JPS6162840A - Gas corrosion testing apparatus performing adjustment of flow amount by two-route gas feeding - Google Patents

Gas corrosion testing apparatus performing adjustment of flow amount by two-route gas feeding

Info

Publication number
JPS6162840A
JPS6162840A JP18439484A JP18439484A JPS6162840A JP S6162840 A JPS6162840 A JP S6162840A JP 18439484 A JP18439484 A JP 18439484A JP 18439484 A JP18439484 A JP 18439484A JP S6162840 A JPS6162840 A JP S6162840A
Authority
JP
Japan
Prior art keywords
gas
concn
tank
concentration
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18439484A
Other languages
Japanese (ja)
Other versions
JPH0371063B2 (en
Inventor
Choichi Suga
長市 須賀
Shinichi Katayanagi
片柳 伸一
Koichi Taniguchi
谷口 皓一
Hiroshi Hanabusa
花房 鴻
Makoto Takahashi
眞 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP18439484A priority Critical patent/JPS6162840A/en
Publication of JPS6162840A publication Critical patent/JPS6162840A/en
Publication of JPH0371063B2 publication Critical patent/JPH0371063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Abstract

PURPOSE:To always keep the concn. of the corrosive gas in a testing tank constant, by controlling a flow regulation part by the difference between the signal value from a gas concn. detection part and the signal value to the concn. of the predetermined gas in the testing tank. CONSTITUTION:In a testing tank, a detection cell is provided to a gas concn. detection part 21. The current generated in this cell is accurately proportional to the concn. of SO2 in the tank. The current generated in the detection cell is sent to an adjustment controll part 22, where the concn. of the gas in the testing tank is accurately stored, and the value of said concn. is compared with the quantity of the current sent from the detection part 21 and the difference therebetween is sent to a flow regulation part 7 and a flow regulation valve 8 is regulated corresponding to the signal quantity thereof. As a result, about 90% of the supply amount of reference gas is steadily sent in a constant amount by an A-route and, even if the concn. in the tank varies minutely, the regulation valve of a B-route is operated to keep the concn. in the tank always constant.

Description

【発明の詳細な説明】 a産業上の利用分野 本発明は、各種電気接点、接続端子、金属、塗装金属、
成るいはこれらの諸利才1によって作られた部品類及び
各種製品類の腐食性ガスによる腐食試験装置に関する。
[Detailed Description of the Invention] a. Field of Industrial Use The present invention is applicable to various electrical contacts, connection terminals, metals, painted metals,
Or, it relates to a corrosion test device using corrosive gas for parts and various products made by these talented people 1.

b従来の技術と発明が解決しようとする問題点従来性な
われてきたガス腐食試験は、二酸化いおう、酸化窒素、
硫化水素、炭酸ガス、アンモニアなど金属腐食性の高濃
度ガスを空気、窒素などの金属を腐食しないガスと混合
希釈して一定濃度とした雰囲気で行なう。一般に腐食性
ガスは、特に低濃度においてガス濃度と腐食速度との間
に密接な関係があることが知られている。
b. Problems to be solved by the conventional technology and the invention The conventional gas corrosion test uses sulfur dioxide, nitrogen oxide,
The process is carried out in an atmosphere where highly concentrated gases that corrode metals, such as hydrogen sulfide, carbon dioxide, and ammonia, are mixed and diluted with gases that do not corrode metals, such as air and nitrogen, to a constant concentration. It is generally known that there is a close relationship between gas concentration and corrosion rate of corrosive gases, especially at low concentrations.

この。Lうに、ガス濃度は試験結果を大きく左右するに
も拘らず、従来のガス腐食試験装置は、試験槽内に送り
込むガス濃度を一定にするために種々工夫を凝らすのみ
で、槽内ガス濃度の変動に対応する点では不十分であっ
た。また、槽内ガス濃度の変動を検知して送入ガス量を
調節可能としている従来技術にあって、ガス送入機構が
断続式でしかも応答に数分を要し、成る時間帯は高濃度
ガスが送り込まれ次に続く時間帯は全く停止するという
動作を間欠的に反復するものであった。したがって、槽
内ガス濃度は、平均的には略ぼ所定濃度であっても、濃
度変動幅はかなり大きくて±5〜20%程度はやむを得
ないと考えられている現状である。これはガス腐食試験
結果の再現性に疑問を投げかける主因となっている。
this. Despite the fact that gas concentration greatly affects test results, conventional gas corrosion test equipment only uses various techniques to keep the gas concentration fed into the test tank constant, and the gas concentration in the tank cannot be controlled. It was insufficient in responding to fluctuations. In addition, with conventional technology that detects fluctuations in the gas concentration in the tank and can adjust the amount of gas fed, the gas feeding mechanism is intermittent and takes several minutes to respond, and during periods when the gas concentration is high. The operation was repeated intermittently, with gas being pumped in and then completely stopped for the next period of time. Therefore, even if the gas concentration in the tank is approximately a predetermined concentration on average, the concentration fluctuation range is quite large and is considered to be unavoidable within the range of ±5 to 20%. This is the main reason for questioning the reproducibility of gas corrosion test results.

