JPS6161535A - Optical transmitter - Google Patents

Optical transmitter

Info

Publication number
JPS6161535A
JPS6161535A JP59182719A JP18271984A JPS6161535A JP S6161535 A JPS6161535 A JP S6161535A JP 59182719 A JP59182719 A JP 59182719A JP 18271984 A JP18271984 A JP 18271984A JP S6161535 A JPS6161535 A JP S6161535A
Authority
JP
Japan
Prior art keywords
current
output
laser diode
request signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59182719A
Other languages
Japanese (ja)
Other versions
JPH0261184B2 (en
Inventor
Tadayoshi Kitayama
北山 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59182719A priority Critical patent/JPS6161535A/en
Publication of JPS6161535A publication Critical patent/JPS6161535A/en
Publication of JPH0261184B2 publication Critical patent/JPH0261184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Abstract

PURPOSE:To prevent generation of background light due to naturally irradiated light from a laser diode by adding a switch means operated synchronously with a transmission request signal in an optical transmitter transmitting intermittently data. CONSTITUTION:Transmission data 2 is applied to a transistor (TR)16 synchronously with a transmission request signal 15. The TRs 16, 17 form a current changeover switch. When the request signal 15 reaches a threshold voltage 18 of the TR17, an output current of a current amplifier 5 is outputted to the laser diode 4 as a bias current 6 via the TR16. On the other hand, when the request signal 15 reaches a voltage 18 or below, the output current of the amplifier 5 is outputted to a load 19 via the TR17. Through the operation above, no current flows to the diode 4 at all at the non-transmission system, then no background optical output light due to naturally irradiated light is caused.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は1間歇的にデータを送信する光送信装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical transmitter that transmits data intermittently.

〔従来技術〕[Prior art]

従来の光送信装置の構成図を第1図に示す。第1図にお
いて、(1)は変調器、(2)は送信データ、(3)は
変調電流、(4)はレーザダイオード、(5)は電流増
幅器、(6)はバイアス電流、(7)は光信号、(8)
は電源。
FIG. 1 shows a configuration diagram of a conventional optical transmitter. In Figure 1, (1) is a modulator, (2) is transmission data, (3) is a modulation current, (4) is a laser diode, (5) is a current amplifier, (6) is a bias current, (7) is an optical signal, (8)
is the power supply.

(9)は受光素子、α1は平均回路を構成するコンデン
サ、α力は信号電流、Uは基準電流源、(+3は基準電
流源@の出力電流である。
(9) is a light receiving element, α1 is a capacitor constituting an average circuit, α power is a signal current, U is a reference current source, (+3 is the output current of the reference current source @).

第2図は従来の光送信装置の各部波形図である。FIG. 2 is a waveform diagram of each part of a conventional optical transmitter.

第2図に訃いてα力は背景光である。In Figure 2, the α force is background light.

変調器(1]は間歇的に発生する送信データ(2)に対
応して変調電流(3)をレーザダイオード(4)に出力
し。
A modulator (1) outputs a modulation current (3) to a laser diode (4) in response to intermittently generated transmission data (2).

電流増幅器(5)は、バイアス電流(6)をレーザダイ
オード(4)に出力する。レーザダイオード(4)は、
バイアス電流(6)および変調電流(3)により光信号
(7)を出力する。電源(8)により逆バイアスされた
受光素子(9)は2光信号(7)の一部を受光し電流に
変換する。
A current amplifier (5) outputs a bias current (6) to a laser diode (4). The laser diode (4) is
An optical signal (7) is output using a bias current (6) and a modulation current (3). A light receiving element (9) reverse biased by a power source (8) receives a part of the two optical signals (7) and converts it into an electric current.

受光素子(9)の出力電流は平均回路を構成するコンデ
ンサ顛により平均化され、信号電流aυとなる。
The output current of the light receiving element (9) is averaged by a capacitor that constitutes an averaging circuit, and becomes a signal current aυ.

コンデンサーは、データ送出周期より十分長い期間にわ
たり平均するように設定されるので信号電1     
 流aIJは、データ送出周期程度の時間内では変動し
ない。電流増幅器(5)は基準電流源a3の出力電流a
3から信号電流(Iυを引き算した電流を増幅し、レー
ザダイオード(4)にバイアス電流(6)として出力す
る。
The capacitor is set to average over a period sufficiently longer than the data transmission cycle, so the signal voltage
The flow aIJ does not vary within a period of time approximately equal to the data transmission cycle. The current amplifier (5) outputs the output current a of the reference current source a3.
The current obtained by subtracting the signal current (Iυ) from 3 is amplified and outputted to the laser diode (4) as a bias current (6).

