JPS6162037A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS6162037A
JPS6162037A JP18370984A JP18370984A JPS6162037A JP S6162037 A JPS6162037 A JP S6162037A JP 18370984 A JP18370984 A JP 18370984A JP 18370984 A JP18370984 A JP 18370984A JP S6162037 A JPS6162037 A JP S6162037A
Authority
JP
Japan
Prior art keywords
layers
layer
photoconductive
photoreceptor
dynamic range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18370984A
Other languages
Japanese (ja)
Other versions
JPH0629971B2 (en
Inventor
Kozo Oka
岡 孝造
Ashihiko Yamada
山田 葦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP59183709A priority Critical patent/JPH0629971B2/en
Publication of JPS6162037A publication Critical patent/JPS6162037A/en
Publication of JPH0629971B2 publication Critical patent/JPH0629971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To form the sensitometry over the entire part of a photosensitive body into soft gradation to expand the dynamic range thereof and to obtain a reproduced image having a high grade by varying the attenuating speed of the electrostatic charge potential in each photoconductive layer, i.e., photosensitivity and interposing charge blocking layers between the photoconductive layers. CONSTITUTION:This photosensitive body is made into the construction in which the photoconductive layer laminated on a conductive substrate 1 is divided to three layers 2-4 and that charge blocking layers 5, 6 are interposed at the respective boundaries. The layers 2-4 consist of the photosensitive materials having the same quantum efficiency. The layers 3, 4 have the characteristic to allow the transmission of 30% of incident light and to absorb the remaining 70%. If the electrostatic capacities of the layers 2-4 are the same, the electrostatic charge potentials born by the layers 2-4 attenuate respectively at about 1:2:7 ratio of the speed when the photosensitive body is electrostatically charged and exposed. The part where the response is fast and the part where the response is slow are thus mixed as compared with the case in which the single layer receives 100 quantity of light. The sensimetry is thus made into the soft gradation and the dynamic range is eventually expanded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は露光特性におけるダイナミックレンジの拡大を
図った電子写真感光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrophotographic photoreceptor with an expanded dynamic range in exposure characteristics.

(従来の技術) カールソン電子写真方式に用いられる感光体は、導電性
基板上に光導電体層を設けたものである。
(Prior Art) A photoreceptor used in Carlson electrophotography has a photoconductor layer provided on a conductive substrate.

この光導電体層としては、従来からアモルファスSe等
の無機光導電体の蒸着膜、ZnOやCdS等の光導電体
結晶をバインダー中に分散したもの、あるいは各種の有
機光導電体の塗布膜等が用いられている。
Conventionally, this photoconductor layer has been made of a vapor deposited film of an inorganic photoconductor such as amorphous Se, a photoconductor crystal such as ZnO or CdS dispersed in a binder, or a coating film of various organic photoconductors. is used.

(発明が解決しようとする問題点) しかしこれらの感光体は、銀塩写真等と仕較して露光特
性におけるダイナミックレンジが狭く、この点が高品位
の画像再現にあたって最大の障害ともいえる。ダイナミ
ックレンジを拡大するために、量子効率の電界強度依存
性を高くするという試みもなされているが、この方法で
は残留電位の増大がさけられない。
(Problems to be Solved by the Invention) However, these photoreceptors have a narrow dynamic range in exposure characteristics compared to silver halide photography, etc., and this point can be said to be the biggest obstacle in reproducing high-quality images. In order to expand the dynamic range, attempts have been made to increase the dependence of quantum efficiency on electric field strength, but this method inevitably increases the residual potential.

本発明の目的は、残留電位の上昇などの問題を起こすこ
となくダイナミックレンジを拡大した感光体を提供する
ことにある。
An object of the present invention is to provide a photoreceptor with an expanded dynamic range without causing problems such as an increase in residual potential.

(問題点を解決するための手段) 本発明の感光体は、導電性基板上に多層構造の光導電性
層を設けたものであり、各層の実効的な光感度がそれぞ
れ異なり、かつ光生成された電荷担体は各層の境界を横
断して流れることがないものである。ここで、実効的な
光感度とは、各層をとり出して個別に光照射して測定し
た感度ではなく、完成された多層感光体に照射した光に
対して、各層が応答するところの感度を意味するもので
ある。したがって、下層の光感度は、上層の光吸収率に
影響される。
(Means for Solving the Problems) The photoreceptor of the present invention has a multilayer structure of photoconductive layers provided on a conductive substrate, and each layer has a different effective photosensitivity, and The charged charge carriers are such that they do not flow across the boundaries of each layer. Here, effective photosensitivity is not the sensitivity measured by taking out each layer and irradiating it with light individually, but the sensitivity of how each layer responds to light irradiated onto the completed multilayer photoreceptor. It means something. Therefore, the photosensitivity of the lower layer is influenced by the light absorption rate of the upper layer.