又、ガス腐食試験機で使用する腐食性稀薄ガスは、高濃
度ガスを空気、窒素などで一定比降に混合希釈した試験
用合成ガスとして試験槽に送入される。例えば二酸化い
お5の比重は乾燥空気の226倍であって、このように
比重差か大きいガス成るいは相溶性に乏しいガスを均一
に混合することは困難であるにも拘らず、従沫の試験装
置ではこの混合に慎重な配慮がなさA1ていない。その
ために、試験槽に送られろ腐食性ガス濃度が不安定であ
って、試験結果の古川性が不十分である原因の一つとな
っている。
In addition, the corrosive diluted gas used in the gas corrosion tester is sent to the test tank as a synthetic gas for testing, which is a mixture of high-concentration gas, air, nitrogen, etc. at a constant ratio and dilution. For example, the specific gravity of sulfur dioxide is 226 times that of dry air, and although it is difficult to uniformly mix gases with such a large difference in specific gravity or gases with poor compatibility, No careful consideration was given to this mixing in the test equipment of A1. Therefore, the concentration of the corrosive gas sent to the test tank is unstable, which is one of the reasons why the Furukawa characteristics of the test results are insufficient.

C問題点を解決ずろための手段と作用 本発明は、以上説明したようにガス腐食試験結果の再現
性を悪くする最大要因となっている試験槽内の腐食性ガ
ス濃度を常に一定に維持して信頼性の高い試験装置を提
供する。
Means and Effects for Solving Problem C The present invention, as explained above, always maintains the corrosive gas concentration in the test tank constant, which is the biggest factor in worsening the reproducibility of gas corrosion test results. We provide highly reliable test equipment.

以下本発明の構成を述べる前に用語の童味を定義する。Below, before describing the structure of the present invention, the term ``child'' will be defined.

腐食性ガス、二酸化(・お5、酸化窒素、硫化水素、炭
酸ガス、アンモニア、塩素 などの主として金属月利に対する 化学的活性ガス。
Corrosive gases, chemically active gases such as carbon dioxide, nitrogen oxide, hydrogen sulfide, carbon dioxide, ammonia, and chlorine, mainly for metals.

基準ガス: 腐食性ガスの高純度または濃度既知の高濃
度標準ガス。空気などで 希釈して稀薄ガスを作るための原 料ガス。
Reference gas: High purity or high concentration standard gas with known concentration of corrosive gas. Raw material gas used to create diluted gas by diluting with air, etc.

希釈用ガス:基準ガスに混合希釈する金属腐食性を持た
ないガス。空気、窒素な ど。
Dilution gas: A non-corrosive gas that is diluted with the reference gas. air, nitrogen, etc.

希釈ガス、 基準ガスを希釈用ガスで均一に混合希釈し
たガス。
Dilution gas: A gas obtained by uniformly mixing and diluting the reference gas with a diluent gas.

本発明は、次の3要件によって構成される。The present invention is constituted by the following three requirements.