電流増幅器(5)、レーザダイオード(4)および受光
素子(9)は負帰還ループを構成し、電流増1は器(5
)の利得を大きくすることにより、受光素子(9)の信
号電流aυと、基準電流源Q3の出力電流a9とを温度
変動等によるレーザダイオード(4)特性変動によらず
等しくすることが出来る。受光素子(9)の信号電流a
υは、′yc信号(7)の平均直に比例しており、信号
電流riυが制御されると、光信号(7)も制御される
The current amplifier (5), the laser diode (4) and the photodetector (9) constitute a negative feedback loop, and the current amplifier 1 is connected to the device (5).
) can make the signal current aυ of the light-receiving element (9) equal to the output current a9 of the reference current source Q3 regardless of variations in the characteristics of the laser diode (4) due to temperature variations or the like. Signal current a of light receiving element (9)
υ is directly proportional to the average of the 'yc signal (7), and when the signal current riυ is controlled, the optical signal (7) is also controlled.

第2図に示す光送信装置の各部波形図において。In the waveform diagram of each part of the optical transmitter shown in FIG.

光信号(7)には背景光α暦が含まれている。これは。The optical signal (7) includes a background light α calendar. this is.

バイアス電流(6)によりレーザダイオード(4)から
出力される自然放出光によるものである。背景光Iの大
きさは、+信号(7)のピーク値に対し5%程度である
This is due to spontaneous emission light output from the laser diode (4) due to the bias current (6). The magnitude of the background light I is approximately 5% of the peak value of the + signal (7).

元スターカプラや、Tカプラ等の受動形光回路部品によ
り複数の光送受信装置を接続し多重通信を行う場合、非
送信状態にある光送信装置から。
When multiplex communication is performed by connecting multiple optical transmitting/receiving devices using passive optical circuit components such as a star coupler or T-coupler, from the optical transmitting device in a non-transmitting state.

背景光が出力されると他の光送信装置から伝送される光
信号に干渉を与え1通信特性が劣化する。
When background light is output, it interferes with optical signals transmitted from other optical transmitters, degrading one communication characteristic.

例えば、背景光(+4が光信号(7)のピーク直に対し
5チ程度とすると、20台の光送信装置から出力される
背景光の合計は光信号ピーク値と同程度となり著しく通
信特性を劣化させる。
For example, if the background light (+4) is about 5 inches from the peak of the optical signal (7), the total background light output from the 20 optical transmitters will be about the same as the optical signal peak value, which will significantly affect the communication characteristics. deteriorate.

以上のように、従来の光送信装置を用いて受動形光回路
部品により複数の光送受信装置を接続した伝送系におい
て多重通信を行う場合1通信特性が著しく劣化するとい
う欠点があった。
As described above, when performing multiplex communication in a transmission system in which a plurality of optical transmitting/receiving devices are connected by passive optical circuit components using a conventional optical transmitting device, there is a drawback that the communication characteristics are significantly deteriorated.

〔発明の概要〕[Summary of the invention]

本発明においては9間歇的に発生する送信データを、送
信要求信号と同期させて光送信装置に入力し、送信要求
信号によりレーザダイオードに流れるバイアス電流の経
路を切換え、非送信状態においてはレーザダイオードに
電流が流れないようにすることにより背景光の発生を防
ぐとともに。
In the present invention, the transmission data that is generated intermittently is input to the optical transmitter in synchronization with the transmission request signal, and the transmission request signal switches the path of the bias current flowing to the laser diode. This prevents the generation of background light by preventing current from flowing through the area.

送信状態においては光信号出力を規定値に制御すること
を目的としている。
In the transmission state, the purpose is to control the optical signal output to a specified value.

〔発明の実施例〕[Embodiments of the invention]

以下1図面を用いて本発明に係る光送信装置の実施例に
ついて説明する。第3図は2本発明に係る光送信装置の
構成図である。第3図において。
An embodiment of an optical transmitter according to the present invention will be described below with reference to one drawing. FIG. 3 is a configuration diagram of an optical transmitter according to the second invention. In fig.

(I!9は送信要求信号、 (l[9、aηはトランジ
スタ、α力はスイッチングしきい値電圧、α9は負荷で
ある。
(I!9 is a transmission request signal, (l[9, aη is a transistor, α power is a switching threshold voltage, α9 is a load.