(作 用) このように構成した感光体においては、最上層側からの
光照射に対して各光導電性層が異なる光感度を示し、そ
の光感度が他の層の光感度に影響されないので、単一の
光導電性層から成る感光体に比べて、感光体のセンシト
メ) IJ−が軟調となり、そのダイナミックレンジが
拡大されることになる。
(Function) In the photoreceptor constructed in this way, each photoconductive layer exhibits different photosensitivity to light irradiation from the top layer side, and the photosensitivity is not affected by the photosensitivity of other layers. , the sensitivity of the photoreceptor will be softer and its dynamic range will be expanded compared to a photoreceptor consisting of a single photoconductive layer.

(実施例) 以下に、図面を参照して本発明の実施例について説明す
る。
(Example) Examples of the present invention will be described below with reference to the drawings.

第1図は本実施例に係る感光体の層構成を示すものであ
る。図示のように、本例では、導電性基板1上に積層さ
れた光導電性層が三つの層2.3.4に分かれ、それぞ
れの境界に電荷阻止層5.6が介在している構造となっ
ている。各層2.3.4は同一の量子効率を有する感光
材料から成り、層3.4は入射光の30%を透過し、残
りの70%を吸収する特性を有する。従って、光導電性
層4側から100の光量を与えた場合に、各層で吸収さ
れる光量は次のようになる。
FIG. 1 shows the layer structure of the photoreceptor according to this example. As shown in the figure, in this example, the photoconductive layer laminated on the conductive substrate 1 is divided into three layers 2.3.4, and a charge blocking layer 5.6 is interposed at the boundary of each layer. It becomes. Each layer 2.3.4 is made of a photosensitive material with the same quantum efficiency, and the layer 3.4 has the property of transmitting 30% of the incident light and absorbing the remaining 70%. Therefore, when a light amount of 100 is applied from the photoconductive layer 4 side, the amount of light absorbed by each layer is as follows.

したがって、各層2〜4の静電容量が同一であれば、感
光体を帯電して露光した場合、各層2〜4が受けもつ帯
電電位は、それぞれ約1=2ニアの速度で減衰する。し
たがって、単一層が100の光量を受光した場合と仕較
して、応答の速い部分と遅い部分とが混合されるため、
センシトメトリーは軟調となり、ダイナミックレンジが
拡大されることになる。ここで、各層2〜4の境界で電
荷担体の移動が阻止されていないとすれば、たとえば層
4で光生成された電荷担体が、層3と層2が受けもつ帯
電電位をも減衰させることになり、センシトメトリーの
ダイナミックレンジの拡大は望めない。
Therefore, if the electrostatic capacitance of each layer 2 to 4 is the same, when the photoreceptor is charged and exposed, the charged potential of each layer 2 to 4 attenuates at a rate of about 1=2, respectively. Therefore, compared to the case where a single layer receives a light amount of 100, the parts with fast response and parts with slow response are mixed, so
The sensitometry will be softer and the dynamic range will be expanded. Here, if the movement of charge carriers is not prevented at the boundaries of each layer 2 to 4, for example, the charge carriers photogenerated in layer 4 will also attenuate the charged potential that layers 3 and 2 have. Therefore, we cannot expect to expand the dynamic range of sensitometry.

なお、電荷の移動を阻止するためには、上記実施例のよ
うに一定の厚さを有する独立した層とすることはかなら
ずしも必要でなく、各光導電性層の境界にエネルギーバ
リヤーが形成されるような材料選択をするようにしても
良い。また、各光導電性層2〜4は、均一な層である必
要はなく、更に、各層において電荷発生層と電荷輸送層
とに分離されていても良い。
Note that in order to prevent the movement of charges, it is not always necessary to form independent layers with a constant thickness as in the above embodiments, and an energy barrier is formed at the boundary of each photoconductive layer. Materials may be selected in the following manner. Further, each of the photoconductive layers 2 to 4 does not need to be a uniform layer, and each layer may be separated into a charge generation layer and a charge transport layer.

本発明の感光体に用いる導電性基板1としては、AI、
Ni、Cr、Cu等の金属支持体や、これらの金属を樹
脂フィルムにコーティングしたもの、あるいは導電性カ
ーボンを樹脂バインダー中に分散し、これを樹脂フィル
ムにコーティングしたもの等を用いることが出来る。
The conductive substrate 1 used in the photoreceptor of the present invention includes AI,
A metal support such as Ni, Cr, or Cu, a resin film coated with these metals, or a resin film coated with conductive carbon dispersed in a resin binder can be used.

本発明に用いる光導電性層としては、それが導電性基板
1に接する最下層2であれば、公知の全ての光導電体を
用いることができる。例えば、Se、5e−Te、5e
−As等のカルコゲナイド系や、a−3i:H等、ある
いは各種の有機光導電材料を利用することができる。上
層の光導電性層3.4は、ある程度の光透過性を有する
ことが必要であるため、色素増感した有機光導電体や、
薄層の電荷発生層と透明な電荷輸送層とに分離したもの
が適している。
As the photoconductive layer used in the present invention, any known photoconductor can be used as long as it is the bottom layer 2 in contact with the conductive substrate 1. For example, Se, 5e-Te, 5e
Chalcogenide materials such as -As, a-3i:H, etc., or various organic photoconductive materials can be used. The upper photoconductive layer 3.4 needs to have a certain degree of light transparency, so it is made of a dye-sensitized organic photoconductor,
A structure separated into a thin charge generation layer and a transparent charge transport layer is suitable.

ここで、電荷発生層としては、Se、5e−Te、5e
−As、5e−Te−As、CdS。
Here, as the charge generation layer, Se, 5e-Te, 5e
-As, 5e-Te-As, CdS.

CdSeTe、アモル77 スS i : H,T%ル
ファスSi:F等の無機光導電体や、フタロシアニン、
メロシアニン、ピリリウム塩等の有機光導電体を用いる
ことが出来る。これらの電荷発生層は、蒸着やCVD法
によるほか、色素や顔料等の光導電体粒子をバインダー
樹脂中に分散して塗布することによっても形成すること
ができる。
Inorganic photoconductors such as CdSeTe, amol 77 S i : H, T% Rufus Si:F, phthalocyanine,
Organic photoconductors such as merocyanine and pyrylium salts can be used. These charge generation layers can be formed not only by vapor deposition or CVD, but also by coating photoconductor particles such as dyes and pigments dispersed in a binder resin.

また、有機電荷輸送層としては、PVKなどの高分子半
導体、あるいは絶縁体バインダー中に低分子有機半導体
を分子状に分散したもの等を用いることが出来る。低分
子有機半導体としては、アントラセン、2.6−シメチ
ルアントラセン、フェナントレン、ピレン、コロネン等
の縮合多環式化合物、ジフェニルアミン、ジナフチルア
ミン、ト リ フ ェ ニ ル ア ミ ン 、  ト
 リ −p−)  リ ル ア ミ ン 、N、N、N
’、N’−テトラフェニル−1−3(及び−1,4)−
フェニレンジアミン、N、N。
Further, as the organic charge transport layer, a polymer semiconductor such as PVK, or a low molecular organic semiconductor dispersed in molecular form in an insulating binder can be used. Examples of low-molecular organic semiconductors include fused polycyclic compounds such as anthracene, 2,6-dimethylanthracene, phenanthrene, pyrene, and coronene, diphenylamine, dinaphthylamine, triphenylamine, and tri-p- ) Lil Amin, N, N, N
',N'-tetraphenyl-1-3(and-1,4)-
Phenyl diamine, N, N.

N’、N’−テトラベンジル−1−3(及び−1゜4)
−フェニレンジアミン、N、N、N’、N’−テトラ〔
2−メチルベンジル〕−1−3(及び−1,4)−−7
エニレンジアミン、N、N、N’。
N', N'-tetrabenzyl-1-3 (and -1°4)
-phenylenediamine, N, N, N', N'-tetra [
2-methylbenzyl]-1-3 (and -1,4)--7
Enylene diamine, N, N, N'.

N′−テトラ〔4−クロルベンジル〕−1−、3(及び
1.4)−フェニレンジアミン、N、N。
N'-tetra[4-chlorobenzyl]-1-,3(and 1.4)-phenylenediamine, N,N.

N’、N’−テトラフェニル−[1,1’−ビフェニル
>4’、4’−ジアミン、N’、N’−ジフェニル−N
、N’−ビス−〔3−メチルフェニル:]−[]1,1
’−ビフェニル〕−4,4′ジアミン、4,4′−ビス
−CN、N’、ジエチルアミノ〕テトラフェニルメタン
等の芳香族アミノ化合物、2− [: /I ’−ジメ
チルアミノフェニル〕−5−フェニルーオキザゾール等
のオキサゾール誘導体、2−〔4′−ジメチルアミノフ
ェニル〕−ベンズチアソール等のチアゾール誘導体、2
−[:4’−10口フェニル:]−]4.5−ジフェニ
ルーイミダゾールのイミダゾール誘導体、1,3゜5−
 ) IJフェニルピラソリン、1−フェニル−3−〔
4′−ジチメルアミノスチリル)−5−[:4“−ジメ
チルアミノフェニルクーピラゾリン等のピラゾリン誘導
体、2.5−ビス−〔4′ジメチルアミノフエニル)−
1,3,4−オキサジアゾール、2.5−ビス〜〔4′
−ジエチルアミノフェニル)−1,3,4−オキサジア
ゾール等のオキサジアゾール誘導体、カルバゾール及び
N−エチルカルバゾール、N−イソビルカルバゾール、
N−フェニル力ルバゾ=ル、ベンズカルバゾール等のカ
ルバゾール誘導体を用いることが出来る。これらの低分
子有機半導体は、ポリエステル、ポリカーボネイト等の
無機バイングー中に分子状に分散して用いることが出来
る。
N',N'-tetraphenyl-[1,1'-biphenyl>4',4'-diamine, N',N'-diphenyl-N
, N'-bis-[3-methylphenyl:]-[]1,1
'-biphenyl]-4,4' diamine, 4,4'-bis-CN, N', aromatic amino compounds such as diethylamino]tetraphenylmethane, 2-[: /I'-dimethylaminophenyl]-5- Oxazole derivatives such as phenyloxazole, thiazole derivatives such as 2-[4'-dimethylaminophenyl]-benzthiazole, 2
-[:4'-10-phenyl:]-]Imidazole derivative of 4.5-diphenylimidazole, 1,3°5-
) IJ phenylpyrazoline, 1-phenyl-3-[
Pyrazoline derivatives such as 4'-dithymelaminophenyl)-5-[:4''-dimethylaminophenylcupirazoline, 2,5-bis-[4'dimethylaminophenyl)-
1,3,4-oxadiazole, 2,5-bis~[4'
-diethylaminophenyl)-1,3,4-oxadiazole and other oxadiazole derivatives, carbazole and N-ethylcarbazole, N-isovylcarbazole,
Carbazole derivatives such as N-phenyl carbazole and benzcarbazole can be used. These low-molecular-weight organic semiconductors can be used by being dispersed in molecular form in an inorganic binder such as polyester or polycarbonate.

本発明に用いる電荷阻止層5.6としては、絶縁性高分
子の薄膜や、各種の半導体膜、あるいはイオン導電性膜
等を用いることができる。また、Zr5TiSAl原子
を構成要素とするアセチルアセトンあるいはアルコキシ
ド化合物を少なくとも1種類含む溶液の乾燥硬化物から
なる膜等をあけることができる。
As the charge blocking layer 5.6 used in the present invention, a thin film of an insulating polymer, various semiconductor films, or an ion conductive film can be used. Furthermore, it is possible to open a film made of a dried and cured product of a solution containing at least one type of acetylacetone or alkoxide compound containing Zr5TiSAl atoms as a constituent element.

本発明における各光導電体層の膜厚は、5μから60μ
の間が適当であり、感光体層の全厚み(基板は除く)は
100 tl以下であることが望ましい。また、電荷阻
止層のIIQ厚は、電荷阻止の機能を均一に達成できろ
限り、γ・すい方がのぞましく、特に2μ以下の厚みが
好適である。
The film thickness of each photoconductor layer in the present invention is from 5μ to 60μ.
The total thickness of the photoreceptor layer (excluding the substrate) is preferably 100 tl or less. Further, the IIQ thickness of the charge blocking layer is preferably γ-less as long as the charge blocking function can be uniformly achieved, and a thickness of 2 μm or less is particularly preferable.

本発明において、感光体を構成する光導電性層の数が増
加すれば、センシトメ) IJ−の特性がよりなめらか
になるが、製造上の点から2層ないし5層の間が好適で
ある。
In the present invention, if the number of photoconductive layers constituting the photoreceptor increases, the characteristics of the sensitome (IJ-) will become smoother, but from a manufacturing point of view it is preferable to have between 2 and 5 layers.

次に、下記のようにして作成した本発明の具体的な実施
例1と従来例に係る感光体のセンシトメトリーの特性を
仕較した。この結果、実施例1のセンシトメトリー曲線
は第2図のようになり、従来例の曲線は第3図にように
なり、それぞれのダイナミックレンジは約2および0.
8となった。
Next, the sensitometric characteristics of the photoreceptor according to a specific example 1 of the present invention prepared as described below and a conventional example were compared. As a result, the sensitometric curve of Example 1 is as shown in FIG. 2, and the curve of the conventional example is as shown in FIG. 3, with respective dynamic ranges of approximately 2 and 0.
It became 8.

(実施例1) A1の基板」二に、真空蒸着にてSeを約4oμ形成し
、その上にジルコニウムテトラブトキサイドのエチルア
ルコール溶液を塗布後、常温にて8時間乾燥する。さら
にその上から、N、N’−ジフェニル−N、N’−ビス
−〔3−メチルフェニル)−[1,1’−ビフェニル〕
−L4’−ジアミンとポリカーボネートを重量社で1;
1混合したジクロルメタン溶液にリターダ−を加えてス
プレーコーティングし、40℃で10時間乾燥して厚さ
20μの有機電荷輸送層を形成した。その後、最上層と
して、5e−As (As5重量%)を真空蒸着にて0
.2μの厚さに設けて感光体を完成させた。
(Example 1) Approximately 4 μm of Se was formed on the substrate A1 by vacuum evaporation, and an ethyl alcohol solution of zirconium tetrabutoxide was applied thereon, followed by drying at room temperature for 8 hours. Furthermore, from above, N, N'-diphenyl-N, N'-bis-[3-methylphenyl)-[1,1'-biphenyl]
-L4'-diamine and polycarbonate at Seiyusha 1;
A retarder was added to a mixed dichloromethane solution, spray coated, and dried at 40° C. for 10 hours to form an organic charge transport layer with a thickness of 20 μm. Thereafter, as the top layer, 5e-As (5% by weight of As) was vacuum deposited with 0%
.. A photoreceptor was completed by providing a thickness of 2μ.

この感光体表面にコロナ帯電にて電荷を与え、各種濃度
の原稿からの反射光で露光して、第2図に示すセンシト
メトリー曲線を得た。
The surface of this photoreceptor was charged with corona charging and exposed to light reflected from originals of various densities to obtain the sensitometric curves shown in FIG.

(従来例) A1の基板上に、真空蒸着にてSeを約60μ形成し、
感光体とした。この感光体表面にコロナ帯電にて電荷を
与え、各種濃度の原稿からの反射光で露光して、第3図
に示すセンシトメトリー曲線を得た。
(Conventional example) Approximately 60μ of Se was formed on the A1 substrate by vacuum evaporation,
It was used as a photoreceptor. The surface of this photoreceptor was charged with corona charging and exposed to light reflected from originals of various densities to obtain the sensitometric curves shown in FIG.

(発明の効果) 以」二に説明したように、本発明によれば、感光体を構
成する各光導電性層における帯電電位の減衰速度すなわ
ち光感度が異なり、また、各光導電性層の間に介挿され
た電荷阻止部によって、各光導電性層の減衰速度が他の
層の′g衰速度に影響されないので、感光体全体のセン
シトメトリーは軟調となり、そのダイナミックレンジが
拡大されて、高品位な再生画像をi−ることかできる。
(Effects of the Invention) As explained in Section 2 below, according to the present invention, the decay rate of the charged potential in each photoconductive layer constituting the photoreceptor, that is, the photosensitivity, is different, and the Due to the interposed charge blocking portion, the decay rate of each photoconductive layer is not affected by the 'g decay rate of the other layers, so that the sensitometry of the entire photoreceptor is soft and its dynamic range is expanded. It is possible to reproduce high-quality reproduced images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の具体的な実施例のセンシトメトリー曲線図、第3図
は従来例のセンシトメ) IJ−曲線図である。 1・・・導電性基板、2,3.4・・・光導電性層、5
,6・・・電荷阻止層。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a sensitometric curve diagram of a specific embodiment of the present invention, and FIG. 3 is a sensitometric IJ curve diagram of a conventional example. 1... Conductive substrate, 2, 3.4... Photoconductive layer, 5
, 6... Charge blocking layer.

Claims (1)

【特許請求の範囲】[Claims] 導電性支持体上に積層された複数の光導電性層と、該光
導電性層の相互の境界に形成され、前記光導電性層の各
々で光生成された電荷担体の他の層への移動を阻止する
電荷阻止部とを有し、前記光導電性層の各々は積層状態
において最上層側からの光照射に対して相互に異なる光
感度を示すようにしたことを特徴とする電子写真感光体
A plurality of photoconductive layers stacked on an electrically conductive support and formed at mutual boundaries of the photoconductive layers to transfer charge carriers photogenerated in each of said photoconductive layers to the other layers. and a charge blocking portion for blocking movement, wherein each of the photoconductive layers exhibits mutually different photosensitivity to light irradiation from the uppermost layer side in a laminated state. Photoreceptor.
JP59183709A 1984-09-04 1984-09-04 Electrophotographic copying method Expired - Lifetime JPH0629971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183709A JPH0629971B2 (en) 1984-09-04 1984-09-04 Electrophotographic copying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183709A JPH0629971B2 (en) 1984-09-04 1984-09-04 Electrophotographic copying method

Publications (2)

Publication Number Publication Date
JPS6162037A true JPS6162037A (en) 1986-03-29
JPH0629971B2 JPH0629971B2 (en) 1994-04-20

Family

ID=16140581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183709A Expired - Lifetime JPH0629971B2 (en) 1984-09-04 1984-09-04 Electrophotographic copying method

Country Status (1)

Country Link
JP (1) JPH0629971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023589A (en) * 2004-07-08 2006-01-26 Sanyo Electric Co Ltd Liquid crystal display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940132A (en) * 1972-08-16 1974-04-15
JPS5014524A (en) * 1973-06-12 1975-02-15
JPS55137532A (en) * 1979-04-16 1980-10-27 Canon Inc Electrophotographic receptor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940132A (en) * 1972-08-16 1974-04-15
JPS5014524A (en) * 1973-06-12 1975-02-15
JPS55137532A (en) * 1979-04-16 1980-10-27 Canon Inc Electrophotographic receptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023589A (en) * 2004-07-08 2006-01-26 Sanyo Electric Co Ltd Liquid crystal display

Also Published As

Publication number Publication date
JPH0629971B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US3791826A (en) Electrophotographic plate
JPS6034747B2 (en) image forming member
JPH01567A (en) photoreceptor
CA2004493C (en) Electrostatographic imaging members
JPS6059353A (en) Electrophotographic sensitive body
US5342719A (en) Imaging members having a hydroxy aryl amine charge transport layer
US4567125A (en) Electrophotographic recording material
JPS6162037A (en) Electrophotographic sensitive body
US4108657A (en) Multi-active photoconductive element with an aggregate and inorganic photoconductor
JPS63257762A (en) Electrophotographic sensitive body
JPS61112152A (en) Electrophotographic sensitive body
JPS61112151A (en) Electrophotographic sensitive body
JP3727119B2 (en) Organic single-layer photoconductor for electrophotography
JPH06118668A (en) Photosensitive body
JP2599950B2 (en) Photoconductor structure
JPH1048854A (en) Electrophotographic photoreceptor
JPS63287955A (en) Photoconductive film and electrophotographic sensitive body using same
US4292385A (en) Bi-modal photoreceptor and method
JPS63284559A (en) Organic photoconductive material
JPS6377059A (en) Electrophotographic sensitive body
JPH02244055A (en) Photosensitive body
JPS6049342A (en) Bipolar type electrophotographic sensitive body
JPS5952831B2 (en) Electrophotographic latent image formation method
JPS62184464A (en) Electrophotographic sensitive body
JPS60189751A (en) Electrophotographic sensitive body