JPS6162903A - Control system for robot group - Google Patents

Control system for robot group

Info

Publication number
JPS6162903A
JPS6162903A JP59185705A JP18570584A JPS6162903A JP S6162903 A JPS6162903 A JP S6162903A JP 59185705 A JP59185705 A JP 59185705A JP 18570584 A JP18570584 A JP 18570584A JP S6162903 A JPS6162903 A JP S6162903A
Authority
JP
Japan
Prior art keywords
robot
work
assembly
workpiece
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59185705A
Other languages
Japanese (ja)
Other versions
JP2711092B2 (en
Inventor
Akio Tawada
多和田 章夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59185705A priority Critical patent/JP2711092B2/en
Publication of JPS6162903A publication Critical patent/JPS6162903A/en
Application granted granted Critical
Publication of JP2711092B2 publication Critical patent/JP2711092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • G05B19/4182Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell manipulators and conveyor only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36503Adapt program to real coordinates, software orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

PURPOSE:To improve the operation reliability of a robot group and to reduce the cost by detecting the deviation of a work from a position setting reference, and correcting positioning information to be supplied to the group of robots provided successively on a line on the basis of the detected deviation. CONSTITUTION:The robot control system is equipped with a computer 1 for centralized control and also has an auxiliary storage device 2 and an input/ output typewriter 3. Further. this system is equipped with an assembly robot 8a which has a free roller conveyor 10 as a work conveyance system, work fitting device 12, and an error measuring device 7, and sensors 9a-9m which detect the number of a pallet 11 are installed in each assembly station and connected to a digital input/output device 4 together with the output of said error measuring device 7, etc. The sensors 7 measures deviations of the work from two reference positions taught previously at an error measurement station and inputs them to the computer 1. Then, the quantity of correction is calculated by each robot controller on the basis of the pallet number detected by each station and said deviations and the correction is offset.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、自動組立(又は加工)ライン上に並設された
ロボッ1へ群に対し、集中位置決め修正を行なうように
したロボット群管理システムに関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a robot group management system that performs centralized positioning correction for a group of robots 1 arranged in parallel on an automatic assembly (or processing) line. .

[発明の技術的背景とその問題点] 所謂、産業用ロボットと称されているものとしでは、経
路及び位置の情報を、プログラム化して、あらかじめテ
ィーチングやその他方法ににつて記憶しておくことによ
り、同じ動作、位置決めをくり返し実行するものがある
。例えば、自動M rrラインを考えるど、対象ワーク
を治具バレッ1〜に取り付けてコンベヤ上を流し、各作
業ステーションで冶具を位置決めした後に、各ロボッ1
〜は、予じめ与えられたプログラムに従って組立作業を
実行するようにしている。この場合、実際には、上記プ
ログラムは、基準になるワークの取付(プられた基準治
具バレッ!・てティーチングしたものとなっている。
[Technical background of the invention and its problems] In what is called an industrial robot, route and position information is programmed and memorized in advance through teaching or other methods. , some perform the same operation and positioning repeatedly. For example, when considering an automatic MRR line, the target workpiece is attached to jig barres 1 to 1 and flown on a conveyor, and after positioning the jig at each work station, each robot 1
- is designed to perform assembly work according to a pre-given program. In this case, the above program actually teaches the installation of the reference workpiece (the reference jig is pulled!).

上記においては、一般に、 ■・・・ワークそのもののバラツキ、 ■・・・治具パレッ1へのバラツキ、 ■・・・治具パレッ1〜へのワークの取付(づのバラツ
キ等により、ティーチングに使用した基準治具パレット
に取付けられた基準ワークとイの他のワークとでは、位
置誤差が生じる。
In the above case, in general, due to variations in the work itself, ■ variations in the jig pallet 1, and ■ variations in the attachment of the work to the jig pallets 1 to 1, teaching A positional error occurs between the reference workpiece attached to the used reference jig pallet and the other workpieces in A.

