JPS6161934B2 - - Google Patents

Info

Publication number
JPS6161934B2
JPS6161934B2 JP15260381A JP15260381A JPS6161934B2 JP S6161934 B2 JPS6161934 B2 JP S6161934B2 JP 15260381 A JP15260381 A JP 15260381A JP 15260381 A JP15260381 A JP 15260381A JP S6161934 B2 JPS6161934 B2 JP S6161934B2
Authority
JP
Japan
Prior art keywords
stage
positioning
guide member
suction
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15260381A
Other languages
Japanese (ja)
Other versions
JPS5856741A (en
Inventor
Munenori Kanai
Hiroo Kinoshita
Kimikichi Deguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15260381A priority Critical patent/JPS5856741A/en
Publication of JPS5856741A publication Critical patent/JPS5856741A/en
Publication of JPS6161934B2 publication Critical patent/JPS6161934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs

Description

【発明の詳細な説明】 本発明はステージが流体静圧により案内部材に
無接触で案内され且つ無接触で駆動されるように
した、すなわち静圧流体軸受を案内としたステー
ジの送り位置決め装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stage feeding and positioning device in which a stage is guided and driven without contact with a guide member by hydrostatic pressure, that is, a stage is guided by a hydrostatic fluid bearing. It is something.

この種のステージの送り位置決め装置の特徴の
一つとして摩擦係数が非常に小さく、ステイツク
スリツプ現象が生じないことがある。これはステ
ージ送り量の微細化、すなわち高分解能化を図る
上で大きな利点である。しかしその反面、摩擦係
数が非常に小さいことより、傾きによるすべり落
下、流体の不均一流れによる片寄り、あるいは振
動などの極めて小さい外乱力を敏感に反応し、ス
テージ位置が容易に変動する。従来、この種ステ
ージの高精度な送り位置決め手段として、レーザ
測長器によるステージ位置の検出信号をステージ
に直結した電動モータにフイードバツクサーボ制
御する手段がとられている。しかし、ステージの
位置決め停止におけるレーザ測長器の最小検出感
度範囲内ではフイードバツクサーボが作用し得な
いため、前記のような極めて小さい力によつてス
テージ位置が自由に変動することと、また位置変
動が検出され、フイードバツクサーボが作用した
としても、フイードバツク回路やサーボモータの
時定数などによるオーバランのため、レーザ測長
器の検出感度内に位置決め停止させることは容易
ではなく、実際は検出感度の数倍から一桁悪い位
置決め誤差を生ずるとともに、一定の振幅をもつ
て停止するなどの欠点があつた。
One of the characteristics of this type of stage feeding and positioning device is that the coefficient of friction is very small, so that the stick slip phenomenon does not occur. This is a great advantage in achieving finer stage feed, that is, higher resolution. On the other hand, however, because the coefficient of friction is extremely small, it responds sensitively to extremely small disturbances such as slipping and falling due to inclination, deviation due to uneven flow of fluid, and vibration, and the stage position easily changes. Conventionally, as means for highly accurate feed positioning of this type of stage, a means has been adopted in which a stage position detection signal from a laser length measuring device is subjected to feedback servo control to an electric motor directly connected to the stage. However, since the feedback servo cannot act within the minimum detection sensitivity range of the laser length measuring device when the stage is positioned and stopped, the stage position can freely fluctuate due to the extremely small force mentioned above. Even if a positional change is detected and the feedback servo is activated, it is not easy to position and stop within the detection sensitivity of the laser length measuring device due to overruns caused by the feedback circuit and the time constant of the servo motor. In addition to producing a positioning error that is several times worse than the sensitivity, it also has drawbacks such as stopping after a certain amplitude.

本発明は上記の点にかんがみ、ステージの位置
決め剛性や位置決め停止精度を1桁ないし2桁向
上させ得るようにしたステージの送り位置決め装
置を提供するものであつて、以下図面について詳
細に説明する。
In view of the above points, the present invention provides a stage feeding and positioning device that can improve stage positioning rigidity and positioning and stopping accuracy by one or two orders of magnitude, and will be described in detail below with reference to the drawings.

