JPS6161619B2 - - Google Patents

Info

Publication number
JPS6161619B2
JPS6161619B2 JP56199891A JP19989181A JPS6161619B2 JP S6161619 B2 JPS6161619 B2 JP S6161619B2 JP 56199891 A JP56199891 A JP 56199891A JP 19989181 A JP19989181 A JP 19989181A JP S6161619 B2 JPS6161619 B2 JP S6161619B2
Authority
JP
Japan
Prior art keywords
strain
test piece
fluid injection
lever
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56199891A
Other languages
Japanese (ja)
Other versions
JPS58100736A (en
Inventor
Hiroshi Tanaka
Toshuki Tanaka
Kosaku Ozawa
Hanshiro Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP19989181A priority Critical patent/JPS58100736A/en
Publication of JPS58100736A publication Critical patent/JPS58100736A/en
Publication of JPS6161619B2 publication Critical patent/JPS6161619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/34Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by mechanical means, e.g. hammer blows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0224Thermal cycling

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は、金属材料や高分子材料等の試料、特
に形状記憶合金の試料の疲労試験を行なうのに好
適な疲労試験機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fatigue testing machine suitable for conducting fatigue tests on samples of metal materials, polymeric materials, etc., particularly shape memory alloy samples.

例えば、形状記憶合金(TiNi等)は、第1図
にす如く、縦軸に応力、横軸に歪をプロツトした
応力−歪曲線のように、同一歪を生起するための
応力は、高温時t1では大であり、低温時t2では小
である特性を有し、このような特性を利用して
種々の熱感応装置が実用化されている。
For example, in shape memory alloys (TiNi, etc.), the stress-strain curve plotting stress on the vertical axis and strain on the horizontal axis, as shown in Figure 1, shows that the stress required to produce the same strain is It has a characteristic that it is large at t 1 and small at t 2 at low temperature, and various heat sensitive devices have been put into practical use by utilizing such characteristics.

従つて、熱感応装置としての様々な使用条件下
において、疲労(寿命)試験を行なうのが、最も
実際に即しているが、従来では画一的な疲労試験
だけであつたから実用的でなかつた。
Therefore, it is most practical to conduct a fatigue (life) test under various conditions of use as a heat sensitive device, but conventionally only a uniform fatigue test has been carried out, which is impractical and impractical. Ta.

本発明は、上記従来の問題点に鑑みてなされた
もので、モータで回転されるカム部材に連動する
レバー部材の作動を、伝達部材により試験片に伝
達して歪変化を与える歪付与機構と、前記試験片
に対向する噴射口を有する高温流体噴射部材と、
低温流体噴射部材とが設けられ、前記レバー部材
に連係して往復回転するピニオンに噛合するラツ
クに連動する開閉部材により、前記各流体噴射部
材の噴射口を所定の位相差で開閉する流体噴射機
構とを具備する疲労試験機を新規に提供して、試
験片に、周期的な加熱・冷却と歪変化を与え、加
えて加熱・冷却と歪変化の周期の位相差変化並び
に歪波形の変化等を任意に与えることができるよ
うにし、より実際に即した飛労試験を実現化する
ものである。
The present invention has been made in view of the above conventional problems, and includes a strain imparting mechanism that transmits the operation of a lever member interlocked with a cam member rotated by a motor to a test piece through a transmission member to change strain. , a high-temperature fluid injection member having an injection port facing the test piece;
a low-temperature fluid injection member, the fluid injection mechanism opens and closes the injection ports of each of the fluid injection members with a predetermined phase difference by a readily interlocking opening/closing member meshing with a pinion that reciprocates in conjunction with the lever member; We provide a new fatigue testing machine equipped with the following: apply periodic heating/cooling and strain changes to test pieces; in addition, change the phase difference between the periods of heating/cooling and strain changes, change the strain waveform, etc. can be given arbitrarily, thereby realizing a more realistic flight test.

以下、本発明の実施例を添付図面について詳細
に説明する。
Embodiments of the invention will now be described in detail with reference to the accompanying drawings.