従って、ワークの穴にビンを挿入づる等のli度を要し
目つ公差の少ない作業では、ロボッ1〜がティーチング
通りに位置決めしても穴位冒がずれていて挿入できない
場合がしばしば発生する。
Therefore, in operations that require precision and have small tolerances, such as inserting a bottle into a hole in a workpiece, it often happens that even if the robots 1~ position the bottle as instructed, the hole position is misaligned and the bottle cannot be inserted.

従来、X−Y平面上の誤差を主とする上記位置誤差を修
正する方法として、ロボット自身が例えば、CODカメ
ラを使って対象の部分のバタン認識をし、基準バタンと
のずれを計篩するようなもの、または位置測定センサー
によりワークの誤差を測定する等の測定装置を装備し、
ティーチングに用いた基準ワークとのずれを測定し、ロ
ボット自身が記憶し−Cいるプログラムの位置情報を修
正して、対象ワーク)こ合致した位置決めを行わせるよ
うにしていた。
Conventionally, as a method for correcting the above-mentioned positional errors, which are mainly errors on the Equipped with a measuring device that measures the error of the workpiece using a position measuring sensor,
The deviation from the reference workpiece used for teaching was measured, and the position information in the program stored in the robot itself was corrected so that the target workpiece was positioned in accordance with the position information.

しかるに、相9ライン等では複数台、それも数台から多
いものでは20台以上のロボットが組立用コンベヤライ
ンの側に設置され、ワークの組立■稈に従って順次作業
を行う場合が多い。この様な場合にも、個々のロボット
が上記の如き測定装置および修正機能を持つことは種々
の欠点を持っている。
However, in phase 9 lines, etc., multiple robots, from a few to as many as 20 or more robots, are installed on the side of the assembly conveyor line, and work is often carried out sequentially according to the assembly process of the workpieces. Even in such a case, there are various disadvantages in having each robot have the above-mentioned measuring device and correction function.

即ち、個々のロボットの先端(グリップ部)に誤差測定
用のセンサーを持たせることは次の様な問題がある。
That is, providing a sensor for error measurement at the tip (grip portion) of each robot poses the following problems.

■ センサ一部ヘッドを取りつけるためのスペースがな
い。
■ There is no space to install some sensor heads.

組立用のアタッチメントとして例えばナツトランナー、
エアハンマー等を取り付けると、センサーの取付はスペ
ースがないか、あっても組立動作のじゃまになる場合が
多い。
As an attachment for assembly, for example, a nut runner,
When installing an air hammer, etc., there is often no space to install the sensor, or even if there is, it will interfere with the assembly operation.

■ センサーヘッドを取り付けると重量が増す。■ Attaching the sensor head increases the weight.

ロボットの可搬重量制限にひっかかったり、それでなく
てもイナーシャが大きくなり、位置決め11度/時間に
影響する。
If the robot's payload limit is met or not, the inertia increases, affecting positioning at 11 degrees/hour.

■ 全体のコストが大幅に上昇する。■ The overall cost will increase significantly.

センサーヘッドだけでなく、ロボッi−が修正可能なデ
ータ(オフセット量)に換眸し、ロボットコン1〜ロー
ラに伝送する装置も必要になるので、ロボットの台数が
増えると全体コストは大幅にアップすることになる。
In addition to the sensor head, a device that converts the data (offset amount) that can be corrected by the robot i- and transmits it to the robot controller 1 to the rollers is also required, so as the number of robots increases, the overall cost will increase significantly. I will do it.

[発明の目的] 本発明は上記事情にもとついてなされたもので、その目
的とするところは、ワーク、取付治具パレット、取トJ
方等のバラツキによる取付ワークの位置ずれを、1ケ所
で集中的に測定、管理することIこより、ロボッI一群
の作業の信頼性を高めると共にコメ1〜低減を図ること
が可能なロボッ1〜群管理システムを提供することにあ
る。
[Object of the Invention] The present invention has been made based on the above circumstances, and its purpose is to
By centrally measuring and managing the positional deviation of the workpiece to be mounted due to variations in the position of the robot, it is possible to improve the reliability of the work of the group of robots and reduce the number of defects. The objective is to provide a group management system.