第4図は本発明に係る光送信装置の各部波形図である。FIG. 4 is a waveform diagram of each part of the optical transmitter according to the present invention.

第5図は本発明に係る光送信装置の他の実施例である。FIG. 5 shows another embodiment of the optical transmitter according to the present invention.

第5図において、 (5a)、(6b)はそれぞれ積分
前、後のバイアス電流、 (7a)、(7b)はバイア
ス電流(sa)、(5b)に対する光信号である。
In FIG. 5, (5a) and (6b) are bias currents before and after integration, respectively, and (7a) and (7b) are optical signals for bias currents (sa) and (5b).

変調器(1)の動作は従来の光送信装置と同じ動作を行
う。送信データ(2)は送信要求信号αSと同期してト
ランジスタaQのベースに入力される。トランジスタα
Qとトランジスタaηは電流切換スイッチを構成し、送
信要求信号a9がトランジスタ旺ηのベースに入力され
るスイッチングしきい呟電圧饅以上になるとトランジス
タ(14Gがオン、トランジスタαηがオフとなり、電
流増幅器(5)の出力電流はトランジスタ(11Gを経
由してレーザダイオード(4)にバイアス電流(6)と
して出力される。送信要求信号−が。
The operation of the modulator (1) is the same as that of a conventional optical transmitter. Transmission data (2) is input to the base of transistor aQ in synchronization with transmission request signal αS. Transistor α
Q and the transistor aη constitute a current selector switch, and when the transmission request signal a9 exceeds the switching threshold voltage inputted to the base of the transistor aη, the transistor (14G is turned on, the transistor αη is turned off, and the current amplifier ( The output current of 5) is output as a bias current (6) to the laser diode (4) via the transistor (11G).

スイッチングしきい値αυ以下になると、トランジスタ
αQがオフ、トランジスタ住ηがオンとなり、電流増幅
器(5)の出力電流はトランジスタ0ηを経由して負荷
(ljに出力される。以上の動作により非送信状aにお
いては、レーザダイオード(4)には全く電流は流れな
いので、自然放出光による背景元出力元は発生しない。
When the switching threshold value αυ or lower, the transistor αQ is turned off and the transistor η is turned on, and the output current of the current amplifier (5) is outputted to the load (lj) via the transistor 0η.The above operation causes no transmission. In state a, no current flows through the laser diode (4), so no background output source due to spontaneous emission light is generated.

トランジスタttn 、 tt7)で構成した電流切換
スイッチは、常時どちらか一方のトランジスタがON。
In the current selector switch composed of transistors ttn and tt7, one of the transistors is always on.

他方のトランジスタがOFF状態にあり、1!流増幅器
(H+の出力からみた負荷インピーダンスは変動しない
ので、送信要求信号α9による電流経路切換動作は電流
増幅器(5)の動作に影響を与えない。また、電流増幅
器(5)の出力から電流切換スイッチの共通エミッタを
見込んだインピーダンスは低い。
The other transistor is in the OFF state and 1! Since the load impedance seen from the output of the current amplifier (H+) does not change, the current path switching operation by the transmission request signal α9 does not affect the operation of the current amplifier (5). The impedance looking into the common emitter of the switch is low.

したがって、電流増幅器(5)の出力電流は従来と同じ
I′i!、を得ることが出来る。トランジスタαe、(
Iっで構成した電流切換スイッチは、高速切換動作が可
能であり、データ送信開始直後から、一つ前のデ−タ送
信終了時と同じバイアス電流(6)をレーザダイオード
(4)に出力するので、送信データの先頭ビットから正
常な光信号(7)を得ることが出来る。
Therefore, the output current of the current amplifier (5) is I'i! which is the same as before. , can be obtained. Transistor αe, (
The current selector switch configured with I is capable of high-speed switching operation, and outputs the same bias current (6) to the laser diode (4) immediately after starting data transmission as at the end of the previous data transmission. Therefore, a normal optical signal (7) can be obtained from the first bit of the transmission data.