(1)必要な基準ガス量の大部分(約90%以上)は常
に連続的に一定量を送り込み、残り(約10%以下)は
試験槽内濃度に応じて調整可能状態で送る。(2)槽内
ガス濃度を一定に維持するために第1図に示す如き検知
調整三角ブリッジを形成する。この三角ブリッジはまづ
検知セルで槽内濃度を検知し、これを量的電気信号とし
て調整制御部に送り、制御部では設定濃度に相当する電
気量とこの信号電気量とを比較計算する。差があれば直
ちにこれを電気信号として流量調節部に送り、調節部は
その電気信号量に等しい基準ガスが流れるように弁を自
動調節する。
(1) Most of the required amount of reference gas (approximately 90% or more) is always sent in a constant constant amount, and the remainder (approximately 10% or less) is sent in an adjustable state depending on the concentration in the test tank. (2) In order to maintain the gas concentration in the tank constant, a detection adjustment triangular bridge as shown in FIG. 1 is formed. This triangular bridge first detects the concentration in the tank with a detection cell, sends this as a quantitative electric signal to the adjustment control section, and the control section compares and calculates the amount of electricity corresponding to the set concentration with this signal amount of electricity. If there is a difference, this is immediately sent as an electrical signal to the flow rate regulator, and the regulator automatically adjusts the valve so that a reference gas equal to the amount of the electrical signal flows.

このようにして、槽内濃度が変動しかげると直ちに検知
調整三角ブリツ・ソが作動して常に槽内濃度が変動しな
いように調整される。(3)比重か大きい二酸化いおう
など成るいは、希釈用ガスとの相溶性に乏しいガスは希
釈用ガスとの均一混合が困難であるから混合効率を高め
る特殊構造の混合器を試験槽の前に設ける。
In this way, as soon as the concentration in the tank starts to fluctuate, the detection and adjustment triangular burr is activated, and the concentration in the tank is always adjusted so as not to fluctuate. (3) Since it is difficult to uniformly mix gases such as sulfur dioxide with high specific gravity or gases with poor compatibility with the dilution gas, a specially constructed mixer to increase mixing efficiency is installed in front of the test chamber. Provided for.

d実施例 本発明の実施例を第2図によって説明する。d Example An embodiment of the present invention will be described with reference to FIG.

基準ガスとして二酸化いお5 (] 0.OOOppm
)のボンベ詰標準ガス(濃度保証付)、希釈用ガスとし
てニアコンプレッサからの圧縮空気をそれぞれ使用して
試験槽内ガス濃度を10 ppmに維持する例につき説
明する。空気99.9 l/ minに基準ガス0.1
 l/ minを混合すると計算上10 ppmの二酸
化いおうが得られるが、この基準ガス0.1 l/ m
inを次の2系路に分けて供給する。
Sulfur dioxide 5 (] 0.OOOppm as reference gas
An example will be explained in which the gas concentration in the test chamber is maintained at 10 ppm by using a standard gas (with guaranteed concentration) in a cylinder as the dilution gas and compressed air from a near compressor as the dilution gas. Air 99.9 l/min and reference gas 0.1
10 ppm of sulfur dioxide is calculated by mixing 0.1 l/m of this reference gas.
In is divided and supplied to the following two routes.

A系路: 0.1 l/min X 0.9 = 0.
091) /min  の一定流量 B系路: 0.1 l/min X 0.1 = 0.
01 l/min  の調節可能流量 A系路は、基準ガスの約90%相当量を定常的に一定流
量で送る糸路であって、ガスがンペ1を出たガスは減圧
弁2、精密減圧弁3を経て圧力0.15に9/Cn1に
精密に調整し、流量調節弁4で定量流量計6の指示が0
.09 l/ minとなるように調節する。
A route: 0.1 l/min x 0.9 = 0.
091) /min constant flow rate B line: 0.1 l/min x 0.1 = 0.
The A line with an adjustable flow rate of 0.01 l/min is a thread line that constantly sends an amount equivalent to about 90% of the reference gas at a constant flow rate. Precisely adjust the pressure to 9/Cn1 to 0.15 through the pressure reducing valve 3, and use the flow rate adjustment valve 4 to ensure that the reading on the quantitative flow meter 6 is 0.
.. Adjust to 09 l/min.

B系路は、基準ガスの約10%相当量を自動的に調節し
ながら送る糸路であって、正常な場合は0.01 l/
 minを必要とするので、流量調節弁8による調節流
量計9への設定をこの値の2〜3倍程度すなわち0.0
2〜0.03 l/minまで流せる構造とし、かつ正
常に調節された状態でO,O] l/ minの流量と
なるようにする。
The B line is a thread path that automatically adjusts and sends an amount equivalent to about 10% of the reference gas, and under normal conditions, the amount is 0.01 l/
min is required, so the setting for the control flow meter 9 by the flow control valve 8 should be approximately 2 to 3 times this value, that is, 0.0
The structure should be such that it can flow up to 2 to 0.03 l/min, and the flow rate should be O, O] l/min when properly adjusted.