[発明の概要] 本弁明によるロボッ1〜群管理システムは、上記目的を
達成するために、自動組立(又は加工)ラインの先頭に
設置され上記ワークの位置設定基準からのずれを検出づ
る検出手段と、該ラインに並設されたOボット群に与え
られる位置決め情報を[記検出手段からの出力に基き補
正する補正手段を具備したことを特徴とする。
[Summary of the Invention] In order to achieve the above object, the robot 1 to group management system according to the present invention includes a detection means installed at the head of an automatic assembly (or processing) line to detect deviation of the workpiece from the position setting standard. and a correction means for correcting the positioning information given to the group of O-bots arranged in parallel on the line based on the output from the detection means.

[発明の実施例] 以下本発明に係るロボット群管理システムを第1図に示
す一実施例に従い説明する。
[Embodiment of the Invention] A robot group management system according to the present invention will be described below according to an embodiment shown in FIG.

第1図は実施例としてエンジン組立ラインの構成図であ
る。第1図において1は集中管理をする計算機であり、
この計算機1は補助記憶装M2および入出力タイプライ
タ3に接続されいる。また、ワーク搬送系としてはフリ
ーフローコンベヤ10があり、組立ラインの先頭のステ
ーションにワーク取付装置12が設置され、次のステー
ションには誤差測定装置7をヘッドに持った組立ロボッ
ト8aが設置されている。7は誤差測定装置であり、こ
の誤差測定装置7は、測定データコントローラ6を介し
て、ディジタル入出内装@4に接続されている。
FIG. 1 is a configuration diagram of an engine assembly line as an example. In Figure 1, 1 is a computer for centralized management,
This computer 1 is connected to an auxiliary storage M2 and an input/output typewriter 3. In addition, there is a free flow conveyor 10 as a workpiece conveyance system, a workpiece mounting device 12 is installed at the first station of the assembly line, and an assembly robot 8a having an error measuring device 7 in its head is installed at the next station. There is. 7 is an error measuring device, and this error measuring device 7 is connected to the digital input/output interior @4 via the measurement data controller 6.

上記先頭のステーション以降からのステーションからが
、実際の組立ラインであり、コンベヤ10の側面に各ス
テーションの各組立ロボット8 b、 8 c、・・・
、8…J3nが設置され、これらのロボットのコントロ
ーラーはシリアル伝送用インタフェイス5に各々接続さ
れている。
The stations from the first station onwards are the actual assembly line, and on the side of the conveyor 10 there are assembly robots 8b, 8c, . . . at each station.
, 8...J3n are installed, and the controllers of these robots are each connected to the serial transmission interface 5.

また、各組立ステーションには、パレットNOを検知す
るパレットナンバーセンザー98,911.・・・。
Additionally, each assembly station has pallet number sensors 98, 911. ....

9mが設置され、これらはディジタル入出力装置−〇− 4に接続されている。更に、ディジタル入出内装W4及
びシリアル伝送インタフェイス5は、g1韓111に接
続されit 障mシステムと一体となっている。なお、
110.11a、1 lb、11c、−、11m。
9m are installed, and these are connected to digital input/output equipment -〇-4. Further, the digital input/output interior W4 and the serial transmission interface 5 are connected to the g1K111 and integrated with the IT failure system. In addition,
110.11a, 1 lb, 11c, -, 11m.

11nはワーク取付パレットであり、12はワーク取付
装置である。
11n is a workpiece mounting pallet, and 12 is a workpiece mounting device.

次に上記構成の本実施例の作用を第2図(a)(b)及
び第3図を参照して説明する。第2図(a)(b)にお
いて13は治具パレットであり、14はワークであり、
P+o、P2o はワーク14に設けられたノックビン
穴である。
Next, the operation of this embodiment having the above configuration will be explained with reference to FIGS. 2(a) and 3(b) and FIG. In FIGS. 2(a) and (b), 13 is a jig pallet, 14 is a workpiece,
P+o and P2o are dowel holes provided in the workpiece 14.

