JPS6161911A - Air intake device of engine - Google Patents

Air intake device of engine

Info

Publication number
JPS6161911A
JPS6161911A JP59182999A JP18299984A JPS6161911A JP S6161911 A JPS6161911 A JP S6161911A JP 59182999 A JP59182999 A JP 59182999A JP 18299984 A JP18299984 A JP 18299984A JP S6161911 A JPS6161911 A JP S6161911A
Authority
JP
Japan
Prior art keywords
intake
engine
air intake
valve
surge tanks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59182999A
Other languages
Japanese (ja)
Other versions
JPH0578653B2 (en
Inventor
Haruo Okimoto
沖本 晴男
Asao Tadokoro
朝雄 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59182999A priority Critical patent/JPS6161911A/en
Publication of JPS6161911A publication Critical patent/JPS6161911A/en
Publication of JPH0578653B2 publication Critical patent/JPH0578653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0242Fluid communication passages between intake ducts, runners or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve effective utilization of air intake inertia effect and operability by providing air intake passages independent each other to one air cylinder on surge tanks separately formed and communicating respective surge tanks according to the operating condition. CONSTITUTION:Plural air intake passages 6, 7 connected to plural air intake ports of respective cylinders 1 are made independent with each other and opened to separate surge tanks 8, 9. And the surge tanks 8, 9 are connected in a serial passage 18, and the serial passage 18 is opened and closed by a switch valve 19. An actuator 21 working the switch valve 19 and an actuator 20 working fuel injection valves 14, 15 are a shutter valve 17 are controlled by a control unit 25 upon the signals from sensors 22-24 detecting operating condition of an engine. Then, respective surge tanks 8, 9 are used independently and air intake inertia effect in the engine high output range is effectively used to improve output.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの吸気装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine intake system.

(従来技術) エンジンの吸気装置に関して、各気筒に対し互いに独立
した2本の吸気通路をそれぞれ設け、これら吸気通路の
一端を各気筒の7つの吸気ポートに接続し、他端を7つ
のサージタンクに開口せしめたものは一般に知られてい
る。例えば、特開昭6♂−//99/ソ号公報には、上
記2本の吸気通路の一方に開閉弁を設け、開閉弁開の時
に吸気慣性効果により最大出力が得られるエンジン回転
数と、開閉弁開の時に同効果により最大出力が得られる
エンジン回転数との中間のエンジン回転数において開閉
弁の開閉の切換えを行々うことによシ、その中間のエン
ジン回転数域での出力の落込みを防止するようにする技
術が記載されている。
(Prior art) Regarding the engine intake system, two independent intake passages are provided for each cylinder, and one end of these intake passages is connected to the seven intake ports of each cylinder, and the other end is connected to the seven surge tanks. Those with openings are generally known. For example, in Japanese Patent Application Laid-Open No. 6♂-//99/S, an on-off valve is provided in one of the two intake passages, and when the on-off valve is open, the engine rotation speed is set such that the maximum output is obtained due to the intake inertia effect. By switching the opening and closing of the on-off valve at an engine speed midway between the engine speed at which the maximum output is obtained due to the same effect when the on-off valve is open, the output is increased in the engine speed range in between. Techniques are described to prevent this from falling.

ところで、上記吸気慣性効果は吸気通路の長さと断面積
に応じてその特性が決まる。従って、7つの気筒に接続
した2本の吸気通路の長さや断面積を変えて設定すると
、エンジン高回転高負荷運転時のように両吸気通路から
吸気を導入する運転域において、サージタンクによる開
放端での圧力波の反転タイミングが異なってくる。この
とき、サージタンク内においても上記圧力波の反転によ
る脈動が生じるが、上述の如く反転タイミングが異なる
と両吸気通路での圧力波反転によるタンク内脈動が互い
に干渉し、所望の吸気慣性効果が得られないことがある
By the way, the characteristics of the intake inertia effect are determined depending on the length and cross-sectional area of the intake passage. Therefore, if the lengths and cross-sectional areas of the two intake passages connected to seven cylinders are set to be different, the surge tank will open the air in operating ranges where intake air is introduced from both intake passages, such as during high engine speed and high load operation. The timing of the reversal of the pressure wave at the edge is different. At this time, pulsations also occur in the surge tank due to the reversal of the pressure waves, but if the reversal timings are different as described above, the pulsations in the tank due to the reversal of pressure waves in both intake passages will interfere with each other, and the desired intake inertia effect will not be achieved. Sometimes you can't get it.

一方、エンジンの急加速運転時には、スロットル弁の急
開動に伴って吸気(空気)がその1寸燃焼室に多量に導
入されると、エアフローメータで検出した吸入空気量信
号に基いて所定の空燃比となるように燃料噴射弁に燃料
増の信号を出力しても、信号処理時間の関係で応答遅れ
による所謂加速へジテーションを生じ易い。従って、サ
ージタンクはスロットル弁の開閉により吸入空気量の急
変を生じ々いようにその容%itiを太きくしたいとい
う要求もある。
On the other hand, when the engine is rapidly accelerating, when a large amount of intake air (air) is introduced into the combustion chamber due to the sudden opening of the throttle valve, a predetermined amount of air is introduced into the combustion chamber based on the intake air amount signal detected by the air flow meter. Even if a fuel increase signal is output to the fuel injector so as to maintain the fuel ratio, so-called acceleration tends to occur due to a delay in response due to the signal processing time. Therefore, there is a demand for increasing the volume of the surge tank so that the intake air amount does not suddenly change due to the opening and closing of the throttle valve.

(発明の目的) 本発明は、7つの気筒に接続した各吸気通路での圧力波
の伝播に関し、サージタンク開放端での圧力波反転タイ
ミングのずれによる干渉を防止すること、並びに加速へ
ジテーション々とサージタンクの容積に起因極する問題
を解消するととにより、吸気慣性効果の有効利用と運転
性の向」二を図ろうとするものである。
(Object of the Invention) The present invention relates to the propagation of pressure waves in each intake passage connected to seven cylinders, and is intended to prevent interference due to a shift in the timing of pressure wave reversal at the open end of a surge tank, and to prevent acceleration displacement. This aims to effectively utilize the intake inertia effect and improve drivability by solving problems caused by the volume of the surge tank.

(発明の構成) 本発明のエンジンの吸気装置においては、1つの気筒に
対し互いに独立して設けられた各吸気通路をそれぞれ別
々に設けられたサージタンクに開口し、圧力波の反転タ
イミングのずれに伴う干渉をなくすとともに、エンジン
運転状態に応じて各サージタンクを連通せしめる制御手
段を設けて、一つの大容積のサージタンクを形成するこ
とができるようにしている。
(Structure of the Invention) In the engine intake system of the present invention, each intake passage provided independently for one cylinder is opened to a surge tank provided separately, and a shift in the reversal timing of pressure waves is achieved. In addition to eliminating interference caused by engine operation, a control means is provided to connect each surge tank in accordance with the engine operating state, so that one large-volume surge tank can be formed.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図に示すグ気筒エンジンの吸気装置において、エン
ジン本体のピストンが嵌挿された各気筒1の燃焼室には
第1と第2の吸気口2,6および第1と第2の排気口4
,5が開口している。第1吸気口2には気筒周方向のス
ワールを形成する通路断面積の小さ々第1吸気通路6が
接続し、第2吸気口乙には通路断面積の犬き々第2吸気
通路7が接続されている。両吸気通路6,7は互いに独
立していて、それぞれ別個の第1と第2のサージタンク
8,9に開口しており、第2吸気通路7の方が第1吸気
通路6よりもエンジン回転数が高い運転領域で吸気慣性
効果による吸気の充填効率が高くなるようにそれぞれ通
路断面積および長さが設定されている。第1と第!のサ
ージタンク8゜9にはそれぞれエアクリーナ10から吸
気幹路11を介して送られる空気を導入する第1と第2
の分枝路12,13が接続されている。
In the intake system of the double-cylinder engine shown in FIG. 1, the combustion chamber of each cylinder 1 into which the piston of the engine body is inserted has first and second intake ports 2, 6 and first and second exhaust ports. 4
, 5 are open. A first intake passage 6 with a small passage cross-sectional area that forms a swirl in the circumferential direction of the cylinder is connected to the first intake port 2, and a second intake passage 7 with a narrow passage cross-sectional area is connected to the second intake port B. It is connected. Both intake passages 6 and 7 are independent of each other and open into separate first and second surge tanks 8 and 9, respectively, and the second intake passage 7 has a higher engine speed than the first intake passage 6. The cross-sectional area and length of each passage are set so that the intake air filling efficiency due to the intake inertia effect is high in an operating region where the number of passages is high. 1st and 1st! First and second surge tanks 8°9 each introduce air sent from the air cleaner 10 through the intake trunk 11.
branch paths 12 and 13 are connected.

上記第1と第2の吸気通路6,7にはそれぞれ第1と第
2の燃料噴射弁14,15が臨み、丑だ、第1分枝路1
2にはアクセルペダルの踏込量の増大に応じて開度が大
きくなるスロットル弁16が設けられ、第2分枝路16
には通路を開閉するシャッター弁17が設けられている
。そして、上記第1ザージタンク8と第2サージタンク
9とは、連通路18にて接続され、この連通路18に通
路を開閉する開閉弁19が設けられている。
First and second fuel injection valves 14 and 15 face the first and second intake passages 6 and 7, respectively, and the first branch passage 1
2 is provided with a throttle valve 16 whose opening degree increases as the amount of depression of the accelerator pedal increases, and the second branch path 16
A shutter valve 17 is provided to open and close the passage. The first surge tank 8 and the second surge tank 9 are connected through a communication passage 18, and the communication passage 18 is provided with an on-off valve 19 for opening and closing the passage.

そうして、」−記燃相噴射弁14.15、シャッター弁
17を作動せしめるアクチュエータ20および開閉弁1
9を作動せしめる。アクチュエータ21は、エンジン回
転数を検出するセンサ22、スロットル弁16の開度か
らエンジン負荷を検出する開度センサ26および吸気幹
路11に設けられた吸入空気量を検出するエアフローメ
ータ24からの信号(回転数信号、負荷信号および吸気
流量信号)を処理して作動信号を出力するコントロール
ユニット25にて作動が制御されるようになっている。
Then, the actuator 20 and the on-off valve 1 actuate the memorization phase injection valve 14, 15 and the shutter valve 17.
9 is activated. The actuator 21 receives signals from a sensor 22 that detects the engine rotation speed, an opening sensor 26 that detects the engine load from the opening of the throttle valve 16, and an air flow meter 24 that detects the amount of intake air provided in the intake main passage 11. The operation is controlled by a control unit 25 that processes (rotational speed signal, load signal, and intake flow rate signal) and outputs an operation signal.

すなわち、コントロールユニット25は以下の手段をも
つ。
That is, the control unit 25 has the following means.

■ 回転数信号と負荷信号とからエンジン運転状態が高
回転高負荷運転域にあるか否かを判断する手段 ■ 第2図に示す如くエンジンが高回転高負荷運転域に
あると判断されるとき、シャッター弁17のアクチュエ
ータ2oに開信号を出力し、他の運転域で閉信号を出力
する手段■ 回転数信号と負荷信号とからエンジン運転
状態が低回転高負荷運転域にあるか否かを判断する手段 ■ 第3図に示す如くエンジンが低回転高負荷運転域に
あると判断されるとき、開閉弁19のアクチュエータ2
1に開信号を出力し、他の運転域で閉信号を出力する手
段 ■ 回転数信号と吸気流量信号とから各気筒1の7回の
燃焼に必要々燃料噴射量を演算する手段 ■ ■の判断がYESのとき、■で演算された燃料噴射
量から第1と第2の吸気通路6,7の断面積等で決まる
吸入空気量比に応じて第1と第2の燃料噴射弁14.1
5の噴射パルス1]を演算する手段 ■ ■の判断がNOのとき、■で演算された燃料噴射量
に対応する第1燃別噴射弁14の噴射パルス巾を演算す
る手段 ■ ■、■で演算された噴射パルスを第1.第2の燃料
噴射弁14.15に出力する手段従って、上記実施例に
おいて、まず、エンジン低負荷運転域ではエンジン回転
数の高低にかかわらずシャッター弁17と開閉弁19が
閉じられていて、各気筒1には第1吸気通路6から第1
吸気口2を介して空気と第1燃料噴射弁14による噴射
燃料の混合気が導入される。このとき、気筒1内では気
筒周方向のスワールが形成され、燃料の気化、霧化が促
進されることによシ燃焼安定性が高くなる。まだ、ピス
トン(図示省略)の下降により生じた負圧波が第1吸気
通路6の第1サージタンク8側の開口部を開放端26と
して反転し、正圧波となって第1吸気口1へ戻ってくる
。従って、吸気弁前の圧力は負圧波と反射された正圧波
との合成圧と々す、吸気弁前圧力と気筒内圧力とが一致
するタイミングで吸気弁が閉じられるエンジン回転数の
とき、上記吸気慣性効果による吸気充填効率が最も高く
なって犬き々出力トルクが得られる。なお、第2吸気口
3はシャッター弁17の閉時にはコントロールユニット
25からの信号により作動するバルブ停止装置(図示省
略)により吸気弁にて閉じられている。
■ Means for determining whether or not the engine operating state is in the high-speed, high-load operating range based on the rotational speed signal and the load signal ■ When it is determined that the engine is in the high-speed, high-load operating range as shown in Figure 2 , a means for outputting an open signal to the actuator 2o of the shutter valve 17 and a close signal in other operating ranges■ Determines whether the engine operating state is in the low rotation and high load operating range from the rotation speed signal and the load signal. Means for determining■ When it is determined that the engine is in the low rotation and high load operating range as shown in FIG.
Means for outputting an open signal in 1 and a close signal in other operating ranges ■ Means for calculating the amount of fuel injection necessary for seven combustions in each cylinder 1 from the rotational speed signal and intake flow rate signal ■ ■ When the determination is YES, the first and second fuel injection valves 14. 1
Injection pulse 1 of No. 5] ■ When the judgment in ■ is NO, means for calculating the injection pulse width of the first fuel injection valve 14 corresponding to the fuel injection amount calculated in ■ ■, ■ The calculated injection pulse is the first one. Means for outputting to the second fuel injection valve 14.15 Therefore, in the above embodiment, first, in the engine low load operating range, the shutter valve 17 and the on-off valve 19 are closed regardless of the high or low engine speed. From the first intake passage 6 to the first
A mixture of air and fuel injected by the first fuel injection valve 14 is introduced through the intake port 2 . At this time, a swirl is formed in the cylinder circumferential direction within the cylinder 1, and combustion stability is enhanced by promoting vaporization and atomization of the fuel. Still, the negative pressure wave generated by the downward movement of the piston (not shown) is reversed with the opening on the first surge tank 8 side of the first intake passage 6 as the open end 26, and returns to the first intake port 1 as a positive pressure wave. It's coming. Therefore, the pressure in front of the intake valve is the composite pressure of the negative pressure wave and the reflected positive pressure wave.When the engine speed is such that the intake valve is closed at the timing when the pressure in front of the intake valve and the pressure in the cylinder match, the above The intake air filling efficiency due to the intake inertia effect is the highest, and the output torque can be obtained instantly. Note that when the shutter valve 17 is closed, the second intake port 3 is closed by a valve stop device (not shown) that is activated by a signal from the control unit 25.

次に、エンジン低回転高負荷運転域、つまり、エンジン
の加速運転時には、開閉弁19が開いて第1サージタン
ク8と第2サージタンク9が連通ずる。従って、この加
速運転時はスロットル弁16が急に開くが、両サージタ
ンク8.9が一つの大きなサージタンクを形成すること
になるため、各気筒1での吸入空気量の急変がなく、エ
アフローメータ24からの吸気流量信号の変化に対応し
て燃料噴射量が変わるまでに信号処理時間に相当するだ
け若干の応答遅れがあっても、空燃比が大きく変動して
希薄混合気になることは々く、燃焼状態の悪化は防止さ
れる。
Next, in the engine low rotation and high load operating range, that is, during engine acceleration operation, the on-off valve 19 opens and the first surge tank 8 and the second surge tank 9 communicate with each other. Therefore, during this acceleration operation, the throttle valve 16 opens suddenly, but since both surge tanks 8 and 9 form one large surge tank, there is no sudden change in the amount of intake air in each cylinder 1, and the air flow Even if there is a slight response delay corresponding to the signal processing time until the fuel injection amount changes in response to a change in the intake flow rate signal from the meter 24, the air-fuel ratio will not change significantly and the mixture will become lean. As a result, deterioration of combustion conditions is prevented.

次に、エンジン高回転高負荷運転域では、シャッター弁
17は開に、tだ開閉弁19は閉に々シ、第1吸気通路
6と第2吸気通路7とから各気筒1に混合気が導入され
るとともに、第1サージタンク8と第2サージタンク9
は互いに独立の状態と々る。従って、第1吸気通路6と
第2吸気通路7とではそれぞれ圧力波の伝播による特性
の異なる吸気慣性効果が生じるが、第1吸気通路6での
負圧波反転の開放端26を構成する第1サージタンク8
と、第2吸気通路7での負圧波反転の開放端27を構成
する第2サージタンク9が互いに独立しているから、タ
ンク内脈動による圧力波同志の干渉は々く、それぞれの
吸気慣性効果を有効に利用して吸気充填効率を高めるこ
とができる。
Next, in the engine high speed and high load operating range, the shutter valve 17 is opened and the on/off valve 19 is closed, causing the air-fuel mixture to flow from the first intake passage 6 and the second intake passage 7 to each cylinder 1. Along with the introduction, the first surge tank 8 and the second surge tank 9
are mutually independent states. Therefore, intake inertia effects with different characteristics occur in the first intake passage 6 and the second intake passage 7 due to the propagation of pressure waves, but the first surge tank 8
Since the second surge tank 9 constituting the open end 27 of negative pressure wave reversal in the second intake passage 7 is independent from each other, the pressure waves due to pulsation in the tank greatly interfere with each other, and the intake inertia effect of each is can be effectively used to increase intake air filling efficiency.

々お、開閉弁19は、エンジン減速運転時に開弁させて
第1と第2のサージタンク8,9を7つの太き々サージ
タンクとして利用するようにしてもよい。
Alternatively, the on-off valve 19 may be opened during deceleration of the engine, and the first and second surge tanks 8 and 9 may be used as seven large surge tanks.

(発明の効果) 本発明によれば、7つの気筒に対する互いに独立した各
吸気通路をそれぞれ別々に形成したサージタンクに開口
せしめ、各サージタンクを運転状態に応じて連通せしめ
る手段を設けたことから、各サージタンクを互いに独立
させて用いるときには例えばエンジン高出力域での吸気
慣性効果の有効利用が図れて出力を向上させることがで
き、また各サージタンクを連通させて用いるときには加
速あるいは減速運転時における吸入空気量の急変が防止
されて燃焼安定性が向上する。
(Effects of the Invention) According to the present invention, the mutually independent intake passages for the seven cylinders are opened into separately formed surge tanks, and a means is provided for communicating the surge tanks depending on the operating state. When the surge tanks are used independently from each other, for example, the intake inertia effect can be effectively used in the engine's high output range to improve output, and when the surge tanks are used in communication, it is possible to improve the output during acceleration or deceleration operation. This prevents sudden changes in the amount of intake air during combustion, improving combustion stability.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はエンジンの吸気
装置を示す全体構成図、第2図はゾヤッター弁の開閉の
運転領域を示す状態図、第3図は開閉弁の開閉の運転領
域を示す状態図である。 1・・・・・・気筒、6・・・・・・第1吸気通路、7
・・・・・・第2吸気通路、8・・・・・・第1ザージ
タンク、9・・・・・・第2ザージタンク、14・・・
・・・第1燃別噴射弁、15・・・・・・第2燃和噴射
弁、16・・・・・・スロットル弁、17・・・・・・
シャッター弁、18・・・・・・連通路、19・・・・
・・開閉弁
The drawings show an embodiment of the present invention; FIG. 1 is an overall configuration diagram showing the intake system of the engine, FIG. 2 is a state diagram showing the operating range of opening and closing of the Zoyatter valve, and FIG. 3 is an operation diagram of opening and closing of the on-off valve. FIG. 3 is a state diagram showing regions. 1... Cylinder, 6... First intake passage, 7
...Second intake passage, 8...First Zurge tank, 9...Second Zurge tank, 14...
...First fuel injection valve, 15...Second combustion injection valve, 16...Throttle valve, 17...
Shutter valve, 18...Communication path, 19...
・Opening/closing valve

Claims (1)

【特許請求の範囲】[Claims] (1)1つの気筒に対し互いに独立した吸気通路が設け
られ、各吸気通路がサージタンクに開口したエンジンに
おいて、各吸気通路が開口するサージタンクは別々に設
けられていて、エンジンの運転状態に応じて各サージタ
ンクを連通せしめる制御手段が設けられていることを特
徴とするエンジンの吸気装置。
(1) In an engine in which mutually independent intake passages are provided for one cylinder, and each intake passage opens into a surge tank, the surge tank into which each intake passage opens is provided separately, and the surge tank is adjusted depending on the engine operating state. An intake system for an engine, characterized in that it is provided with a control means for making each surge tank communicate with each other accordingly.
JP59182999A 1984-08-31 1984-08-31 Air intake device of engine Granted JPS6161911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59182999A JPS6161911A (en) 1984-08-31 1984-08-31 Air intake device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59182999A JPS6161911A (en) 1984-08-31 1984-08-31 Air intake device of engine

Publications (2)

Publication Number Publication Date
JPS6161911A true JPS6161911A (en) 1986-03-29
JPH0578653B2 JPH0578653B2 (en) 1993-10-29

Family

ID=16127981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59182999A Granted JPS6161911A (en) 1984-08-31 1984-08-31 Air intake device of engine

Country Status (1)

Country Link
JP (1) JPS6161911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190917A (en) * 1988-01-26 1989-08-01 Mazda Motor Corp Intake device for engine
JP2007175164A (en) * 2005-12-27 2007-07-12 Yoshino Kogyosho Co Ltd Inner tray descending dispensing vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190917A (en) * 1988-01-26 1989-08-01 Mazda Motor Corp Intake device for engine
JP2007175164A (en) * 2005-12-27 2007-07-12 Yoshino Kogyosho Co Ltd Inner tray descending dispensing vessel

Also Published As

Publication number Publication date
JPH0578653B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JPH0353452B2 (en)
JPS6161911A (en) Air intake device of engine
JPH0319892B2 (en)
JPH09324672A (en) Fuel injection timing control device of lean-burn engine
JPS6291623A (en) Intake-air device of engine
JPH0454057B2 (en)
JP2008303745A (en) Control device of internal combustion engine
JPH0236772B2 (en)
JP2008057463A (en) Intake control device and control method for engine
JPH0319370B2 (en)
JPS61218722A (en) Intake device of engine
JPS61283724A (en) Suction device for engine
JP3331418B2 (en) Engine air-fuel ratio control device
JPS6315554Y2 (en)
JPS6287613A (en) Suction device for engine
JPS62191628A (en) Intake path device for multicylinder internal combustion engine
JP2014224509A (en) Intake device for internal combustion engine
JPS6217318A (en) Air intake device of engine
JPS61218721A (en) Intake device of engine
JPH0380966B2 (en)
JPH0663456B2 (en) Engine intake system
JPS61132719A (en) Duplex air intake unit of internal-combustion engine
JPS6053631A (en) Control device for number of operating cylinder controlled engine
JPH06185397A (en) Fuel injection quantity controller for fuel injection type engine
JPS58122328A (en) Fuel ejection control device of engine with supercharger