第1図は従来の送り位置決め装置の一例を示
し、1は上面に溝を形成したステージの案内部
材、2は案内部材1の溝内に挿入され、該溝に沿
い該溝と非接触状態で移動し得るステージであつ
て、浮上部材3とその上部のステージ本体4とよ
りなり、浮上部材3には下方に案内部材1の溝底
面に向つて流体を噴出する供気孔5と、両側面に
上記溝の両側壁に向つて流体を噴出する供気孔6
と、供圧ホース8との接続口より上記供気孔5,
6に通ずる供気孔7とが設けられており、供圧ホ
ース8より加圧流体を供給することによりステー
ジ2は案内部材1の溝中で浮上し、また該溝の両
側壁とも非接触状態に保たれる。9は浮上部材3
に取りつけた反射ミラー、10はレーザ測長器、
11は浮上部材3から後方へ突設した支持杆であ
る。12はリニアモータよりなるステージ2の駆
動装置であつて、支持杆11に固定支持されたコ
イル13と、ヨーク14、N磁極15、S磁極1
6とよりなつている。このため、駆動装置12の
コイル13に電流を流すとコイル13の線輪がN
磁極15とS磁極間の磁束を横切つているのでコ
イル13はステージ2の進行方向に電流値に比例
した駆動力を発生する。従つて、ステージ2は無
接触で案内、並びに駆動される。また、レーザ測
長器10はステージの位置を常に観測しており、
ステージ2の位置信号を時間で微分する回路を通
して速度信号を得ている。
FIG. 1 shows an example of a conventional feed positioning device, in which 1 is a stage guide member with a groove formed on its upper surface, 2 is inserted into the groove of the guide member 1, and is moved along the groove in a non-contact state. The stage is movable and consists of a floating member 3 and a stage main body 4 above it. Air supply hole 6 that spouts fluid toward both side walls of the groove
and the air supply hole 5, from the connection port with the pressure supply hose 8.
By supplying pressurized fluid from the pressure supply hose 8, the stage 2 floats in the groove of the guide member 1, and is not in contact with both side walls of the groove. It is maintained. 9 is floating member 3
10 is a laser length measuring device,
Reference numeral 11 denotes a support rod protruding rearward from the floating member 3. Reference numeral 12 denotes a drive device for the stage 2 consisting of a linear motor, which includes a coil 13 fixedly supported by the support rod 11, a yoke 14, an N magnetic pole 15, and an S magnetic pole 1.
It is more like 6. Therefore, when a current is applied to the coil 13 of the drive device 12, the wire of the coil 13 becomes N
Since the coil 13 crosses the magnetic flux between the magnetic pole 15 and the S magnetic pole, the coil 13 generates a driving force proportional to the current value in the direction in which the stage 2 moves. Therefore, the stage 2 is guided and driven without contact. In addition, the laser length measuring device 10 constantly observes the position of the stage.
A speed signal is obtained through a circuit that differentiates the position signal of stage 2 with respect to time.

つぎに、従来におけるステージ2の送り位置決
め動作について説明する。送り位置決め動作は与
えられた位置決め点の指令値と、そのときのステ
ージ2の位置及び速度信号とを電子回路で比較し
この結果を駆動装置12にフイードバツクして所
定の位置に停止させる。すなわち、位置決め点で
は指令値とステージ2の位置信号とが等しくなる
よう、速度が零になるようコイル13に流す電流
を制御する。従つて、遠方からステージ2を加速
及び減速して短時間に位置決め点に到達させよう
とすればコイル13に大きな電流を流すが、位置
決め点に接近する程小さな電流で良くなる。
Next, the conventional feeding positioning operation of the stage 2 will be explained. In the feed positioning operation, the command value of a given positioning point is compared with the position and speed signal of the stage 2 at that time using an electronic circuit, and the results are fed back to the drive device 12 to stop the stage 2 at a predetermined position. That is, at the positioning point, the current flowing through the coil 13 is controlled so that the command value and the position signal of the stage 2 become equal and the speed becomes zero. Therefore, if it is attempted to accelerate and decelerate the stage 2 from a distance to reach the positioning point in a short time, a large current will be passed through the coil 13, but the closer the stage 2 is to the positioning point, the smaller the current will be.