第1図に示したような応力−歪特性を有する、
例えば形状記憶合金が、同図に示したa→b→c
→dのサイクルで温度変化と歪変化を付与される
環境(使用)条件化にて使用される場合の疲労試
験において、第2図に示す歪εの時間的変化、応
力σの時間的変化、温度tの時間的変化を試験片
に与えるための飛労試験機の実施例である。
It has stress-strain characteristics as shown in Figure 1.
For example, if a shape memory alloy is a → b → c shown in the same figure,
→In a fatigue test when used under environmental (use) conditions in which temperature changes and strain changes are applied in the cycle d, the temporal change in strain ε, the temporal change in stress σ, as shown in Figure 2, This is an example of a flying force tester for applying a temporal change in temperature t to a test piece.

第3図において、1は形状記憶合金からなる試
験片である。該試験片1に対して周期的な温度及
び歪の変化が付与される。
In FIG. 3, 1 is a test piece made of a shape memory alloy. Periodic changes in temperature and strain are applied to the test piece 1.

2は可変速式モータであり、該モータ2によつ
て回転されるカム3に、ローラ4が常時接触する
ようレバー5に浮上押えばね6が張設されてい
る。該カム3により、ローラ4が支点7を中心に
上下動し、該上下動によりレバー5が上下揺動を
行なう。
Reference numeral 2 denotes a variable speed motor, and a lever 5 is provided with a floating pressing spring 6 so that a roller 4 is always in contact with a cam 3 rotated by the motor 2. The cam 3 causes the roller 4 to move up and down about the fulcrum 7, and the up and down movement causes the lever 5 to swing up and down.

該レバー5の上下揺動は、連結棒8に伝達さ
れ、該連結棒8の上下動によつて試験片1にのび
歪が加えられる。試験片1の引張りサイクル及び
のび歪は、カム3の形状、ローラ4と支点7間の
距離、連結棒8のレバー5上の連結点と支点7間
の距離との比によつて決まるが、この比を連続的
に調節できるようにレバー5にレバー比を変える
ための調節ねじ9が設けられている。
The vertical movement of the lever 5 is transmitted to the connecting rod 8, and the vertical movement of the connecting rod 8 applies a stretching strain to the test piece 1. The tensile cycle and elongation strain of the test piece 1 are determined by the shape of the cam 3, the distance between the roller 4 and the fulcrum 7, and the ratio of the distance between the connection point on the lever 5 of the connecting rod 8 and the fulcrum 7. In order to be able to continuously adjust this ratio, the lever 5 is provided with an adjustment screw 9 for changing the lever ratio.

前記レバー5の支点7に固定した軸10は、レ
バー5の上下揺動によつて回転され、この回転は
ベベルギヤ11に伝達され、方向が変換されてピ
ニオン12の回転となる。なおベベルギヤ11の
代わりにレバーの組合わせを用いてもよい。
The shaft 10 fixed to the fulcrum 7 of the lever 5 is rotated by the vertical swinging of the lever 5, and this rotation is transmitted to the bevel gear 11, and the direction is changed, resulting in the rotation of the pinion 12. Note that a combination of levers may be used instead of the bevel gear 11.

前記ピニオン12は、ラツク13の一方の歯1
3aに噛合され、該ラツク13の他方の歯13b
にはピニオン14,14が噛合する。
The pinion 12 is connected to one tooth 1 of the rack 13.
3a and the other tooth 13b of the rack 13.
The pinions 14 and 14 mesh with each other.

15,16は回転バルブ23,24の外筒であ
り、該外筒15,16は前記ピニオン14,1
4′に固定され、該ピニオン14,14′の回転に
よつて外筒15,16が往復回転される。
Reference numerals 15 and 16 indicate outer cylinders of the rotary valves 23 and 24, and the outer cylinders 15 and 16 are connected to the pinions 14 and 1.
4', and the outer cylinders 15, 16 are reciprocated by the rotation of the pinions 14, 14'.

前記回転バルブ23,24は、第4図にも示す
ように、試験機に固定した内筒17,18と、ピ
ニオン14,14′に固定した前記外筒15,1
6からなる二重管で成り、それぞれの筒15〜1
8の軸方向に形成したスリツト状の噴射口19,
20,21,22が重なれば開口し、ずれること
によつて閉塞して、試験片1に向つて後述する加
熱流体および冷却流体を間欠的に噴射する。
As shown in FIG. 4, the rotary valves 23 and 24 have inner cylinders 17 and 18 fixed to the test machine and outer cylinders 15 and 1 fixed to the pinions 14 and 14'.
Consists of 6 double tubes, each tube 15 to 1
a slit-shaped injection port 19 formed in the axial direction of 8;
When 20, 21, and 22 overlap, they open, and when they shift, they close, and a heating fluid and a cooling fluid, which will be described later, are intermittently injected toward the test piece 1.

前記内筒17,18は、一端部が閉塞され、他
端部の開口より加熱流体あるいは冷却流体が流入
される。なお、外筒15は内筒17に、外筒16
は内筒18にそれぞれ軸受を介して位置決めされ
る。
The inner tubes 17 and 18 are closed at one end, and a heating fluid or a cooling fluid is introduced through an opening at the other end. Note that the outer cylinder 15 is connected to the inner cylinder 17, and the outer cylinder 16 is connected to the inner cylinder 17.
are positioned in the inner cylinder 18 via bearings, respectively.

このような回転バルブ23,24は、加熱流体
用と冷却流体用の2種類があり、同図では23が
加熱流体用、24が冷却流体用に設定してある。
There are two types of rotary valves 23 and 24, one for heating fluid and one for cooling fluid. In the figure, 23 is set for heating fluid, and 24 is set for cooling fluid.

試験片1に対しては、ラツク13の往復運動に
同調して加熱流体と冷却流体が交互に噴射され
る。
Heating fluid and cooling fluid are alternately injected onto the test piece 1 in synchronization with the reciprocating motion of the rack 13.

なお、ラツク13とピニオン14,14′の噛
合位置をずらせることで、試験片1に対する引張
りサイクルと加熱・冷却のサイクルの位相を変え
ることができる。
Note that by shifting the meshing position of the rack 13 and the pinions 14, 14', the phases of the tensile cycle and the heating/cooling cycle for the test piece 1 can be changed.

25は加熱流体受け、26は冷却流体受けであ
る。この流体受け25,26は、噴射後の流体の
温度が試験片1以外で消失することを少なくする
ために、回転バルブ23,24にそれぞれ対応し
て設置され、各流体をリサイクルさせる。
25 is a heating fluid receiver, and 26 is a cooling fluid receiver. The fluid receivers 25 and 26 are installed corresponding to the rotary valves 23 and 24, respectively, in order to prevent the temperature of the fluid after injection from disappearing in areas other than the test piece 1, and allow each fluid to be recycled.

各流体は、気体よりも液体を使用する方が熱伝
達係数の関係で有利であり、特に100℃〜0℃の
温度範囲の試験をする時には、温水、冷水を使用
する。気体を使用する場合には、圧縮空気を利用
しボルテツクスチユーブによつて作成された高
温、低温の2種の空気を利用できる。
For each fluid, it is more advantageous to use a liquid than a gas in terms of heat transfer coefficient, and especially when testing in the temperature range of 100°C to 0°C, hot water or cold water is used. When using gas, two types of air can be used: high temperature and low temperature air created by a vortex tube using compressed air.

なお、第2図で示した引張り変化サイクルの波
形は、形状の異なるカム3を用いることで、又前
記サイクルの速さはモータ2の回転数を変えるこ
とで変化させることができる。
The waveform of the tension change cycle shown in FIG. 2 can be changed by using cams 3 of different shapes, and the speed of the cycle can be changed by changing the rotation speed of the motor 2.

前記構成の作動機構を疲労試験機に組込みと、
第5図及び第6図に示すように、可変速式モータ
2によつて回転されるカム3に連係するレバー5
の上下揺動が連結棒8に伝達され、さらに振動台
27の上下動に変換される。該振動台27はガイ
ド軸29で上下方向にスライド自在に支持され
る。
Incorporating the operating mechanism configured as described above into a fatigue testing machine;
As shown in FIGS. 5 and 6, a lever 5 is connected to a cam 3 rotated by a variable speed motor 2.
The vertical vibration is transmitted to the connecting rod 8 and further converted into the vertical movement of the vibration table 27. The vibration table 27 is supported by a guide shaft 29 so as to be slidable in the vertical direction.

試験片1は前記振動台27と上部チヤツク台2
8の間に取り付けられ、前記振動台27と上部チ
ヤツク台28に設けられる試験片取付チヤツク
(図示せず。)は、ある温度レベルに保温され、試
験片1の特性が取付部の影響で変わることを防い
でいる。
The test piece 1 consists of the vibration table 27 and the upper chuck table 2.
A test piece mounting chuck (not shown) installed between the test piece 8 and the vibration table 27 and the upper chuck stand 28 is kept at a certain temperature level, and the characteristics of the test piece 1 change due to the influence of the mounting part. It prevents that.

前記上部チヤツク台28もガイド軸29で上下
スライド可能に支持され、振動台27と平行に配
置される。
The upper chuck stand 28 is also supported by a guide shaft 29 so as to be vertically slidable, and is arranged parallel to the vibration table 27.

前記上部チヤツク台28は、ロードセル30を
介して位置設定ジヤツキ31によつて試験機に固
定される。この固定を行なうに際して試験片1に
ある程度の引張力が付加され、試験片1のばね力
によつて試験機運転の安定化を図ることができ
る。
The upper chuck stand 28 is fixed to the testing machine by a positioning jack 31 via a load cell 30. When this fixing is performed, a certain amount of tensile force is applied to the test piece 1, and the spring force of the test piece 1 can stabilize the operation of the testing machine.

以上の説明からも明らかなように、本発明は、
歪付与機構と流体噴射機構とを具備した疲労試験
機であるから、試験片に使用条件に近い周期的な
歪変化と、該周期と周期した周期の温度変化とを
与えた状態での疲労試験を行なうことができ、実
際に即した試験データを得ることができるように
なる。
As is clear from the above explanation, the present invention
Since this is a fatigue testing machine equipped with a strain imparting mechanism and a fluid injection mechanism, it is possible to conduct fatigue tests in which the test piece is subjected to periodic strain changes close to the conditions of use and temperature changes that are periodic to the period. This makes it possible to obtain test data that corresponds to the actual situation.

また、歪付与機構が、モータ、カム、レバー部
材、伝達部材で構成され、流体噴射機構が、高温
流体噴射部材と低温流体噴射部材、ピニオン、ラ
ツク、開閉部材で構成されているので、歪変化の
周期及び温度変化の周期をモータの回転速度を変
えることにより自在に調節でき、前記周期を比較
的高速度でも行なうことができる。
In addition, since the strain imparting mechanism is composed of a motor, a cam, a lever member, and a transmission member, and the fluid injection mechanism is composed of a high temperature fluid injection member, a low temperature fluid injection member, a pinion, a rack, and an opening/closing member, the strain changes. The cycle and the cycle of temperature change can be freely adjusted by changing the rotational speed of the motor, and the cycle can be performed even at relatively high speeds.

また、前記カムを種々形状のものに取り換える
ことによつて試験片の歪変化は異なる波形とな
り、さらに前記ラツクとピニオンとの噛合位置を
ずらすことで、歪変化のサイクルと温度変化のサ
イクルの位相を変えることができる等、簡単な操
作で様々な使用条件下での飛労試験を行なうこと
ができる。
In addition, by replacing the cam with one of various shapes, the strain change of the test piece becomes a different waveform, and by shifting the meshing position of the rack and pinion, the phase of the strain change cycle and the temperature change cycle is changed. It is possible to perform flight tests under various usage conditions with simple operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は形状記憶合金の応力−歪曲線のグラ
フ、第2図は歪、応力、温度の時間的変化を示す
波形図、第3図は本発明に係る疲労試験機の作動
機構の斜視図、第4図は第3図の回転バルブの平
面断面図、第5図は疲労試験機の正面図、第6図
は第5図の側面図である。 1……試験片、2……モータ、3……カム、5
……レバー、8……連結棒、12……ピニオン
(第1ピニオン)、13……ラツク、14,14′
……ピニオン(第2ピニオン)、15,16……
外筒、17,18……内筒、19〜22……噴射
口、23……加熱流体用回転バルブ、24……冷
却流体用回転バルブ。
Fig. 1 is a graph of the stress-strain curve of a shape memory alloy, Fig. 2 is a waveform diagram showing temporal changes in strain, stress, and temperature, and Fig. 3 is a perspective view of the operating mechanism of the fatigue testing machine according to the present invention. , FIG. 4 is a plan sectional view of the rotary valve of FIG. 3, FIG. 5 is a front view of the fatigue testing machine, and FIG. 6 is a side view of FIG. 5. 1... Test piece, 2... Motor, 3... Cam, 5
... Lever, 8 ... Connecting rod, 12 ... Pinion (first pinion), 13 ... Rack, 14, 14'
...Pinion (second pinion), 15, 16...
Outer cylinder, 17, 18... Inner cylinder, 19-22... Injection port, 23... Rotary valve for heating fluid, 24... Rotary valve for cooling fluid.

Claims (1)

【特許請求の範囲】[Claims] 1 モータで回転されるカム部材に連動するレバ
ー部材の作動を、伝達部材により試験片に伝達し
て歪変化を与える歪付与機構と、前記試験片に対
向する噴射口を有する高温流体噴射部材と、低温
流体噴射部材とが設けられ、前記レバー部材に連
係して往復回転するピニオンに噛合するラツクに
連動する開閉部材により、前記各流体噴射部材の
噴射口を所定の位相差で開閉する流体噴射機構と
を具備することを特徴とする疲労試験機。
1. A strain imparting mechanism that transmits the operation of a lever member interlocked with a cam member rotated by a motor to a test piece through a transmission member to change the strain, and a high-temperature fluid injection member having an injection port facing the test piece. , a low-temperature fluid injection member, and a fluid injection device that opens and closes the injection ports of each of the fluid injection members with a predetermined phase difference by an easily interlocking opening/closing member that meshes with a pinion that reciprocates in conjunction with the lever member. A fatigue testing machine characterized by comprising a mechanism.
JP19989181A 1981-12-10 1981-12-10 Fatigue testing machine Granted JPS58100736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19989181A JPS58100736A (en) 1981-12-10 1981-12-10 Fatigue testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19989181A JPS58100736A (en) 1981-12-10 1981-12-10 Fatigue testing machine

Publications (2)

Publication Number Publication Date
JPS58100736A JPS58100736A (en) 1983-06-15
JPS6161619B2 true JPS6161619B2 (en) 1986-12-26

Family

ID=16415319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19989181A Granted JPS58100736A (en) 1981-12-10 1981-12-10 Fatigue testing machine

Country Status (1)

Country Link
JP (1) JPS58100736A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625725B2 (en) * 1985-12-09 1994-04-06 日本軽金属株式会社 Thermal fatigue tester
CN102323168B (en) * 2011-09-15 2013-10-16 内蒙古第一机械制造(集团)有限公司 Method for testing hammer head loading deviation value during gear bending fatigue test
EP2887046B1 (en) * 2013-12-19 2019-07-17 Rolls-Royce Deutschland Ltd & Co KG Test system and test method
FR3066021B1 (en) * 2017-05-02 2019-08-02 Peugeot Citroen Automobiles Sa DEVICE FOR ACCELERATED DYNAMIC AGING OF A MATERIAL USED FOR THE MANUFACTURE OF A THERMAL MOTOR PART

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110890A (en) * 1977-03-10 1978-09-27 Nippon Steel Corp Method and apparatus for testing thermal fatigue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110890A (en) * 1977-03-10 1978-09-27 Nippon Steel Corp Method and apparatus for testing thermal fatigue

Also Published As

Publication number Publication date
JPS58100736A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
CN110044752A (en) High/low temperature impression test device in situ for cone-beam CT imaging
JPS6161619B2 (en)
DE1911502C3 (en) Torsional viscometer
EP0132056A1 (en) Rheometer and method of use thereof
Yaguchi et al. Unified inelastic constitutive model for modified 9Cr-1Mo steel incorporating dynamic strain aging effect
US4056973A (en) Testing viscoelastic solids
US4109516A (en) Cam plastometer
US2294869A (en) Movement fob measuring instru
US2063169A (en) Mechanical dynamometer
CN201034759Y (en) Sun wing hinge moment testing device
DE10242384B3 (en) Rowing exercise machine
Stewart Indicators
US2255809A (en) Pressure indicator
CN110346132A (en) Camshaft testing equipment
Eyring et al. Forced Vibrations of Polyamide Monofils
KR0185301B1 (en) Angle gauge
SU1375961A1 (en) Resonance bed for testing shafts
SU756271A1 (en) Friction machine
Blair et al. Simple apparatus for studying deformation of soft materials under compression and tension at constant stress
SU1026034A1 (en) Device for extension-testing of material specimens
JPH02311739A (en) Fatigue tester for shape memory alloy
Meyer et al. Development of an Improved Reciprocating Viscometer for Predicting the Low Temperature Cranking Characteristics of Engine Oils
SU1599737A1 (en) Apparatus for measuring energy of mechanical transformations of substances
US3121339A (en) Adjustable compensator mechanism for nonlinear rotary motion
DE540803C (en) Device for displaying quantities that fluctuate only slowly over time, in particular mean pressures over time in the cylinder interior of piston engines