先づ、ティーチングすべき基準のワーク14をワーク取
付装@12で第2図(a)(b)の治具パレッ1−13
に取付け、測定ステーションに送る。
First, the reference work 14 to be taught is mounted on the jig pallet 1-13 in Fig. 2 (a) and (b) using the work mounting device @12.
and send it to the measuring station.

測定ステーションに位置決めされたワークの基準どなる
2つの点、即ち、ノックビン穴P10゜P2Oをティー
チングする。
Two reference points of the workpiece positioned at the measurement station, namely, dowel holes P10 and P2O, are taught.

以下の組立ステーションでは、この基準ワーク14の取
1]いた治具ノ5レット13をコンベヤ101−の固定
点(こ位置決めした後、そのステーションの組立作業を
ティーチングする。この作業を順次コンベヤ10の終り
までくり返す。
At the following assembly stations, the jig 5let 13 that has been taken from the reference work 14 is positioned at a fixed point on the conveyor 101-, and then the assembly work at that station is taught. Repeat until the end.

上記は組立ロボットに対するティーチングの準備作業で
ある。
The above is the preparation work for teaching the assembly robot.

次に組立対象となるワークをコンベア10に流す作業に
ついて説明する。ワークの治具パレツ1−への取付けは
、基準パレットの場合と同様である。
Next, a description will be given of the operation of conveying the workpieces to be assembled onto the conveyor 10. The attachment of the workpiece to the jig pallet 1- is the same as that for the reference pallet.

次の誤差測定ステーションでは、先にティーチングした
2つの基準位置(Plo 、P2O)に対し、これから
組立ラインに流すべきワークがどれ位の誤差を持ってい
るかをセンサー7により測定する。基準点P1[1と基
準点P20の各々の誤差Δ×1.Δy1及びΔ×2.△
y2を測定コントローラ6でディジタル化し、ディジタ
ル入出力装置4を介して計算機1に伝送する。
At the next error measurement station, the sensor 7 measures how much error the workpiece to be sent to the assembly line has with respect to the two previously taught reference positions (Plo, P2O). Each error between reference point P1[1 and reference point P20 is Δ×1. Δy1 and Δ×2. △
y2 is digitized by the measurement controller 6 and transmitted to the computer 1 via the digital input/output device 4.

この際パレットNOをパレットナンバーセンサー9a、
9b、・・・、9mにより検知し、ディジタル入出力装
置4を介して計算I11に伝送する。
At this time, the pallet number sensor 9a,
9b, . . . , 9m and transmitted to the calculation I11 via the digital input/output device 4.

そして、計瞳機1では、第3図に示す如くワークの誤差
をX−Y平面上の平行移動誤差△×1゜△y1ど、回転
解誤差Δθに変換し、上記のパレットNOと組にしてテ
ーブルを作成して、これを記憶する。
Then, in the pupil meter 1, as shown in Fig. 3, the error of the workpiece is converted into a rotation error Δθ such as a translation error Δ×1°Δy1 on the X-Y plane, and is paired with the pallet NO. Create a table and memorize it.

第3図においてはPl[+、P20は基準ワークのティ
ーチングポインI〜であり、P+ 1.P2 +は作業
ワークの測定ポイン]・であり、P22は作業ワークの
第1基準点を基準ワークの第1基準点に平行移動した時
の第2の基準点P21の移動ポイン1〜である。X、Y
は第1基準点を原点とした時の第2基準点の相対位置で
あり、機神により決っている値であり、あらかじめ計算
機1にインプットしである。
In FIG. 3, Pl[+, P20 is the teaching point I~ of the reference work, and P+ 1. P2+ is the measurement point of the workpiece], and P22 is the movement point 1~ of the second reference point P21 when the first reference point of the workpiece is translated in parallel to the first reference point of the reference workpiece. X, Y
is the relative position of the second reference point when the first reference point is the origin, is a value determined by the machine, and is input into the computer 1 in advance.