電磁弁5,16は装置の作動スイッチを入れると開き停
止時は閉じる。
The solenoid valves 5 and 16 open when the device is turned on and close when the device is stopped.

A、B両系路の基準ガスは共に1次混合器10に入る。The reference gases from both the A and B paths enter the primary mixer 10.

一方、希釈用空気はエアコンルツサ11から減圧弁12
、油水分分離器13、活性炭フィルタ14を経て減圧弁
15で更に圧力調整し、電磁弁16を経て流量調節弁1
7と流量計18によって正確に99.9 l/ min
に流量調整されて1次混合器10に入り基準ガスと混合
する。この混合ガスは更に均一に混合するために2次混
合器19に入る。第3図は2次混合器19の構造例を示
すが、比重差の太き(・二酸化いおうと空気を強制的に
均一混合する機能を有する。1次混合器からの混合ガス
は、両端を閉じた円筒形の2次混合器の中心を貫入する
管aを経て混合器底部に到り、ここで管aに対して直角
で相互に反対方向のT字型分岐管す。
On the other hand, dilution air is supplied from the air compressor 11 to the pressure reducing valve 12.
, an oil/water separator 13, an activated carbon filter 14, the pressure is further adjusted by a pressure reducing valve 15, and a solenoid valve 16 is passed through a flow rate regulating valve 1.
7 and flow meter 18 exactly 99.9 l/min
The gas flows into the primary mixer 10 and is mixed with the reference gas. This mixed gas enters a secondary mixer 19 for further uniform mixing. Fig. 3 shows an example of the structure of the secondary mixer 19, which has a function of forcibly and uniformly mixing sulfur dioxide and air with a large difference in specific gravity. The bottom of the mixer is reached via a tube a penetrating the center of the closed cylindrical secondary mixer, where T-shaped branches are formed at right angles to the tube a and in mutually opposite directions.

b′を設け、各分岐、管の先端は何れも混合器壁に平行
でかつ相互に反対方向の流れとなるようにする。b、b
’から出るガスそれぞれの角度で混合器内壁に衝突した
後、中心管aの周囲を回転しながら出口の方へ流れる間
に渦流となり、隔壁傘Cの先端で圧縮され、その後急激
に膨張拡散して傘dでまた圧縮膨張を繰返す。この渦流
、圧縮、膨張拡散の反復によって二酸化いおうと空気は
完全に均一混合する。次いで混合ガスは試験槽20の中
へ略ぼ100 l/min 。
b' so that the ends of each branch and tube are parallel to the mixer wall and flow in opposite directions. b, b
After colliding with the inner wall of the mixer at different angles, the gas coming out of 'A' becomes a vortex while rotating around the central pipe a and flowing towards the outlet, is compressed at the tip of the partition umbrella C, and then rapidly expands and diffuses. Then, the compression and expansion are repeated again using the umbrella d. Through this repetition of swirling, compression, and expansion/diffusion, sulfur dioxide and air are mixed completely and uniformly. The mixed gas is then fed into the test chamber 20 at approximately 100 l/min.

10 ppmの濃度で連続的に送り込まれる。試験槽内
では、所定の温度、湿度に調節して試験試料を置き、二
酸化いおうが消費されて槽内濃度が局部的に低下するか
ら攪拌用を設けて攪拌し槽内のガス濃度を均一に保つ。
Continuously fed at a concentration of 10 ppm. In the test tank, the test sample is placed at the specified temperature and humidity, and since the sulfur dioxide is consumed and the concentration in the tank decreases locally, a stirring device is installed to stir the gas concentration in the tank to make it uniform. keep.

更に試験槽にはガス濃度検知部21に検知セルを設け、
本実施例においては二酸化いおうと反応する反応液の化
学反応による組成変化を電気化学的に発生する電流量に
変える電解装置を備える。この検知セルは、二酸化いお
うの場合に一般慣用のクロメトリー法と称するセルを使
用することができる。このセルで発生する電流は槽内の
二酸化いおう濃度に正確に比例する。
Furthermore, a detection cell is provided in the gas concentration detection section 21 in the test chamber,
In this embodiment, an electrolytic device is provided which converts a change in composition due to a chemical reaction of a reaction liquid reacting with sulfur dioxide into an amount of electrochemically generated electric current. In the case of sulfur dioxide, a cell known as a commonly used chromometry method can be used as the detection cell. The current generated in this cell is exactly proportional to the sulfur dioxide concentration in the bath.