このように、無接触の案内、並びに駆動装置を
用いたステージの送り位置決め装置では、摩擦が
無いため小さな駆動力で大重量の物体を簡単に動
かせるので長距離の高速送りが可能となるが、フ
イードバツクサーボが作用しないと所定の位置に
ステージ2を送ることは勿論、単に停止させてお
くことも不可能である。また、摩擦が無いため傾
きによる滑り落下、流体の不均一流れによる片寄
りあるいは振動などの極めて小さな外乱力にも敏
感に反応しステージ2位置が容易に変動する。従
つて、駆動装置12は、これら極めて小さな外乱
力にも対応できる駆動力を出力できねばならない
が、レーザ測長器10の最小検出感度内ではフイ
ードバツクサーボが作用し得ないため、ステージ
2の位置決め停止精度は測長器の最小検出感度以
上は得られず、また、位置変動が検出されフイー
ドバツクサーボが作用したとしても電子回路やコ
イル13のインダクタンスに基く時定数が必らず
存在するから、フイードバツクサーボの時間遅れ
によるステージ2のオーバランは避けられない。
従つて、ステージ2は位置決め点の近傍を往復運
動しながら停止していることになり、ステージ2
をレーザ測長器10の検出感度内に位置決め停止
させることは容易でなく、若際はレーザ測長器1
0の検出感度の数倍から1桁低い位置決め停止誤
差を生ずる欠点があつた。
In this way, with a stage feeding and positioning device that uses non-contact guidance and a drive device, since there is no friction, it is possible to easily move a heavy object with a small driving force, making it possible to feed a large object at high speed over a long distance. If the feedback servo does not work, it is impossible to send the stage 2 to a predetermined position, and it is also impossible to simply stop it. In addition, since there is no friction, the stage 2 position easily changes as it responds sensitively to extremely small disturbance forces such as slipping and falling due to inclination, shifting due to non-uniform flow of fluid, or vibration. Therefore, the drive device 12 must be able to output a drive force that can respond to these extremely small disturbance forces, but since the feedback servo cannot operate within the minimum detection sensitivity of the laser length measuring device 10, the stage 2 The positioning and stopping accuracy cannot exceed the minimum detection sensitivity of the length measuring device, and even if positional fluctuations are detected and the feedback servo is activated, there is always a time constant based on the inductance of the electronic circuit and coil 13. Therefore, an overrun in stage 2 due to the time delay of the feedback servo is unavoidable.
Therefore, stage 2 is stopped while reciprocating near the positioning point, and stage 2
It is not easy to position and stop the laser length measuring device 10 within the detection sensitivity of the laser length measuring device 10.
This method has the drawback of causing a positioning and stopping error that is several times lower than the zero detection sensitivity to one order of magnitude lower.

本発明は上記の点にかんがみ、ステージの位置
決め停止精度を1〜2桁向上させ得るステージの
送り位置決め装置を提供するものである。
In view of the above points, the present invention provides a stage feeding and positioning device that can improve stage positioning and stopping accuracy by one to two orders of magnitude.

以下図面について詳細に説明する。 The drawings will be explained in detail below.

第2図は本発明の一実施例を示す部分断面図で
ある。第2図において第1図と同じ記号は同一機
能を有するものを示し、その説明を省略する。第
3図は本発明の吸着装置の拡大断面図、第4図は
吸着装置の吸着動作状態を示す拡大断面図であ
る。
FIG. 2 is a partial sectional view showing one embodiment of the present invention. In FIG. 2, the same symbols as in FIG. 1 indicate components having the same functions, and their explanation will be omitted. FIG. 3 is an enlarged sectional view of the suction device of the present invention, and FIG. 4 is an enlarged sectional view showing the suction operation state of the suction device.