測定ステーションでは次々に搬入してくる冶具パレット
に取付られたワークを上記と同様に誤差測定し、その信
号を変換し、上記の如くのテーブルを作成し記憶する。
At the measuring station, errors are measured in the same manner as described above for the works mounted on the jig pallets that are brought in one after another, the signals are converted, and the table as described above is created and stored.

組立ステーションでは、誤差のあるワークに対してティ
ーチング通りに、ロボットが動作したのでは組立作業が
正規に行なわれない。そこで、呂ステーションで検知し
たパレッ1〜NOを、計算機1に知らせ、そのワークの
誤差を教えてもらう。
At the assembly station, if the robot operates on a workpiece with an error as instructed, the assembly work will not be performed properly. Therefore, the computer 1 is informed of the pallets 1 to NO detected at the station, and the computer 1 is informed of the error of the workpiece.

ロボット8a、 8b、・・・、8n+J3nの各ロボ
ツ1−コントローラは、そのワークの総体的誤差データ
即ち、上記Δ×1.ΔV1.八〇に基づいて自分の作業
ポイントでは、どれだけの修正が必要かを計算し、その
修正分をオフセラ[・シて移動する。
Each robot 1-controller of the robots 8a, 8b, . ΔV1. Calculate how much correction is needed at your work point based on 80, and move the correction by offset.

以上述べたように本実施例によれば、総体的誤差データ
により、各作業ポインl〜でのロボット群のティーチン
グデータを、正規の動作がなされるように各別に修正し
ている。従って、 ■ 組立作業の信頼性が向上する。特に、締付ミス、挿
入ミス等が著しく少くすることが出来る。
As described above, according to this embodiment, the teaching data of the robot group at each work point l~ is individually corrected based on the overall error data so that the robot group performs normal operations. Therefore, ■ The reliability of assembly work is improved. In particular, tightening errors, insertion errors, etc. can be significantly reduced.

■ 1ケ所の誤差測定データを共用することにより、個
々のOボッ1へが測定する場合に比較してシステムが簡
素化されコスト低減が図られる。
(2) By sharing the error measurement data at one location, the system is simplified and costs are reduced compared to the case where each O-Bot 1 is measured.

■ 各ロボットにセンサーを取付けないですむため可搬
型■の小さいロボットが使用でき、ロス1〜低減を図る
ことができる。
■ Since there is no need to attach sensors to each robot, small, portable robots can be used, and losses can be reduced by 1 or more.

本発明は上記実施例に限定されるものではなく、下記の
如く変形して実施してもよい。即ち、■ 測定誤差のテ
ーブルは、計算機側に持たずに、誤差測定する度に直ち
にロボットコントローラに伝送し、ロボットコントロー
ラ側で記憶するようにしてもよい。
The present invention is not limited to the above embodiments, but may be modified and implemented as described below. That is, (1) the measurement error table may not be stored in the computer, but may be immediately transmitted to the robot controller each time an error is measured and stored on the robot controller.

■ 複数のロボットを使用したラインならば、組立ライ
ンに限定されるものではない。
■ As long as the line uses multiple robots, it is not limited to an assembly line.

■ 搬送系は、コンベヤ以外でもよい。■ The conveyance system may be other than a conveyor.

■ 11綽機1の構成は、適宜システムの変更がなされ
てもJ:い。
■ The configuration of the 11-frame machine 1 will not change even if the system is changed as appropriate.

■ パレットナンバーを用いることなく、トラッキング
管理する方式でパレットと誤差データとの対応を図るよ
うにしてもよい。
■ Correspondence between pallets and error data may be achieved using a tracking management method without using pallet numbers.

本発明は上記実施例に限定されるものではなくその要旨
を逸脱しない艶聞で種々変形して実施できる。
The present invention is not limited to the above-mentioned embodiments, but can be implemented with various modifications without departing from the gist thereof.