検知セルの発生電流は調整制御部(自動濃度調節記録計
を含む)22に送られるが、ここで試験槽内ガス濃度が
正確に10 ppmのときの発生電流計が記憶されてい
て、その値と検知部21から送られた電流量と比較し、
その差が再び宙。
The current generated by the detection cell is sent to the adjustment control unit (including an automatic concentration adjustment recorder) 22, where the current generated when the gas concentration in the test chamber was exactly 10 ppm is stored, and the value is recorded. and the amount of current sent from the detection unit 21,
The difference is again in the air.

気信号となって流量調節部7に送られ、ここでその信号
量に応じて流量調節弁8を調節する。
The signal is sent to the flow rate adjustment section 7, where the flow rate adjustment valve 8 is adjusted according to the signal amount.

すなわち、検知セル21で槽内ガス濃度を検知すると直
ちに電気信号によってB系路の基準ガス流量が調節され
ろこととなる。
That is, as soon as the detection cell 21 detects the gas concentration in the tank, the reference gas flow rate in the B path is adjusted by an electric signal.

本発明装置においては、このようにして基準ガス供給量
の約90%はA系路によって一定量を定常的に送り、試
験槽内のガス濃度が微変動をおこしても残り約10%量
を送るB系路の調節弁が作動して流入ガス量を調節する
から、試験槽内は常に一定濃度に保たれる。
In the apparatus of the present invention, approximately 90% of the reference gas supply amount is constantly sent through the A line, and even if the gas concentration in the test chamber slightly fluctuates, the remaining approximately 10% is supplied. Since the control valve of the B line is operated to adjust the amount of gas flowing in, the concentration inside the test tank is always maintained at a constant concentration.

尚、試験槽内のガス濃度を検知する方法としては、前記
検知セルのほかに赤外線吸収法、紫外線吸収法、溶液導
電率法、炎光光度検出法などを利用することができ、何
れの場合もガス濃度に比例した応答電気信号を流量調節
部7に送ってガス流量を調節できる。
In addition to the above-mentioned detection cell, infrared absorption method, ultraviolet absorption method, solution conductivity method, flame photometric detection method, etc. can be used as a method for detecting the gas concentration in the test chamber. The gas flow rate can also be adjusted by sending a response electric signal proportional to the gas concentration to the flow rate adjustment section 7.

e発明の効果 本発明装置においては、試験槽内ガス濃度の変動が小さ
いため、腐食試験結果のバラツキが小さく、かつ試験ガ
ス濃度に正確に対応した試験結果を得ろことができる。
e Effects of the Invention In the apparatus of the present invention, since fluctuations in the gas concentration in the test tank are small, variations in corrosion test results are small, and test results that accurately correspond to the test gas concentration can be obtained.

従来技術においては、試験槽内ガス濃度の平均値が所定
濃度であっても濃度変動が太きいから、試験結果の・マ
ラッキが大きく結果の判定が不分明になった。日本工業
規格H8502「めっきの耐食性試験方法」による結果
の判定で、試験試料の「全腐食面積率によるレイティン
夛ナンバ表1に関して2〜4程度の範囲に変動する例さ
えある。又、例えば、亜硫酸ガス、酸化窒素ガスなどに
よる通常の腐食試験において、多く用いられろガス濃度
25 ppm付近における濃度の誤差は±5〜20%程
度はやむを得ないと考えられている。
In the conventional technology, even if the average value of the gas concentration in the test tank is a predetermined concentration, the concentration fluctuations are large, so that the test results have a large error rate, making it unclear to judge the results. In the judgment of the results according to the Japanese Industrial Standard H8502 "Corrosion resistance test method for plating", there are even cases where the test sample's "ratein number according to total corrosion area ratio" varies in the range of about 2 to 4 with respect to Table 1. In ordinary corrosion tests using gases, nitrogen oxide gas, etc., it is considered that an error in concentration of about ±5 to 20% is unavoidable at a gas concentration of around 25 ppm, which is often used.