第2図において、17はステージ2の送り方向
に剛性を有する板ばねよりなる弾性体であつて、
一端は浮上部材3に、他端は吸着装置18に固定
されている。吸着装置18は第3図および第4図
に示すように、支持金具19と、この支持金具1
9に板ばね20を介して支持され真空排気口22
を形成された吸着パツド21とよりなり、板ばね
20は吸着パツド21を板厚方向で支持し、この
吸着パツドが案内部材1の溝底面に向い容易に動
き得るよう低剛性になつており、また板面方向が
ステージ2の送り方向を向き、この方向には高剛
性になつている。吸着パツド21は案内部材1の
溝底面とは極めて僅かなすきまをもつて相対する
ようにされ、ステージ2のストローク中、すべて
の位置で吸着動作させることができる。真空排気
口22は図示外の排気ホースにより三方弁を介し
て真空ポンプに接続される。
In FIG. 2, 17 is an elastic body made of a leaf spring having rigidity in the feeding direction of the stage 2,
One end is fixed to the floating member 3, and the other end is fixed to the suction device 18. As shown in FIGS. 3 and 4, the suction device 18 includes a support fitting 19 and a support fitting 1.
The vacuum exhaust port 22 is supported by the plate spring 20 at the
The plate spring 20 supports the suction pad 21 in the thickness direction, and has low rigidity so that the suction pad can easily move toward the bottom surface of the groove of the guide member 1. Further, the plate surface direction faces the feeding direction of the stage 2, and has high rigidity in this direction. The suction pad 21 is arranged to face the bottom surface of the groove of the guide member 1 with an extremely small gap, and can be suctioned at all positions during the stroke of the stage 2. The vacuum exhaust port 22 is connected to a vacuum pump via a three-way valve by an exhaust hose (not shown).

つぎに以上述べた本発明装置の動作を説明す
る。まず粗い位置決め動作は従来の手順と同じく
レーザ測長器10によるステージ2の位置検出信
号をコイル13にフイードバツクサーボ制御し、
ステージ2を位置決め停止させたのち、三方弁を
切換えることにより真空排気口を真空ポンプに接
続すると、吸着パツド21は案内部材1の案内溝
底面に吸着される。このためステージ2は弾性体
17を介して案内部材1に静圧流体案内されたま
ま結合される。このとき板ばね20は板厚方向に
は低剛性であるため、ステージ2の静圧流体案内
精度には殆んど影響を与えることなく、送り方向
にのみ高剛性に位置決め停止できる。このような
吸着による停止中は、弾性体17による送り方向
剛性が付加されるので、ステージ2の傾きによる
すべり落下、流体の不均一流れによる片寄り、あ
るいは振動などの外乱に対する抵抗力が増大す
る。すなわち、ステージの傾斜によるすべり落下
や流体の不均一流れなどによる外乱は、もともと
ステージ2に外乱力として作用するが、吸着装置
18の案内部材1への吸着時に案内部材1とステ
ージ2間に弾性体17による送り方向剛性が付加
されると、案内部材1とステージ2間の外乱力に
よる相対変位は、外乱力を送り方向剛性で除した
値となるので、フイードバツクサーボの対象とな
る相対変位そのものが小さくなること、ならびに
装置を設置する床の振動に起因する振動外乱は、
もともと案内部材1に振動変位として作用するも
のであり、吸着装置18の動作前は、この振動変
位そのものが案内部材1とステージ2間の相対変
位としてフイードバツクサーボの対象となるもの
の、吸着装置18の動作後は、案内部材1とステ
ージ2がほとんど一体で振動するので、相対変位
はフイードバツクサーボの対象となり得ない値ま
で小さくなることなど、位置決め安定性が著しく
増大する。ただしこの場合、共振を避けるため、
ステージ2の重量と弾性体17の剛性で定まるス
テージ2の固有振動数を外乱振動数より十分大き
くとる必要があることはいうまでもない。つぎに
微細位置決め動作を説明する。
Next, the operation of the apparatus of the present invention described above will be explained. First, the rough positioning operation is performed by feedback servo control of the position detection signal of the stage 2 by the laser length measuring device 10 to the coil 13, as in the conventional procedure.
After the stage 2 is positioned and stopped, the vacuum exhaust port is connected to a vacuum pump by switching the three-way valve, and the suction pad 21 is suctioned to the bottom surface of the guide groove of the guide member 1. Therefore, the stage 2 is coupled to the guide member 1 via the elastic body 17 while being guided by static pressure fluid. At this time, since the plate spring 20 has low rigidity in the plate thickness direction, the stage 2 can be positioned and stopped with high rigidity only in the feeding direction, with almost no effect on the static pressure fluid guiding accuracy. During this stoppage due to adsorption, the elastic body 17 adds rigidity in the feeding direction, which increases resistance to external disturbances such as slipping and falling due to the inclination of the stage 2, unevenness due to uneven flow of fluid, and vibration. . That is, disturbances caused by slipping and falling due to the inclination of the stage or uneven flow of fluid originally act as disturbance forces on the stage 2, but when the suction device 18 is attracted to the guide member 1, there is an elastic force between the guide member 1 and the stage 2. When the rigidity in the feeding direction by the body 17 is added, the relative displacement due to the disturbance force between the guide member 1 and the stage 2 becomes the value obtained by dividing the disturbance force by the rigidity in the feeding direction. The displacement itself becomes smaller, and the vibration disturbance caused by the vibration of the floor on which the equipment is installed is
Originally, it acts on the guide member 1 as vibration displacement, and before the suction device 18 operates, this vibration displacement itself becomes the target of the feedback servo as a relative displacement between the guide member 1 and the stage 2, but the suction device After the operation of step 18, the guide member 1 and the stage 2 vibrate almost integrally, so that the relative displacement is reduced to a value that cannot be subjected to feedback servo, and the positioning stability is significantly increased. However, in this case, to avoid resonance,
It goes without saying that the natural frequency of the stage 2 determined by the weight of the stage 2 and the rigidity of the elastic body 17 must be set to be sufficiently larger than the disturbance frequency. Next, the fine positioning operation will be explained.