[発明の効果] 以上述べたように本発明によれば、自動組立(又は加工
)ラインの先頭に設置され上記ワークの位置設定基準か
らのずれを検出する検出手段と該ラインに並設されたロ
ボット群に与えられる位置決め情報を上記検出手段から
の出力に基き補正する補正手段を具備したので、ワーク
、取付冶具パレット、取付方等のバラツキによる取付ワ
ークの位置ずれを1ケ所で集中的に測定、管理すること
ができ、よってロボット群の作業の信頼性を高めると共
にコスト低減が図られたロボット群管理システムが提供
できる。
[Effects of the Invention] As described above, according to the present invention, a detecting means installed at the head of an automatic assembly (or processing) line to detect the deviation of the workpiece from the position setting standard and a detecting means installed in parallel on the line. Equipped with a correction means that corrects the positioning information given to the robot group based on the output from the detection means, it is possible to centrally measure the positional deviation of the mounted workpiece at one location due to variations in the workpiece, mounting jig pallet, mounting method, etc. Therefore, it is possible to provide a robot group management system that improves the reliability of the robot group's work and reduces costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るロボット群管理システムの一実施
例を示すブロック図、第2図は(a)(b)は夫々ワー
クと治具パレッ1−との関係を示し第2図(a)は上面
図、第2図(b)は正面図、第3図はX−Y平面上にお
けるワークの誤差を説明するための図である。 1・・・計算機、2・・・補助記憶装置、3・・・入出
力タイプライタ、4・・・ディジタル入出力81.5・
・・シリアル伝送用インターフェイス、6・・・測定デ
ータコントローラ、7・・・誤差測定装置、8 a、8
 b、8 c。 ・・・、8m、8n・・・ロボット、9a、9b、・・
・、9m・・・パレットナンバーセンサ、10・・・フ
リー70−コンベヤ、110.11a、1 lb、11
c、・、 11m、11n・・・ワーク取付パレット、
12・・・ワーク取付装置、13・・・冶具パレッl〜
、14・・・・・・ワーク。 出願人代理人 弁理士 鈴江武彦 第17 第2図 (a) 第3図 Y袖
FIG. 1 is a block diagram showing an embodiment of the robot group management system according to the present invention, and FIG. ) is a top view, FIG. 2(b) is a front view, and FIG. 3 is a diagram for explaining the error of the workpiece on the XY plane. 1... Computer, 2... Auxiliary storage device, 3... Input/output typewriter, 4... Digital input/output 81.5.
... Serial transmission interface, 6... Measurement data controller, 7... Error measuring device, 8 a, 8
b, 8c. ..., 8m, 8n...robot, 9a, 9b,...
・, 9m... Pallet number sensor, 10... Free 70-conveyor, 110.11a, 1 lb, 11
c,... 11m, 11n... Workpiece mounting pallet,
12... Workpiece mounting device, 13... Jig pallet ~
, 14... Work. Applicant's agent Patent attorney Takehiko Suzue No. 17 Figure 2 (a) Figure 3 Y sleeve

Claims (1)

【特許請求の範囲】[Claims] 自動組立(又は加工)ラインに並設され該ライン上を搬
送されるワークに順次所定の組立(又は加工)作業を施
すロボット群と、該ラインの先頭に設置され上記ワーク
の位置設定基準からのずれを検出する検出手段と、上記
ロボット群に与えられる位置決め情報を上記検出手段か
らの出力に基き補正する補正手段を具備したことを特徴
とするロボット群管理システム。
A group of robots are installed in parallel on an automatic assembly (or processing) line and sequentially perform predetermined assembly (or processing) work on the workpieces being transported on the line, and a group of robots is installed at the beginning of the line and is installed at the beginning of the line to perform predetermined assembly (or processing) work on the workpieces transported on the line. A robot group management system comprising: a detection means for detecting a deviation; and a correction means for correcting positioning information given to the robot group based on an output from the detection means.
JP59185705A 1984-09-05 1984-09-05 Robot group management system Expired - Fee Related JP2711092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59185705A JP2711092B2 (en) 1984-09-05 1984-09-05 Robot group management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59185705A JP2711092B2 (en) 1984-09-05 1984-09-05 Robot group management system