しかし、最近の研究によれば、これらガスによる金属の
腐食進行度は、ガス濃度5〜20ppm付近において′
持にガス濃度依存度が大きいことが分かって来た。10
 ppm付近を中心とした腐食試験が重要視される傾向
にある。したがって、試験槽内のガス濃度を出来るだけ
精確に絹持ずろことは、今後の試験機の性能向上の必須
条件である。
However, according to recent research, the degree of corrosion of metals caused by these gases is
It has recently become clear that the dependence on gas concentration is large. 10
Corrosion tests centered around ppm are becoming more important. Therefore, maintaining the gas concentration in the test chamber as accurately as possible is an essential condition for improving the performance of future testing machines.

本発明装置による場合、試験槽内ガス濃度の変動は、設
定濃度5ppmにおいて±0.2ppmであって、他の
条件を一定に保てばレイティングナンバ変動範囲は1〜
15である。
In the case of the device of the present invention, the fluctuation in the gas concentration in the test chamber is ±0.2 ppm at a set concentration of 5 ppm, and if other conditions are kept constant, the rating number fluctuation range is 1 to 1.
It is 15.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の検知調整三角ブリッジ、第2図は本発
明のガス濃度調節機構説明図、第3図は本発明に係る2
次混合器の構造説明図である。
Fig. 1 is a detection adjustment triangular bridge of the present invention, Fig. 2 is an explanatory diagram of the gas concentration adjustment mechanism of the present invention, and Fig. 3 is a bridge according to the present invention.
It is a structural explanatory diagram of a secondary mixer.

Claims (2)

【特許請求の範囲】[Claims] (1)高濃度腐食性ガスの大部分を一定量に流すA系路
と一部分を試験槽内ガス濃度に対応して調節変量して流
れるようにしたB系路及び希釈用ガス系路によって構成
するガス混合系と、試験槽内に設けたガス濃度検知部と
、そのガス濃度検知部から試験槽内ガス濃度の変動に対
応して発する電気信号値と試験槽内所定ガス濃度に対応
する信号値との差により流量調節部に信号を送るように
した調整制御部と、前記B系路にある調節弁に連なる前
記流量調節部とから成ることを特徴とするガス腐食試験
装置。
(1) Consisting of a system A through which most of the highly concentrated corrosive gas flows in a constant amount, a system B through which a portion of the gas flows at a variable rate according to the gas concentration in the test chamber, and a dilution gas system path. A gas mixing system to be used, a gas concentration detection section installed in the test chamber, an electric signal value emitted from the gas concentration detection section in response to fluctuations in the gas concentration in the test chamber, and a signal corresponding to a predetermined gas concentration in the test chamber. A gas corrosion test apparatus comprising: an adjustment control section that sends a signal to a flow rate adjustment section based on the difference between the flow rate and the flow rate adjustment section; and the flow rate adjustment section connected to the control valve in the B line.
(2)両端を閉じた円筒の一端から貫入する混合ガス送
入用中心管(a)が円筒内他端部でT字形分岐をなし、
各分岐管(b、b′)口の方向を該円筒内壁に沿いかつ
それぞれ相反する方向であるようにし、前記中心管(a
)中央部にあって周縁を円筒壁に固定し突端部を貫入端
寄り中心管沿いに開口する漏斗形隔壁傘(c)を設け、
さらにこれに相対する形の別の隔壁傘(d)を突端部が
中心管に固定し周縁が円筒壁沿いに開口するように設け
、かつ前記中心管貫入端に排気管があるようにした2次
混合器をガス混合系に設けることを特徴とする特許請求
の範囲第1項記載のガス腐食試験装置。
(2) A central pipe (a) for feeding mixed gas that penetrates from one end of a cylinder with both ends closed forms a T-shaped branch at the other end inside the cylinder,
The directions of the openings of the branch pipes (b, b') are along the inner wall of the cylinder and in opposite directions, and the openings of the central pipe (a
) A funnel-shaped bulkhead umbrella (c) is provided in the center, the peripheral edge of which is fixed to the cylindrical wall, and the tip of which opens along the central pipe near the penetrating end;
Furthermore, another partition umbrella (d) having a shape opposite to this is provided so that its tip end is fixed to the center pipe and its peripheral edge opens along the cylindrical wall, and an exhaust pipe is provided at the end where the center pipe penetrates. 2. The gas corrosion test apparatus according to claim 1, wherein a secondary mixer is provided in the gas mixing system.
JP18439484A 1984-09-05 1984-09-05 Gas corrosion testing apparatus performing adjustment of flow amount by two-route gas feeding Granted JPS6162840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18439484A JPS6162840A (en) 1984-09-05 1984-09-05 Gas corrosion testing apparatus performing adjustment of flow amount by two-route gas feeding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18439484A JPS6162840A (en) 1984-09-05 1984-09-05 Gas corrosion testing apparatus performing adjustment of flow amount by two-route gas feeding

Publications (2)

Publication Number Publication Date
JPS6162840A true JPS6162840A (en) 1986-03-31
JPH0371063B2 JPH0371063B2 (en) 1991-11-11

Family

ID=16152405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18439484A Granted JPS6162840A (en) 1984-09-05 1984-09-05 Gas corrosion testing apparatus performing adjustment of flow amount by two-route gas feeding

Country Status (1)

Country Link
JP (1) JPS6162840A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256311A (en) * 2009-04-28 2010-11-11 Espec Corp Test method and testing equipment
JP2010256312A (en) * 2009-04-28 2010-11-11 Espec Corp Test method, organic gas supply device, and testing equipment
JP2017181372A (en) * 2016-03-31 2017-10-05 スガ試験機株式会社 Gas corrosion tester
JP2017181373A (en) * 2016-03-31 2017-10-05 スガ試験機株式会社 Gas corrosion tester

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104990A (en) * 1974-01-23 1975-08-19
JPS563976A (en) * 1979-06-22 1981-01-16 Yuasa Battery Co Ltd Pasted negative plate for alkaline storage battery
JPS5777942U (en) * 1980-10-30 1982-05-14
JPS58168111A (en) * 1982-03-30 1983-10-04 Toshiba Corp Controller of feed water regulating valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104990A (en) * 1974-01-23 1975-08-19
JPS563976A (en) * 1979-06-22 1981-01-16 Yuasa Battery Co Ltd Pasted negative plate for alkaline storage battery
JPS5777942U (en) * 1980-10-30 1982-05-14
JPS58168111A (en) * 1982-03-30 1983-10-04 Toshiba Corp Controller of feed water regulating valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256311A (en) * 2009-04-28 2010-11-11 Espec Corp Test method and testing equipment
JP2010256312A (en) * 2009-04-28 2010-11-11 Espec Corp Test method, organic gas supply device, and testing equipment
JP2017181372A (en) * 2016-03-31 2017-10-05 スガ試験機株式会社 Gas corrosion tester
JP2017181373A (en) * 2016-03-31 2017-10-05 スガ試験機株式会社 Gas corrosion tester

Also Published As

Publication number Publication date
JPH0371063B2 (en) 1991-11-11

Similar Documents

Publication Publication Date Title
PT92357A (en) METHOD AND DEVICE FOR THE PREPARATION OF STANDARD GAS MIXTURES
JPS6291861A (en) On-line calibrating apparatus for chemical monitor
JPS6162840A (en) Gas corrosion testing apparatus performing adjustment of flow amount by two-route gas feeding
JPH05118453A (en) Countercurrent valve
US2382734A (en) Electrical determination or control of chlorine in liquids
US4335073A (en) NOx Conversion efficiency detector
US4740473A (en) Sodium sulfide analyzer
JP3805671B2 (en) Method for analyzing oxygen concentration in gas and oxygen concentration analyzer
CN217212579U (en) Desulfurization slurry sulfite monitoring system
US3308041A (en) Method and apparatus for titration
JPH11333280A (en) Process and device for flowing type feeder for desired concentration mixed gas formed of two kinds of gases
EP3760579A1 (en) Ozone generating apparatus and ozone generating method
JPS61215955A (en) Liquid oxidation-degree measuring and controlling device
CN104998532A (en) Boiler ammonia desulphurization flue gas emission and ammonia escape balance control device and method
CN213467429U (en) Gas proportion detection device
JPH0362217B2 (en)
US3401098A (en) Method for producing oxides of nitrogen
JP2000066735A (en) Humidity control mechanism of environment testing device
US1340649A (en) Process for regulating the acidity of sulfite liquor
CN117298825A (en) Desulfurization slurry oxidation control method and system
CN213632873U (en) Intelligent SO3Standard gas preparation system
US3694162A (en) Apparatus for absorbing gases in liquids
JPH11352090A (en) Gas analyzer
GB690701A (en) Improvements in and relating to the determination, recording or control of impurities, especially oxygen, in industrial gases, or in liquids
US3652223A (en) Method and apparatus for continuously measuring the concentration of a reactant in a liquid carrier