吸着装置18を吸着動作させたまま、駆動装置
12でステージ2を駆動すれば、駆動力に比例し
て弾性体17が変形するので、ステージ2の微細
送りができる。従つて、吸着装置18の吸着動作
後における位置決め停止誤差分だけ、弾性体17
を変形させるに要する一定の駆動力をコイル13
によつて発生させると、ステージ2を測長器の検
出感度範囲内で目標位置に高精度に位置決め停止
できる。すなわち、ステージ2は吸着装置18の
動作前は無接触状態で、動作後は弾性体17によ
る案内部材1との弾性結合状態で駆動並びに位置
決め停止される。前記したように吸着装置18の
動作前は無接触であるため、小さな駆動力で長距
離の高速駆動が可能となる一方、小さな力にも敏
感に反応するため位置決め停止に際して種々な外
乱力の影響を受け易く、ステージ2の位置決め停
止精度を高められないが、吸着装置18の動作後
は駆動装置12による弾性体17の変形量がステ
ージ2の駆動量となり、大きな駆動力で短距離し
か動かせないが、ステージ2が弾性体17を介し
て案内部材1に結合されているため種々な外乱力
に対する抵抗力が増大する。加えて弾性体17は
変形に伴う摩擦要因が無くステツクスリツプ現象
を生じないから小さな駆動力が加わればそれなり
に変形するので小さな駆動力による微細駆動が可
能となる。
If the stage 2 is driven by the drive device 12 while the suction device 18 is in the suction operation, the elastic body 17 is deformed in proportion to the driving force, so that the stage 2 can be moved finely. Therefore, the elastic body 17 is adjusted by the positioning stop error after the suction operation of the suction device 18.
The constant driving force required to deform the coil 13
When generated by , the stage 2 can be positioned and stopped at the target position with high precision within the detection sensitivity range of the length measuring device. That is, before the suction device 18 operates, the stage 2 is in a non-contact state, and after the operation, the stage 2 is driven and positioned while being elastically connected to the guide member 1 by the elastic body 17. As mentioned above, since there is no contact before the suction device 18 operates, long-distance, high-speed driving is possible with a small driving force.However, since it reacts sensitively to small forces, it is susceptible to the effects of various disturbance forces when positioning and stopping. However, after the suction device 18 operates, the amount of deformation of the elastic body 17 by the drive device 12 becomes the amount of drive of the stage 2, and the stage 2 can only be moved over a short distance with a large driving force. However, since the stage 2 is coupled to the guide member 1 via the elastic body 17, resistance to various disturbance forces increases. In addition, since the elastic body 17 has no frictional factors associated with deformation and does not cause the stick slip phenomenon, it deforms to a certain extent when a small driving force is applied to it, so that fine driving with a small driving force is possible.

また、吸着装置18動作前におけるフイードバ
ツクサーボでは駆動装置12が出力できる駆動力
が大きいほどステージ2を短時間で加速及び減速
できるのでステージ2の高速駆動が可能となる。
Further, in the feedback servo before the operation of the suction device 18, the larger the driving force that the drive device 12 can output, the faster the stage 2 can be accelerated and decelerated, so the stage 2 can be driven at a higher speed.

一方、駆動装置12が出力できる駆動力が小さ
いほど前述した種々の小さな外乱力に対応するフ
イードバツクサーボによりステージ2を高精度に
位置決め停止させることができる。このように駆
動装置12が出力できる大きな駆動力と小さな駆
動力との比が大きいほどステージ2の高速かつ高
精度な駆動並びに位置決め停止が可能となる。し
かるに駆動力は駆動装置12のコイル13に流す
電流を電子回路で制御してフイードバツクするた
め、例えば電流値を1アンペア(A)から1ミリアン
ペア(mA)まで3桁程度制御するのは容易であ
り、コイル13に出力される駆動力の比を1000:
1以上にできる。
On the other hand, the smaller the driving force that can be output by the driving device 12, the more precisely the stage 2 can be positioned and stopped by the feedback servo corresponding to the various small disturbance forces described above. As described above, the larger the ratio between the large driving force and the small driving force that can be output by the driving device 12, the more quickly and precisely the stage 2 can be driven and positioned. However, since the driving force is generated by controlling the current flowing through the coil 13 of the driving device 12 using an electronic circuit and providing feedback, it is easy to control the current value by about three orders of magnitude, for example from 1 ampere (A) to 1 milliampere (mA). , the ratio of the driving force output to the coil 13 is 1000:
Can be made more than 1.

さて、前記したように吸着装置18動作前のい
わゆる従来のフイードバツクサーボでの位置決め
停止精度はレーザ測長器10の位置検出感度より
約1桁低い。
Now, as described above, the positioning and stopping accuracy of the so-called conventional feedback servo before the suction device 18 operates is about one order of magnitude lower than the position detection sensitivity of the laser length measuring device 10.

これに対し、吸着装置18の動作後の弾性体1
7の弾性変形によるステージ2の駆動量(以下弾
性駆動ストロークという。)は駆動力の大きさに
依存するから、駆動装置12による大きな駆動力
によるステージ2の弾性駆動ストロークがレーザ
測長器10の検出感度より1桁程度大きい剛性を
有する弾性体17を選択することにより、小さな
駆動力によるステージ2の弾性駆動ストロークを
前記大きな駆動力による弾性駆動ストロークの約
1×10-3以下にできる。前記した例では大きな駆
動力による弾性駆動ストロークをステージ位置の
検出感度より1桁程度大きくしたので、小さな駆
動力による弾性駆動ストロークはこの値の約1×
10-3となり、ステージ位置の検出感度の10-2程度
に向上する。前記した種々の外乱の影響を考慮し
てもステージ位置の検出感度の10倍の位置決め停
止精度が得られる。換言すれば吸着装置18の動
作前後におけるステージ2の位置決め停止精度は
動作前すなわち従来の駆動手段ではステージ位置
検出感度の約1/10であり、動作後すなわち本発明
による駆動手段では約10倍の精度が得られるの
で、従来の場合と本発明による場合とでは停止精
度は少くとも10倍に向上し得る。
On the other hand, the elastic body 1 after the operation of the suction device 18
Since the amount of drive of the stage 2 due to the elastic deformation of the stage 2 (hereinafter referred to as the elastic drive stroke) depends on the magnitude of the driving force, the elastic drive stroke of the stage 2 due to the large drive force of the drive device 12 is the amount of the elastic drive stroke of the laser length measuring device 10. By selecting the elastic body 17 having a rigidity that is about one order of magnitude greater than the detection sensitivity, the elastic drive stroke of the stage 2 caused by a small driving force can be approximately 1×10 -3 or less than the elastic drive stroke caused by the large driving force. In the above example, the elastic drive stroke due to the large driving force was made approximately one order of magnitude larger than the stage position detection sensitivity, so the elastic drive stroke due to the small drive force was approximately 1× this value.
10 -3 , which improves the stage position detection sensitivity to about 10 -2 . Even if the effects of the various disturbances mentioned above are taken into account, a positioning and stopping accuracy that is 10 times higher than the stage position detection sensitivity can be obtained. In other words, the positioning and stopping accuracy of the stage 2 before and after the operation of the suction device 18 is about 1/10 of the stage position detection sensitivity before the operation, that is, with the conventional drive means, and about 10 times the stage position detection sensitivity after the operation, that is, with the drive means according to the present invention. Due to the accuracy obtained, the stopping accuracy can be improved by at least a factor of 10 between the conventional case and the case according to the invention.

以上、吸着装置18の動作後においてステージ
2の位置決め停止精度が向上する理由について述
べたが、さらに大きな差異は吸着装置18動作前
はステージ位置の検出信号が得られないとフイー
ドバツクサーボが不能であるためステージ2を単
に停止させておくことも出来ないが、動作後は停
止させておくことは勿論、ステージ位置の検出信
号が得られなくとも弾性駆動ストロークは駆動装
置12のコイル13に流す電流値に依存している
ので、この関係を利用してステージ2の微細な駆
動と位置決め停止が可能となる。
The reason why the positioning and stopping accuracy of the stage 2 improves after the operation of the suction device 18 has been described above, but the even bigger difference is that before the suction device 18 operates, the feedback servo is not possible unless a stage position detection signal is obtained. Therefore, it is not possible to simply stop the stage 2, but it is of course possible to stop the stage 2 after operation, and even if a stage position detection signal is not obtained, the elastic drive stroke can be applied to the coil 13 of the drive device 12. Since it depends on the current value, it is possible to finely drive and position and stop the stage 2 by using this relationship.

なお上記に示した例では、吸着装置18は案内
部材1に吸着するようにしたが、ステージ2の送
り方向に沿う案内部材とは別な固定体に吸着する
ようにしてもよく、上記図示例に限られない。ま
た上記の実施例ではステージの直進形の場合を示
したが、回転形のものにも適用できることは勿論
である。また上記例では測長器にレーザ測長器、
駆動装置にリニアモータを用いたが、その代りに
同じ非接触形である磁力,静電容量,光量の変化
を利用した測長器,静電力,流体の圧力差や流量
差を利用した駆動装置を用いてもよい。
In the example shown above, the suction device 18 was configured to suction to the guide member 1, but it may also be configured to suction to a fixed body other than the guide member along the feeding direction of the stage 2. Not limited to. Furthermore, although the above embodiments have shown the case of a linear stage, it is of course applicable to a rotating stage. In the above example, the length measuring device is a laser length measuring device,
A linear motor was used as the drive device, but in place of that, there are also non-contact length measuring instruments that use magnetic force, capacitance, and changes in light intensity, and drive devices that use electrostatic force and differences in fluid pressure and flow rate. may also be used.

以上のように本発明によれば、ステージの位置
決め停止時に、ステージの送り方向に剛性を有す
る弾性体を介在させてステージに取りつけられた
吸着装置を案内部材に吸着させることにより、ス
テージの傾きによる落下、流体の不均一流れによ
る片寄り、振動などの外乱に対する抵抗力が著し
く増大し、そして吸着装置を案内部材に吸着せし
めたまま、ステージを駆動することにより弾性体
を弾性変形させてステージを微細送りすることが
できるので、測長器の検出感度範囲内で目標位置
に高精度に位置決め停止することができ、従来に
比しステージの位置決め剛性や位置決め停止精度
を向上せしめ得る。従つて本発明装置を半導体素
子製造工程に用いる微細パターンの転写、認識装
置におけるパターンの位置合せや、物理あるいは
機械加工ならびに測定装置における試料送りなど
に用いることによつて、これら位置合わせ、試料
送り等を従来方法より高精度になし得る。
As described above, according to the present invention, when the stage is positioned and stopped, the suction device attached to the stage is adsorbed to the guide member with an elastic body having rigidity interposed in the feeding direction of the stage. The resistance to external disturbances such as falling, uneven flow of fluid, vibration, etc. increases significantly, and by driving the stage while the suction device is adsorbed to the guide member, the elastic body is elastically deformed and the stage is moved. Since fine feeding is possible, it is possible to position and stop at the target position with high precision within the detection sensitivity range of the length measuring device, and the positioning rigidity and positioning and stopping accuracy of the stage can be improved compared to the conventional stage. Therefore, by using the device of the present invention for transferring fine patterns used in semiconductor device manufacturing processes, aligning patterns in recognition devices, and feeding samples in physical or mechanical processing and measuring devices, it is possible to improve these alignments and sample feedings. etc. can be achieved with higher precision than conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の実施例の断面図、第2図
は本発明の実施例の断面図、第3図は吸着装置部
の拡大断面図、第4図は吸着装置の吸着動作時の
状態を示す拡大断面図である。 1…案内部材、2…ステージ、17…弾性体、
18…吸着装置。
Fig. 1 is a sectional view of an embodiment of a conventional device, Fig. 2 is a sectional view of an embodiment of the present invention, Fig. 3 is an enlarged sectional view of the suction device section, and Fig. 4 is a sectional view of the suction device during suction operation. It is an enlarged sectional view showing a state. 1... Guide member, 2... Stage, 17... Elastic body,
18...Adsorption device.

Claims (1)

【特許請求の範囲】[Claims] 1 ステージが流体静圧により案内部材に無接触
で案内され且つ無接触で駆動されるようにしたス
テージの送り位置決め装置において、上記ステー
ジの送り位置決め停止時に、上記ステージを上記
案内部材へ吸着させるため上記ステージの送り方
向に剛性を有し上記ステージの送り方向の駆動力
により弾性変形する弾性体を介在させた吸着装置
を具備することを特徴とするステージの送り位置
決め装置。
1. In a stage feed positioning device in which the stage is guided and driven without contact with a guide member by fluid static pressure, in order to attract the stage to the guide member when the feed positioning of the stage is stopped. A stage feeding and positioning device comprising a suction device interposed with an elastic body that has rigidity in the feeding direction of the stage and is elastically deformed by a driving force in the feeding direction of the stage.
JP15260381A 1981-09-27 1981-09-27 Device for feeding and locating stage Granted JPS5856741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15260381A JPS5856741A (en) 1981-09-27 1981-09-27 Device for feeding and locating stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15260381A JPS5856741A (en) 1981-09-27 1981-09-27 Device for feeding and locating stage

Publications (2)

Publication Number Publication Date
JPS5856741A JPS5856741A (en) 1983-04-04
JPS6161934B2 true JPS6161934B2 (en) 1986-12-27

Family

ID=15544012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15260381A Granted JPS5856741A (en) 1981-09-27 1981-09-27 Device for feeding and locating stage

Country Status (1)

Country Link
JP (1) JPS5856741A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609621A (en) * 1983-06-28 1985-01-18 Miyoutoku:Kk Air slide and supporter for rest
JPS6076943A (en) * 1983-09-30 1985-05-01 Miyoutoku:Kk Air-slide system
US5490870A (en) * 1993-10-28 1996-02-13 Special Metals Corporation Amalgamable composition and method of production
US5354353A (en) * 1993-10-28 1994-10-11 Special Metals Corporation Amalgamable composition and method of production
US6127749A (en) * 1999-02-10 2000-10-03 Nikon Corporation Of Japan Two-dimensional electric motor

Also Published As

Publication number Publication date
JPS5856741A (en) 1983-04-04

Similar Documents

Publication Publication Date Title
US5040431A (en) Movement guiding mechanism
US20080304772A1 (en) Hydrostatic guide system
JP4687911B2 (en) Positioning device and positioning method
US4817848A (en) Compliant motion servo
JPS6161934B2 (en)
GB2284057A (en) Centring device for a deflectably mounted mechanical probe
WO1996028875A1 (en) Motor system generating orthogonal movement in a single plane
JPH0434166B2 (en)
US8056434B2 (en) Advancing means for a multi-coordinate measurement table of a coordinate measuring device and method for controlling such an advancing means
US6621241B2 (en) System and method for reducing oscillating tool-induced reaction forces
JPH0618007B2 (en) Non-contact drive type plane moving table
KR100664493B1 (en) Apparatus for compensating straightness error of linear motor stage and sliding mode control method for the same
JPH09269008A (en) Static pressure air bearing type guide device
JP2997273B2 (en) Stage movable support device
KR100264394B1 (en) Six-axis high-precision position decision device
JPH01259405A (en) Movement guide device
US6983703B2 (en) Driving means to position a load
JPH0659738A (en) Positioning device
JPH086747B2 (en) Inspection equipment
JPH0344593A (en) Positioning apparatus
JPH01164580A (en) Arm supporting structure of orthogonal type robot
JP2003066174A (en) Stage device
JPH0313462Y2 (en)
SU305676A1 (en) ELECTROMAGNETIC MEASURING DEVICE
JP2780847B2 (en) Driving device using coil for movable part