Publications (2)

Publication Number Publication Date
JPS6162903A true JPS6162903A (en) 1986-03-31
JP2711092B2 JP2711092B2 (en) 1998-02-10

Family

ID=16175419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59185705A Expired - Fee Related JP2711092B2 (en) 1984-09-05 1984-09-05 Robot group management system

Country Status (1)

Country Link
JP (1) JP2711092B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635405A (en) * 1986-06-26 1988-01-11 Toshiba Mach Co Ltd Error correcting device for pallet and the like
JPH03212134A (en) * 1989-09-13 1991-09-17 Mitsubishi Electric Corp Power supply system
FR2698306A1 (en) * 1992-11-24 1994-05-27 Peugeot System for positioning robot - includes steps of determining position of part w.r.t support and position of support on conveyor, when these items are in their desired position operation commences

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142256A (en) * 1974-10-07 1976-04-09 Nippon Steel Corp NAGARESAGYONIOKERUROBOTSUTOSHISUTEMU
JPS5475753A (en) * 1977-11-28 1979-06-16 Shinko Electric Co Ltd Robot controller for laterally symmetrically operating article on conveyor
JPS60175112A (en) * 1984-02-20 1985-09-09 Dainichi Kiko Kk Working method on conveyer by industrial robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142256A (en) * 1974-10-07 1976-04-09 Nippon Steel Corp NAGARESAGYONIOKERUROBOTSUTOSHISUTEMU
JPS5475753A (en) * 1977-11-28 1979-06-16 Shinko Electric Co Ltd Robot controller for laterally symmetrically operating article on conveyor
JPS60175112A (en) * 1984-02-20 1985-09-09 Dainichi Kiko Kk Working method on conveyer by industrial robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635405A (en) * 1986-06-26 1988-01-11 Toshiba Mach Co Ltd Error correcting device for pallet and the like
JPH03212134A (en) * 1989-09-13 1991-09-17 Mitsubishi Electric Corp Power supply system
FR2698306A1 (en) * 1992-11-24 1994-05-27 Peugeot System for positioning robot - includes steps of determining position of part w.r.t support and position of support on conveyor, when these items are in their desired position operation commences

Also Published As

Publication number Publication date
JP2711092B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US5727132A (en) Robot controlling method for tracking a moving object using a visual sensor
CN106181541B (en) The production system for having the robot for possessing position correction function
CN104044143B (en) Robot system, bearing calibration and machined object manufacture method
EP3542969B1 (en) Working-position correcting method and working robot
EP0361663A3 (en) Method and system for a robot path
EP0470257A1 (en) Calibration system for robot
JP2006514588A (en) Method and apparatus for processing moving workpieces, especially car bodies
US6278902B1 (en) Robot control method and robot control system
IT1303170B1 (en) PROCEDURE AND SYSTEM FOR CREATING THE COMPENSATION OF STATIC ERRORS ON MACHINE TOOLS WITH NUMERIC CONTROL
CN102266958A (en) Flexible guide rail hole group machining method based on drilling equipment coordinate system determination
JP5061965B2 (en) Robot production system
US7957834B2 (en) Method for calculating rotation center point and axis of rotation, method for generating program, method for moving manipulator and positioning device, and robotic system
CN102218738A (en) Robot tool vector exporting method and correcting method
JPS6162903A (en) Control system for robot group
JP2001038662A (en) Working robot calibrating method
JP2009220248A (en) Robot installation method and robot production system
CN113086238A (en) Automatic hole making and position online correction method based on reference hole position measurement
JPH05111886A (en) Indication of calibration point of robot manipulator and calibration work
JPH1044074A (en) Multi-work method and device thereof
CN114012719B (en) Zero calibration method and system for six-axis robot
CN104925473B (en) A kind of control method solving substrate conveyance dolly versatility
JPH0839468A (en) Control system for robot
JP3948092B2 (en) Torch position detection method
KR100555717B1 (en) Apparatus and method for zero-position error correcting of industrial robots
JPH0976178A (en) Robot control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees