の副生を阻止する方法であり、蒸留のようにメチルクロロシラン類を除去するものではない。また、原料である金属珪素の厳選が必要であるため、コスト的な負担が大きく、現実的な対策とは言えない。メチルトリクロロシラン中に不純物として含まれるジメチルジクロロシランを除去する方法は、純粋なクロロシランを得る方法ではなく、高純度のメチルトリクロロシランを得る方法であり、対象物が相違する。
【0012】
本発明の目的は、カーボン不純物濃度を現状以下に低減する場合も、これを比較的低コストで実現できるトリクロロシラン及びその精製方法を提供することにある。
【0013】
【課題を解決するための手段】
半導体級高純度多結晶シリコンや光ファイバーの製造原料に使用されるクロロシランに今後要求される超低レベルのカーボン不純物濃度を蒸留により実現するためには、そのクロロシランに沸点が近い炭素含有塩化珪素化合物の含有量を低減するのが必要であると考え、その方法について鋭意検討した。その結果、以下の事実が判明した。
【0014】
半導体級高純度多結晶シリコンの製造原料に使用される高純度トリクロロシランについて説明すると、この高純度トリクロロシランの精製には複数の蒸留塔が必要とされているが、PClなどのカーボン以外の主だった不純物は前半の数本の蒸留塔で検出限界以下に除去され、カーボン不純物である炭素含有塩化珪素化合物についても、比較的高沸点のトリメチルクロロシラン、メチルトリクロロシラン及びジメチルジクロロシランは、この段階でほぼ検出限界以下に除去される。
【0015】
しかしながら、沸点が低く、トリクロロシランに近いメチルジクロロシランは、この段階でも、検出限界を大幅に超える1ppmw程度残留しており、これが総量としてのカーボン不純物濃度を押し上げる主因になっている。このために、更に後半数本の蒸留塔が使われていることが判明した。
【0016】
即ち、後半数本の蒸留塔は、主にカーボン不純物濃度を下げるため、より具体的には、実質的にトリクロロシランに沸点が近いメチルジクロロシランを除去するために使用されているのが実情であり、現状以上にカーボン不純物濃度を下げるには、更に相当数の蒸留塔が必要になる。
【0017】
このような状況下で、本発明者はトリクロロシラン中の炭素含有塩化珪素化合物を蒸留以外の手段で簡易に、且つ選択的に除去する方法について検討した。その結果、トリクロロシランをシリカゲルや活性炭などの吸着剤に接触させるのが有効なことが判明した。この方法によると、トリクロロシラン中の炭素含有塩化珪素化合物を、沸点に関係なく均等に一括除去することができ、その結果、後半数本の蒸留塔を省略しても、メチルジクロロシランを含む全ての炭素含有塩化珪素化合物濃度を検出限界以下に低下させることができ、その結果としてカーボン不純物濃度を更に低下させることも可能となる。
【0018】
本発明はかかる知見を基礎として完成されたものであり、そのクロロシランは、炭素含有塩化珪素化合物濃度のうち、メチルジクロロシラン量を0.3ppmw以下、トリメチルクロロシラン量を0.1ppmw以下、メチルトリクロロシラン量を0.5ppmw以下、ジメチルジクロロシラン量を0.3ppmw以下としたものであり、より具体的には、蒸留工程を経た高純度の精製クロロシランである。
【0019】
また、本発明のクロロシラン蒸留方法は、クロロシランを蒸留塔で精製した後、吸着剤に接触させるものである。これにより、簡易にメチルジクロロシラン量0.3ppmw以下、トリメチルクロロシラン量0.1ppmw以下、メチルトリクロロシラン量0.5ppmw以下、ジメチルジクロロシラン量0.3ppmw以下を実現することができる。
【0020】
吸着剤としてはシリカゲル、活性炭、モレキュラーシーブなどを使用することができ、そのなかでもシリカゲル、特に粒度が100〜5000μmの範囲内で、内部比表面積が400m/g以上のシリカゲルが好ましい。シリカゲルが好ましいのは、シリコン系の化合物であり、また高純度品の入手も容易であり、高純度クロロシランの品質低下を発生させないからである。また、シリカゲルが本発明における吸着剤として優れている理由として次のことも考えられる。一般にシリカゲルの表面はシラノール基を有している。そのため、シリカゲル表面のシラノール基と不純物のメチル基とが化学吸着するために、本発明における吸着効果が、物理吸着により吸着を行う他の吸着剤よりも大きいのではないかと推定される。
【0021】
このシリカゲルは粒度が大きいとクロロシランとの接触面積が小さくなり、吸着効率が低下する。逆に、この粒度が小さい場合はクロロシランとの接触面積は大きくなるが、シリカゲル充填層を固定するためのフィルターのメッシュが細かくなり、液を流したときの圧損が増大したり、プロセスへのシリカゲルの混入が増加するなどの不具合を生じる。内部比表面積は大きいほど吸着面積が大きくなり好ましい。この観点から、粒度は100〜5000μmの範囲内が好ましく、内部比表面積は400m/g以上が好ましい。
【0022】
クロロシランを吸着剤に接触させる方法は、例えば吸着剤を充填した容器内にクロロシランを通す方法や、クロロシランを貯蔵している容器内に吸着剤を投入する方法などでもよく、特に限定するものではない。
【0023】
クロロシランとしては、トリクロロシランの他に、四塩化珪素、ジクロロシランなどを挙げることができる。
【0024】
なお、吸着剤を使用したカーボン不純物除去方法として、メチルトリクロロシラン中に不純物として含まれるジメチルジクロロシランを除去する方法は、特許文献2に記載されている。しかしながら、この方法は、特定の炭素含有塩化珪素化合物中から別の炭素含有塩化珪素化合物を選択的に除去するものであり、各種の炭素含有塩化珪素化合物を包括的に除去して純粋なクロロシランを得る本発明とは、目的が相違する。両者の吸着形態は以下のとおりである。
【0025】
メチルトリクロロシラン中のジメチルジクロロシランを除去する場合、ジメチルジクロロシランのみがシリカゲルに吸着しているのではなく、両者共にシリカゲルに吸着している。メチルトリクロロシランとジメチルジクロロシランがシリカゲルに同時吸着した場合、吸着後の液は、主成分であるメチルトリクロロシランの濃度が高くなり、副成分であるジメチルジクロロシランの濃度が低くなって、見かけ上、副成分のジメチルジクロロシランが選択的に吸着されたように見える。一方、本発明では、主成分であるクロロシラン中から数種類のカーボン塩化物が吸着される。この場合は、主成分のクロロシラン、副成分のカーボン塩化物の両方がシリカゲルに吸着し、吸着後の液では主成分のクロロシラン濃度が相対的に高くなり、カーボン塩化物が除去される。
【0026】
【発明の実施の形態】
以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示すクロロシラン精製設備の概略構成図である。図中TCSはトリクロロシランの略称、STCは四塩化珪素の略称である。
【0027】
本実施形態では、半導体級高純度多結晶シリコンの製造原料に使用される高純度のトリクロロシランが製造される。この高純度トリクロロシランの製造では、クロロシラン液を複数本(ここでは3本)の蒸留塔1に順番に通し、トリクロロシラン中の不純物を分離除去する。
【0028】
各蒸留塔1では、供給されたトリクロロシラン液が塔底部で加熱され、沸点の低いトリクロロシランが、蒸気となって塔頂部から取り出され、凝縮器により液化されて次段へ送られる。塔頂部から取り出されるトリクロロシランは、温度制御のために一部が塔頂部に還流される。沸点の高いPClなどの不純物は四塩化珪素などと一緒に塔底部から抜き取られる。
【0029】
最終段の蒸留塔1から取り出されたトリクロロシランは、吸着剤を充填した処理容器2に通される。処理容器2は、内部の吸着剤3を再生又は交換するために、2個を並列に組み合わせ、一方を再生又は交換中に他方で処理を続ける構成になっている。吸着剤の再生プロセスでは、再生ガスが処理容器2内に被処理液の流通方向とは逆の方向に通されると共に、内部の吸着剤3が電気ヒーター或いはスチームなどにより加熱される。
【0030】
処理容器2では、前段の蒸留塔1で除去できなかった炭素含有塩化珪素化合物、なかでも特に沸点がトリクロロシランに近いメチルジクロロシランが主に除去される。これにより、多数本の蒸留塔1を用いずとも、トリクロロシラン中に残留する全ての炭素含有塩化珪素化合物が極低レベルに包括的に除去され、その除去率は多数本の蒸留塔1を用いた場合よりもむしろ高くなる。
【0031】
かくして、高純度のトリクロロシランが経済的に精製される。精製された高純度のトリクロロシランは、先に回収された水素と共に、還元炉に原料ガスとして供給される。
【0032】
次に、比較試験の結果を示し、本発明の効果を明らかにする。
【0033】
(実施例)
蒸留操作で、各炭化物含有塩化珪素化合物濃度を表1のようにしたトリクロロシランを、シリカゲル充填層(シリカゲル充填量:50g)に10ml/minの流量で通過させた。シリカゲル充填層におけるシリカゲルは、粒度800〜1600μm、細孔径22オングストローム、内部比表面積720m/gのものを使用した。
【0034】
トリクロロシランを通過させ初めて1時間後、シリカゲル充填層の入口と出口からトリクロロシランをサンプリングし、ガスクロマトグラフィによりトリクロロシラン中の炭化物含有塩化珪素化合物濃度を測定した。結果を表1に示す。
【0035】
【表1】

Figure 2004149351
【0036】
蒸留後の段階で多量に残留するメチルジクロロシランも含め、炭素含有塩化珪素化合物量は、全てが検出限界以下、即ちメチルジクロロシラン量が0.3ppmw以下、トリメチルクロロシラン量が0.1ppmw以下、メチルトリクロロシラン量が0.5ppmw以下、ジメチルジクロロシラン量が0.3ppmw以下となった。
【0037】
(比較例)
蒸留操作で、各炭化物含有塩化珪素化合物濃度を表2のようにしたトリクロロシラン(表1と同じ)を、引き続き蒸留操作により処理した。後半の蒸留を実段数50、還流比100の条件で行った場合のトリクロロシラン中の炭化物含有塩化珪素化合物濃度を表2に示す。
【0038】
【表2】
Figure 2004149351
【0039】
蒸留後のトリクロロシラン中には、トリクロロシランと沸点が最も近く分離が困難なメチルジクロロシランが0.4ppm残留した。他の炭化物含有塩化珪素化合物濃度も検出限界以下にはならなかった。メチルジクロロシランを含め、全ての炭化物含有塩化珪素化合物濃度を検出限界以下にするためには更に多い段数及び還流比が必要になる。
【0040】
【発明の効果】
以上に説明したとおり、本発明のクロロシランは、各種の炭素含有塩化珪素化合物量を包括的に低減させたことにより、カーボン不純物濃度を現状以下に低減する場合も、これを比較的低コストで簡単に実現することができる。
【0041】
また、本発明のクロロシラン精製方法は、トリクロロシランをシリカゲルや活性炭などの吸着剤と接触させることにより、各種の炭素含有塩化珪素化合物量を包括的に低減させることができ、カーボン不純物濃度を現状以下に低減する場合も、これを比較的低コストで簡単に実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すクロロシラン精製設備の概略構成図である。
【符号の説明】
1 蒸留塔
2 処理容器
3 吸着剤[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to chlorosilanes such as silicon tetrachloride (SiCl 4 ), trichlorosilane (SiHCl 3 ), dichlorosilane (SiH 2 Cl 2 ) and the like, which are suitably used as raw materials for producing semiconductor-grade high-purity polycrystalline silicon or optical fibers. It relates to a purification method.
[0002]
[Prior art]
Since carbon impurities in a silicon single crystal, which is a raw material for manufacturing a semiconductor device, have an adverse effect on electrical characteristics of the semiconductor device, it is desired to minimize the amount of carbon impurities. One of the causes of mixing of carbon impurities into a silicon single crystal is carbon impurities contained in polycrystalline silicon which is a raw material for producing a silicon single crystal. Therefore, polycrystalline silicon with less carbon impurities is desired.
[0003]
Polycrystalline silicon, which is a raw material for producing silicon single crystals, is industrially produced by the Siemens method using a mixed gas of chlorosilane (usually trichlorosilane) and hydrogen as a raw material. For this reason, reducing carbon impurities in chlorosilane is important in reducing carbon impurities in polycrystalline silicon.
[0004]
Generally, during the chlorosilanes, carbon impurities, methyldichlorosilane [(CH 3) SiHCl 2], trimethyl chlorosilane [(CH 3) 3 SiCl], methyl trichlorosilane [(CH 3) SiCl 3], dimethyl dichlorosilane [ (CH 3 ) 2 SiCl 2 ]. In order to remove these carbon-containing silicon chloride compounds in chlorosilane, purification by distillation has been conventionally performed.
[0005]
Other than distillation, Patent Document 1 discloses a method of preventing the by-product of methylchlorosilanes by reducing the carbon content in metal silicon when producing chlorosilane by reacting metal silicon with hydrogen chloride. ing. A method for removing dimethyldichlorosilane, which is not chlorosilane but is contained in methyltrichlorosilane as an impurity, with an adsorbent is described in Patent Document 2.
[0006]
[Patent Document 1]
JP-A-4-238805
[Patent Document 2]
JP-A-9-173701
[Problems to be solved by the invention]
By the way, since the distillation operation is a separation method utilizing a difference in boiling points between substances, it is difficult to separate substances having similar boiling points. For example, the boiling points of trichlorosilane and methyldichlorosilane under atmospheric pressure are about 32 ° C. and about 40 ° C., respectively, which are relatively close. For this reason, in order to reduce the concentration of methyldichlorosilane in trichlorosilane, it is necessary to increase the reflux ratio and to pass through a number of distillation columns having a large number of trays, which necessitates a large amount of energy consumption.
[0009]
However, as a practical matter, the carbon-containing silicon chloride compound in chlorosilane only needs to be totally regulated as a carbon impurity.Although the concentration of methyldichlorosilane is high, chlorosilane having no problem with the concentration of carbon impurity is used. It was obtained by continuous purification in a distillation column. Incidentally, the boiling points of carbon-containing silicon chloride compounds other than methyldichlorosilane under atmospheric pressure are all higher than that of methyldichlorosilane, about 58 ° C for trimethylchlorosilane, about 66 ° C for methyltrichlorosilane, and about 70 ° C for dimethyldichlorosilane. ° C.
[0010]
However, the purity required for chlorosilanes used in the production of semiconductor-grade high-purity polycrystalline silicon and optical fibers is increasing year by year. Considering the higher purity expected in the future, enormous capital investment is required. And huge running costs are required, and the product is expected to be extremely expensive.
[0011]
The method of using metallic silicon having a low carbon content is a method of preventing by-products of methylchlorosilanes, and does not remove methylchlorosilanes as in distillation. Further, since it is necessary to carefully select metal silicon as a raw material, the cost burden is large, and it cannot be said that this is a practical measure. The method of removing dimethyldichlorosilane contained as an impurity in methyltrichlorosilane is not a method of obtaining pure chlorosilane, but a method of obtaining high-purity methyltrichlorosilane, and the object is different.
[0012]
An object of the present invention is to provide a trichlorosilane and a method for purifying the same, which can be realized at a relatively low cost even when the carbon impurity concentration is reduced to the level below the current level.
[0013]
[Means for Solving the Problems]
In order to achieve the ultra-low level of carbon impurity concentration required for chlorosilane used in the production of semiconductor-grade high-purity polycrystalline silicon and optical fibers by distillation , a carbon-containing silicon chloride compound with a boiling point close to that of chlorosilane We thought that it was necessary to reduce the content, and intensively studied the method. As a result, the following facts became clear.
[0014]
A high-purity trichlorosilane used as a raw material for producing semiconductor-grade high-purity polycrystalline silicon will be described. A plurality of distillation columns are required for the purification of the high-purity trichlorosilane, but other than carbon such as PCl 3. The main impurities were removed below the detection limit in the first few distillation columns, and even for carbon-containing silicon chloride compounds, which are carbon impurities, trimethylchlorosilane, methyltrichlorosilane and dimethyldichlorosilane with relatively high boiling points It is almost eliminated below the detection limit at this stage.
[0015]
However, even at this stage, methyl dichlorosilane having a low boiling point and close to trichlorosilane remains at about 1 ppmw which greatly exceeds the detection limit, and this is the main cause of raising the total carbon impurity concentration. For this purpose, it was found that a few more distillation columns were used in the latter half.
[0016]
In other words, the latter few distillation columns are mainly used to reduce the concentration of carbon impurities, and more specifically, to remove methyldichlorosilane having a boiling point substantially similar to that of trichlorosilane. In order to reduce the carbon impurity concentration more than the current situation, a considerably large number of distillation columns are required.
[0017]
Under such circumstances, the present inventors have studied a method for simply and selectively removing the carbon-containing silicon chloride compound in trichlorosilane by means other than distillation. As a result, it was found that contacting trichlorosilane with an adsorbent such as silica gel or activated carbon was effective. According to this method, the carbon-containing silicon chloride compound in trichlorosilane can be uniformly removed irrespective of the boiling point. As a result, even if the last two or more distillation columns are omitted, all of the compounds including methyldichlorosilane can be removed. Can be reduced below the detection limit, and as a result, the carbon impurity concentration can be further reduced.
[0018]
The present invention has been completed on the basis of this finding, and the chlorosilane has a carbon-containing silicon chloride compound concentration of 0.3 ppmw or less of methyldichlorosilane, 0.1 ppmw or less of trimethylchlorosilane, and methyltrichlorosilane. The amount is 0.5 ppmw or less, and the amount of dimethyldichlorosilane is 0.3 ppmw or less. More specifically, it is a purified chlorosilane having a high purity through a distillation step.
[0019]
Further, the chlorosilane distillation method of the present invention is a method in which chlorosilane is purified by a distillation column and then brought into contact with an adsorbent. Thereby, it is possible to easily realize a methyldichlorosilane amount of 0.3 ppmw or less, a trimethylchlorosilane amount of 0.1 ppmw or less, a methyltrichlorosilane amount of 0.5 ppmw or less, and a dimethyldichlorosilane amount of 0.3 ppmw or less.
[0020]
As the adsorbent, silica gel, activated carbon, molecular sieve, and the like can be used. Among them, silica gel, particularly silica gel having a particle size in the range of 100 to 5000 μm and an internal specific surface area of 400 m 2 / g or more is preferable. Silica gel is preferred because it is a silicon-based compound, and it is easy to obtain a high-purity product, so that the quality of high-purity chlorosilane does not deteriorate. The following is also considered as a reason why silica gel is excellent as an adsorbent in the present invention. Generally, the surface of silica gel has silanol groups. Therefore, it is presumed that the silanol group on the silica gel surface and the methyl group of the impurity are chemically adsorbed, and thus the adsorption effect in the present invention is greater than that of other adsorbents that perform adsorption by physical adsorption.
[0021]
When this silica gel has a large particle size, the contact area with chlorosilane becomes small, and the adsorption efficiency decreases. Conversely, when the particle size is small, the contact area with chlorosilane is large, but the mesh of the filter for fixing the silica gel packed layer is fine, the pressure loss when flowing the liquid is increased, and the silica gel to the process is increased. Inconveniences such as an increase in the mixing of water are caused. The larger the internal specific surface area, the larger the adsorption area, which is preferable. In this respect, the particle size is preferably in the range of 100 to 5000 μm, and the internal specific surface area is preferably 400 m 2 / g or more.
[0022]
The method of bringing chlorosilane into contact with the adsorbent may be, for example, a method of passing chlorosilane through a container filled with the adsorbent or a method of putting the adsorbent into a container storing chlorosilane, and is not particularly limited. .
[0023]
Examples of chlorosilane include trichlorosilane, silicon tetrachloride, dichlorosilane, and the like.
[0024]
As a method for removing carbon impurities using an adsorbent, a method for removing dimethyldichlorosilane contained as an impurity in methyltrichlorosilane is described in Patent Document 2. However, this method selectively removes another carbon-containing silicon chloride compound from a specific carbon-containing silicon chloride compound, and comprehensively removes various carbon-containing silicon chloride compounds to remove pure chlorosilane. The purpose of the present invention is different from that of the present invention. The form of adsorption of both is as follows.
[0025]
When dimethyldichlorosilane in methyltrichlorosilane is removed, not only dimethyldichlorosilane is adsorbed on silica gel, but both are adsorbed on silica gel. If methyltrichlorosilane and dimethyldichlorosilane are simultaneously adsorbed on silica gel, the adsorbed solution will have a higher concentration of methyltrichlorosilane, the main component, and a lower concentration of dimethyldichlorosilane, a subcomponent, and will have an apparent appearance. It appears that dimethyldichlorosilane as a sub-component was selectively adsorbed. On the other hand, in the present invention, several kinds of carbon chlorides are adsorbed from chlorosilane as a main component. In this case, both chlorosilane as the main component and carbon chloride as the subcomponent are adsorbed on the silica gel, and the concentration of the chlorosilane as the main component becomes relatively high in the liquid after the adsorption, whereby the carbon chloride is removed.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a chlorosilane refining facility showing one embodiment of the present invention. In the figure, TCS is an abbreviation for trichlorosilane, and STC is an abbreviation for silicon tetrachloride.
[0027]
In the present embodiment, high-purity trichlorosilane used as a raw material for producing semiconductor-grade high-purity polycrystalline silicon is produced. In the production of this high-purity trichlorosilane, the chlorosilane liquid is sequentially passed through a plurality of (here, three) distillation columns 1 to separate and remove impurities in the trichlorosilane.
[0028]
In each distillation column 1, the supplied trichlorosilane liquid is heated at the bottom of the column, and trichlorosilane having a low boiling point is removed as vapor from the top of the column, liquefied by a condenser, and sent to the next stage. Part of the trichlorosilane removed from the top is refluxed to the top for temperature control. Impurities such as PCl 3 having a high boiling point are extracted from the bottom of the column together with silicon tetrachloride and the like.
[0029]
The trichlorosilane taken out from the last distillation column 1 is passed through a processing vessel 2 filled with an adsorbent. The processing container 2 has a configuration in which two are combined in parallel in order to regenerate or replace the adsorbent 3 therein, and while one is being regenerated or replaced, the other is being processed. In the regeneration process of the adsorbent, the regeneration gas is passed through the processing vessel 2 in a direction opposite to the flow direction of the liquid to be treated, and the internal adsorbent 3 is heated by an electric heater or steam.
[0030]
In the processing vessel 2, carbon-containing silicon chloride compounds that could not be removed in the distillation column 1 in the preceding stage, particularly methyldichlorosilane, whose boiling point is close to that of trichlorosilane, are mainly removed. As a result, all the carbon-containing silicon chloride compounds remaining in trichlorosilane are comprehensively removed to an extremely low level without using a large number of distillation columns 1, and the removal rate can be reduced by using a large number of distillation columns 1. Rather than higher.
[0031]
Thus, high purity trichlorosilane is economically purified. The purified high-purity trichlorosilane is supplied as a raw material gas to the reduction furnace together with the previously recovered hydrogen.
[0032]
Next, the results of comparative tests will be shown to clarify the effects of the present invention.
[0033]
(Example)
By a distillation operation, trichlorosilane having a concentration of each carbide-containing silicon chloride compound as shown in Table 1 was passed through a packed bed of silica gel (filled amount of silica gel: 50 g) at a flow rate of 10 ml / min. The silica gel used in the silica gel packed layer had a particle size of 800 to 1600 μm, a pore size of 22 Å, and an internal specific surface area of 720 m 2 / g.
[0034]
One hour after passing through the trichlorosilane for the first time, trichlorosilane was sampled from the inlet and the outlet of the packed bed of silica gel, and the concentration of the carbide-containing silicon chloride compound in the trichlorosilane was measured by gas chromatography. Table 1 shows the results.
[0035]
[Table 1]
Figure 2004149351
[0036]
All of the carbon-containing silicon chloride compounds, including methyldichlorosilane remaining in a large amount at the stage after distillation, are all below the detection limit, that is, the amount of methyldichlorosilane is 0.3 ppmw or less, the amount of trimethylchlorosilane is 0.1 ppmw or less, The amount of trichlorosilane was 0.5 ppmw or less, and the amount of dimethyldichlorosilane was 0.3 ppmw or less.
[0037]
(Comparative example)
In the distillation operation, trichlorosilane (same as in Table 1) having each carbide-containing silicon chloride compound concentration as shown in Table 2 was treated by the distillation operation. Table 2 shows the concentration of the carbide-containing silicon chloride compound in trichlorosilane when the latter half distillation was performed under the conditions of 50 actual plates and a reflux ratio of 100.
[0038]
[Table 2]
Figure 2004149351
[0039]
0.4 ppm of methyldichlorosilane, which has a boiling point closest to that of trichlorosilane and is difficult to separate, remains in trichlorosilane after distillation. The concentrations of other carbide-containing silicon chloride compounds did not fall below the detection limit. In order to keep the concentration of all the carbide-containing silicon chloride compounds including methyldichlorosilane below the detection limit, more stages and reflux ratios are required.
[0040]
【The invention's effect】
As described above, the chlorosilane of the present invention can reduce the carbon impurity concentration below the current level by reducing the amount of various types of carbon-containing silicon chloride compounds comprehensively. Can be realized.
[0041]
In addition, the chlorosilane purification method of the present invention can comprehensively reduce the amount of various carbon-containing silicon chloride compounds by bringing trichlorosilane into contact with an adsorbent such as silica gel or activated carbon. This can be easily realized at a relatively low cost.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a chlorosilane refining facility showing one embodiment of the present invention.
[Explanation of symbols]
1 distillation column 2 processing vessel 3 adsorbent

Claims (6)

炭素含有塩化珪素化合物濃度のうち、メチルジクロロシラン量が0.3ppmw以下、トリメチルクロロシラン量が0.1ppmw以下、メチルトリクロロシラン量が0.5ppmw以下、ジメチルジクロロシラン量が0.3ppmw以下であるクロロシラン。Among the carbon-containing silicon chloride compound concentrations, chlorosilanes in which the amount of methyldichlorosilane is 0.3 ppmw or less, the amount of trimethylchlorosilane is 0.1 ppmw or less, the amount of methyltrichlorosilane is 0.5 ppmw or less, and the amount of dimethyldichlorosilane is 0.3 ppmw or less . 蒸留工程を経た精製クロロシランである請求項1に記載のクロロシラン。The chlorosilane according to claim 1, which is purified chlorosilane that has undergone a distillation step. クロロシランを蒸留塔で精製した後、吸着剤に接触させることを特徴とするクロロシラン精製方法。A method for purifying chlorosilane, comprising purifying chlorosilane in a distillation column and then bringing the chlorosilane into contact with an adsorbent. 前記吸着剤との接触により、クロロシラン中の炭素含有塩化珪素化合物濃度をメチルジクロロシラン:0.3ppmw以下、トリメチルクロロシラン:0.1ppmw以下、メチルトリクロロシラン:0.5ppmw以下、ジメチルジクロロシラン:0.3ppmw以下とする請求項3に記載のクロロシラン精製方法。By contact with the adsorbent, the concentration of the carbon-containing silicon chloride compound in chlorosilane is reduced to 0.3 ppmw or less for methyldichlorosilane, 0.1 ppmw or less for trimethylchlorosilane, 0.5 ppmw or less for methyltrichlorosilane, and 0.5 ppmw or less for dimethyldichlorosilane. The method for purifying chlorosilane according to claim 3, wherein the content is 3 ppmw or less. 前記吸着剤は、シリカゲルである請求項3に記載のクロロシラン精製方法。The chlorosilane purification method according to claim 3, wherein the adsorbent is silica gel. 前記シリカゲルは、内部比表面積が400m/g以上である請求項5に記載のクロロシラン精製方法。The silica gel, chlorosilanes purifying method according to claim 5 internal specific surface area of 400 meters 2 / g or more.
JP2002315636A 2002-09-04 2002-10-30 Chlorosilane and its purification method Expired - Lifetime JP3892794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315636A JP3892794B2 (en) 2002-09-04 2002-10-30 Chlorosilane and its purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002258694 2002-09-04
JP2002315636A JP3892794B2 (en) 2002-09-04 2002-10-30 Chlorosilane and its purification method

Publications (2)

Publication Number Publication Date
JP2004149351A true JP2004149351A (en) 2004-05-27
JP3892794B2 JP3892794B2 (en) 2007-03-14

Family

ID=32472948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315636A Expired - Lifetime JP3892794B2 (en) 2002-09-04 2002-10-30 Chlorosilane and its purification method

Country Status (1)

Country Link
JP (1) JP3892794B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269679A (en) * 2006-03-31 2007-10-18 Sumitomo Titanium Corp Method for producing high purity alkylsilane
JP2009505937A (en) * 2005-08-30 2009-02-12 エボニック デグサ ゲーエムベーハー Reactor, plant and industrial process for continuously producing high purity silicon tetrachloride or high purity germanium tetrachloride
JP2009280457A (en) * 2008-05-23 2009-12-03 Mitsubishi Materials Corp Method and apparatus for manufacturing polycrystalline silicon
WO2010021339A1 (en) 2008-08-22 2010-02-25 チッソ株式会社 Method for the purification of silicon tetrachloride
WO2010029894A1 (en) * 2008-09-09 2010-03-18 チッソ株式会社 High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
WO2011111335A1 (en) 2010-03-10 2011-09-15 信越化学工業株式会社 Method for producing trichlorosilane
JP2012533515A (en) * 2009-12-28 2012-12-27 エルジー・ケム・リミテッド Method and apparatus for purifying trichlorosilane
WO2013187070A1 (en) 2012-06-14 2013-12-19 信越化学工業株式会社 Method for producing high-purity polycrystalline silicon
WO2014125762A1 (en) 2013-02-13 2014-08-21 信越化学工業株式会社 Method for producing trichlorosilane
KR101556824B1 (en) 2013-06-18 2015-10-01 주식회사 엘지화학 Device for separating exhaust emission discharged from cvd reactor for preparation of polysilicon and method for separating exhaust emission using the same
US20160264425A1 (en) * 2013-10-23 2016-09-15 Shin-Etsu Chemical Co., Ltd. Method for producing polycrystalline silicon
DE102015210762A1 (en) 2015-06-12 2016-12-15 Wacker Chemie Ag Process for the treatment of chlorosilanes or chlorosilane mixtures contaminated with carbon compounds
CN109205627A (en) * 2018-11-08 2019-01-15 天津科技大学 A kind of device and method that adsorbing and removing methylchlorosilane impurity prepares high-purity trichlorosilane
WO2019154502A1 (en) 2018-02-08 2019-08-15 Wacker Chemie Ag Process for classification of metallurgical silicon
CN111115637A (en) * 2020-02-24 2020-05-08 洛阳中硅高科技有限公司 Method and device for removing carbon-containing impurities in production of high-purity chlorosilane
CN111829918A (en) * 2019-04-22 2020-10-27 新特能源股份有限公司 Test device for adsorbing chlorosilane and test method for adsorbing chlorosilane
CN113234226A (en) * 2021-05-25 2021-08-10 陕西领盛新材料科技有限公司 Method for purifying hydroxyl silicone oil
CN115023407A (en) * 2020-11-05 2022-09-06 瓦克化学股份公司 Process for removing impurities from chlorosilane mixtures
CN115040975A (en) * 2022-05-16 2022-09-13 内蒙古鄂尔多斯电力冶金集团股份有限公司 Device for purifying silicon tetrachloride
CN115196635A (en) * 2022-08-02 2022-10-18 新特能源股份有限公司 Method and device for removing carbon-containing impurities and polycrystalline silicon production system
WO2023243466A1 (en) * 2022-06-13 2023-12-21 株式会社トクヤマ Method for producing purified trichlorosilane

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505937A (en) * 2005-08-30 2009-02-12 エボニック デグサ ゲーエムベーハー Reactor, plant and industrial process for continuously producing high purity silicon tetrachloride or high purity germanium tetrachloride
JP2007269679A (en) * 2006-03-31 2007-10-18 Sumitomo Titanium Corp Method for producing high purity alkylsilane
JP2009280457A (en) * 2008-05-23 2009-12-03 Mitsubishi Materials Corp Method and apparatus for manufacturing polycrystalline silicon
WO2010021339A1 (en) 2008-08-22 2010-02-25 チッソ株式会社 Method for the purification of silicon tetrachloride
JP5655565B2 (en) * 2008-08-22 2015-01-21 Jnc株式会社 Method for purifying silicon tetrachloride
US8273316B2 (en) 2008-08-22 2012-09-25 Jnc Corporation Method for purification of silicon tetrachloride
TWI447070B (en) * 2008-08-22 2014-08-01 Jnc Corp Purifying method of tetrachlorosilane
US8658118B2 (en) 2008-09-09 2014-02-25 Jnc Corporation High purity crystalline silicon, high purity silicon tetrachloride for processes for producing the same
WO2010029894A1 (en) * 2008-09-09 2010-03-18 チッソ株式会社 High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
JPWO2010029894A1 (en) * 2008-09-09 2012-05-17 Jnc株式会社 High purity crystalline silicon, high purity silicon tetrachloride and methods for producing them
KR101292545B1 (en) * 2009-12-28 2013-08-12 주식회사 엘지화학 Apparatus for purifying trichlorosilane and method of purifying trichlorosilane
US8535488B2 (en) 2009-12-28 2013-09-17 Lg Chem, Ltd. Method and apparatus for purification of trichlorosilane
JP2012533515A (en) * 2009-12-28 2012-12-27 エルジー・ケム・リミテッド Method and apparatus for purifying trichlorosilane
JP2011184255A (en) * 2010-03-10 2011-09-22 Shin-Etsu Chemical Co Ltd Method for producing trichlorosilane
WO2011111335A1 (en) 2010-03-10 2011-09-15 信越化学工業株式会社 Method for producing trichlorosilane
US9266742B2 (en) 2010-03-10 2016-02-23 Shin-Etsu Chemical Co., Ltd. Method for producing trichlorosilane
WO2013187070A1 (en) 2012-06-14 2013-12-19 信越化学工業株式会社 Method for producing high-purity polycrystalline silicon
JP2013256431A (en) * 2012-06-14 2013-12-26 Shin-Etsu Chemical Co Ltd Method for producing high-purity polycrystalline silicon
EP3170791A1 (en) 2012-06-14 2017-05-24 Shin-Etsu Chemical Co., Ltd. Method for producing high-purity polycrystalline silicon
US9355918B2 (en) 2012-06-14 2016-05-31 Shin-Etsu Chemical Co., Ltd. Method for producing high-purity polycrystalline silicon
WO2014125762A1 (en) 2013-02-13 2014-08-21 信越化学工業株式会社 Method for producing trichlorosilane
KR101556824B1 (en) 2013-06-18 2015-10-01 주식회사 엘지화학 Device for separating exhaust emission discharged from cvd reactor for preparation of polysilicon and method for separating exhaust emission using the same
US20160264425A1 (en) * 2013-10-23 2016-09-15 Shin-Etsu Chemical Co., Ltd. Method for producing polycrystalline silicon
DE102015210762A1 (en) 2015-06-12 2016-12-15 Wacker Chemie Ag Process for the treatment of chlorosilanes or chlorosilane mixtures contaminated with carbon compounds
US11691884B2 (en) 2018-02-08 2023-07-04 Wacker Chemie Ag Method of classifying metallurgical silicon
WO2019154502A1 (en) 2018-02-08 2019-08-15 Wacker Chemie Ag Process for classification of metallurgical silicon
CN109205627A (en) * 2018-11-08 2019-01-15 天津科技大学 A kind of device and method that adsorbing and removing methylchlorosilane impurity prepares high-purity trichlorosilane
CN111829918A (en) * 2019-04-22 2020-10-27 新特能源股份有限公司 Test device for adsorbing chlorosilane and test method for adsorbing chlorosilane
CN111115637B (en) * 2020-02-24 2023-08-11 洛阳中硅高科技有限公司 Method and device for removing carbon-containing impurities in production of high-purity chlorosilane
CN111115637A (en) * 2020-02-24 2020-05-08 洛阳中硅高科技有限公司 Method and device for removing carbon-containing impurities in production of high-purity chlorosilane
CN115023407A (en) * 2020-11-05 2022-09-06 瓦克化学股份公司 Process for removing impurities from chlorosilane mixtures
CN115023407B (en) * 2020-11-05 2024-05-24 瓦克化学股份公司 Method for removing impurities from chlorosilane mixtures
CN113234226B (en) * 2021-05-25 2022-05-10 陕西领盛新材料科技有限公司 Method for purifying hydroxyl silicone oil
CN113234226A (en) * 2021-05-25 2021-08-10 陕西领盛新材料科技有限公司 Method for purifying hydroxyl silicone oil
CN115040975A (en) * 2022-05-16 2022-09-13 内蒙古鄂尔多斯电力冶金集团股份有限公司 Device for purifying silicon tetrachloride
WO2023243466A1 (en) * 2022-06-13 2023-12-21 株式会社トクヤマ Method for producing purified trichlorosilane
JP7506836B2 (en) 2022-06-13 2024-06-26 株式会社トクヤマ Method for producing purified trichlorosilane
CN115196635A (en) * 2022-08-02 2022-10-18 新特能源股份有限公司 Method and device for removing carbon-containing impurities and polycrystalline silicon production system
CN115196635B (en) * 2022-08-02 2023-10-27 新特能源股份有限公司 Method and device for removing carbon-containing impurities and polysilicon production system

Also Published As

Publication number Publication date
JP3892794B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP3892794B2 (en) Chlorosilane and its purification method
JP5513511B2 (en) Purification method of chlorosilane
JP2008520535A (en) Method and plant for purifying trichlorosilane and silicon tetrachloride
JP5442780B2 (en) Purification method by distillation of chlorosilane
JP5879283B2 (en) Method for producing trichlorosilane
JP5824318B2 (en) Apparatus and method for producing purified hydrogen gas by pressure swing adsorption treatment
JP6069167B2 (en) Method for producing polycrystalline silicon
JP5122700B1 (en) Monosilane purification method
TWI755148B (en) Process for removing an impurity from a chlorosilane mixture
CN108948063B (en) Preparation method of tetramethylsilane
JP3727470B2 (en) Method for producing polycrystalline silicon with low carbon content
US5723644A (en) Phosphorous removal from chlorosilane
JP7477620B2 (en) Method for removing impurities from chlorosilane mixtures
US5232602A (en) Phosphorous removal from tetrachlorosilane
WO2011024257A1 (en) Purification of chlorosilane using amine compound
TWI853194B (en) Process for removing an impurity from a chlorosilane mixture
TWI773121B (en) Process for obtaining hexachlorodisilane
JP2010275162A (en) Method and apparatus for producing polycrystalline silicon
KR20120106290A (en) Method for purification of trichlorosilane
KR20210053336A (en) Method for reducing the content of boron compounds in halosilane-containing compositions
JPH05147922A (en) Method for purification of chlorosilane

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3892794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term