−ド(4)を用いる場合には、一定変調電流(3a)。- constant modulation current (3a) when using the code (4);

バイアス電流(6a)の条件下であっても、データ送信
開始直後の元高力はデータ送信終了直前に比較して光信
号(7a)の振幅は大きくなる。この場合は、第5図に
示すように、トランジスタ任Qとレーザダイオード(4
)の間に電流を積分するコンデンサ(2)を含む電流積
分器を設け、応答時定数の大きいバイアス電流(6b)
をレーザダイオード(4)に出力することにより1光出
力熱サグ効果を補償した光信号(7b)を得ることが出
来る。
Even under the condition of the bias current (6a), the amplitude of the optical signal (7a) immediately after the start of data transmission is larger than that immediately before the end of data transmission. In this case, as shown in Figure 5, a transistor Q and a laser diode (4
) is provided with a current integrator including a capacitor (2) that integrates the current, and a bias current (6b) with a large response time constant is provided.
By outputting the signal to the laser diode (4), it is possible to obtain a single optical output optical signal (7b) with the thermal sag effect compensated for.

光出力熱サグ効果は、主にレーザダイオードの発振しき
い値電流が、印加電流による接合部温度上昇にともない
上昇するのが原因と思われる。この場合1元出力(7a
)は次式で表わされる。
The optical output thermal sag effect is thought to be mainly caused by an increase in the oscillation threshold current of the laser diode as the junction temperature increases due to the applied current. In this case, one-dimensional output (7a
) is expressed by the following formula.

P−η’ 工m+より  ’ 工tfio−δ0 τ1
)    11Jここで、Pは光信号(7)のピーク匝
、ηはレーザダイオード(4)の元/電流変換効率、工
 は変調信号(3)のビーク1直、工8はバイアス電流
(6a) 、 It、。
From P-η' tfio-δ0 τ1
) 11J Here, P is the peak value of the optical signal (7), η is the source/current conversion efficiency of the laser diode (4), E is the peak 1 axis of the modulation signal (3), and E is the bias current (6a) , It.

は定常状態におけるレーザダイオード(4)の発振しき
い値、δおよびτ1は接合部温度上昇に伴う発振しきい
値変′ldJ敗および応答時定数である。
is the oscillation threshold of the laser diode (4) in a steady state, and δ and τ1 are the oscillation threshold change and the response time constant due to the rise in junction temperature.

第5図において、抵抗■、 r2Dおよびコンデンサ(
イ)からなる電流積分器によりバイアス電流を積分する
と、バイアス電流(6b)は次式で表わされる。
In Figure 5, the resistor ■, r2D and capacitor (
When the bias current is integrated by the current integrator consisting of (a), the bias current (6b) is expressed by the following equation.

−三 ”B= より。+(IBa)−(Bo)(1−62) 
  [21ここで”9coは定常状態におけるバイアス
電流。
-3"B= From. + (IBa) - (Bo) (1-62)
[21Here, 9co is the bias current in steady state.

ここでRおよびR2はそれぞれ抵抗翰およびQυの抵抗
値である。
Here, R and R2 are the resistance values of the resistance wire and Qυ, respectively.

ここでCはコンデンサ+22の容量値である。Here, C is the capacitance value of the capacitor +22.

式tll〜(4)より (R−)−R)C−τ、(6) となるようにR4,R2,Ct−設定すれば、データ送
信時の光信号(7b)は。
From equation tll~(4), if R4, R2, and Ct- are set so that (R-)-R)C-τ, (6), then the optical signal (7b) during data transmission is as follows.

P−η(Im” IBO:l−工tho)”となり1光
出力熱サグ効果による光出力変動を除くことが出来る。
P-η(Im"IBO:l-tho)", which makes it possible to eliminate optical output fluctuations due to the thermal sag effect.

なお1以上の説明においては基準電流源Ii2の出力電
流筐が、送信データのマーク率、デユーティ。
In the above description, the output current of the reference current source Ii2 corresponds to the mark rate and duty of the transmission data.

送出周期、送出時間等に依存しない場合について説明し
たが、送信データの信号電圧の平均値に比例して電流値
を制御する手段を備えた基準電流源を用いる場合にも同
様の効果がある。この場合は。
Although the case where the present invention does not depend on the sending period, sending time, etc. has been described, the same effect can be obtained when using a reference current source provided with means for controlling the current value in proportion to the average value of the signal voltage of the transmitted data. in this case.

送信データのマーク率等上記パラメータの変動に対して
も安定な動作を得ることは従来のこの種の装置と同様の
効果が得られる。
The same effect as conventional devices of this type can be obtained in that stable operation can be obtained even with variations in the above-mentioned parameters such as the mark rate of transmission data.

〔発明の効果〕〔Effect of the invention〕

以上のように2本発明に係る光送信装置においては、デ
ータ非送信時に光送信装置から光信号は全く出力される
ので同一伝送路に接続された他局の通信に干渉を与えな
いという効果がある。また。
As described above, in the optical transmitter according to the second aspect of the present invention, since no optical signal is output from the optical transmitter when data is not being transmitted, the effect is that there is no interference with the communication of other stations connected to the same transmission path. be. Also.

レーザダイオードの元田力熱ナグ効果を補償することが
出来る利点もある。
Another advantage is that it can compensate for the Motoda thermal nag effect of the laser diode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の光送信装置の構成図、第2図は、従来
の光送信装置の各部波形図、第3図は1本発明に係る光
送信装置の構成図、第4図は1本発明に係る光送信装置
の各部波形図、第5図は1本発明に係る光送信装置の他
の実施例の栴成図、第6図は1本発明に係る光送信装置
の他の実施例の各部波形図である。 図中、(1jは変調器、(4)はレーザダイ万一ド、(
5)は電流増幅器、α〔は平均回路を構成するコンデン
サ、(1階は基SEA信号源、αG 、 [17)は切
換スイッチを構成スるトランジスタ、 (Li3は負荷
、(イ)、Qυは電流積分器を構成する抵抗、(ハ)は
電流積分器を構成するなお2図中同一あるいは相当部分
には同一符号を付して示しである。 出 願 人 工業技術院長 用田裕部 第1図 第 2 図 第3図 第4図
FIG. 1 is a block diagram of a conventional optical transmitter, FIG. 2 is a waveform diagram of each part of the conventional optical transmitter, FIG. 3 is a block diagram of an optical transmitter according to the present invention, and FIG. 4 is a block diagram of the optical transmitter according to the present invention. FIG. 5 is a waveform diagram of each part of the optical transmitter according to the present invention; FIG. 5 is a schematic diagram of another embodiment of the optical transmitter according to the present invention; FIG. It is a waveform diagram of each part of an example. In the figure, (1j is a modulator, (4) is a laser diode, (1j is a modulator, (4) is a laser diode, (
5) is the current amplifier, α[ is the capacitor that constitutes the average circuit, (the first floor is the basic SEA signal source, αG, [17] is the transistor that constitutes the changeover switch, (Li3 is the load, (a), Qυ is The resistors (c) constitute the current integrator. Identical or corresponding parts in the two figures are indicated by the same reference numerals. Applicant Hirobe Yoda, Director of the Agency of Industrial Science and Technology (Figure 1) 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)間歇的に発生する送信データに対応した光信号を
レーザダイオードを用いて出力する光送信装置において
、送信要求信号および送信要求信号に同期した送信デー
タを入力とし送信データに対応した変調電流をレーザダ
イオードに流す変調器と、基準信号源と、レーザダイオ
ード出力光の一部を受光する受光素子と、前記受光素子
出力を送信要求信号周期より長い期間にわたつて平均す
る平均回路と、前記基準信号源の出力と前記受光素子出
力平均値との差に応じた電流を出力する増幅器と、増幅
器の出力電流が送信要求信号が有意の場合にレーザダイ
オードに流れるよう経路を切換える切換スイッチとから
なる光送信装置。
(1) In an optical transmitter that uses a laser diode to output an optical signal corresponding to transmission data that occurs intermittently, a transmission request signal and transmission data synchronized with the transmission request signal are input, and a modulation current corresponding to the transmission data is generated. a reference signal source, a light-receiving element that receives a portion of the laser diode output light, an averaging circuit that averages the output of the light-receiving element over a period longer than the transmission request signal cycle; An amplifier that outputs a current according to the difference between the output of the reference signal source and the average output of the light receiving element, and a changeover switch that changes the path so that the output current of the amplifier flows to the laser diode when the transmission request signal is significant. An optical transmitter.
(2)間歇的に発生する送信データに対応した光信号を
レーザダイオードを用いて出力する光送信装置において
、送信要求信号および送信要求信号に同期した送信デー
タを入力とし送信データに対応した変調電流をレーザダ
イオードに流す変調器と、基準信号源と、レーザダイオ
ード出力光の一部を受光する受光素子と、前記受光素子
出力を送信要求信号周期より長い期間にわたつて平均す
る平均回路と、前記基準信号源の出力と前記受光素子出
力平均値との差に応じた電流を出力する増幅器と、この
増幅器の出力電流が送信要求信号が有意の場合にレーザ
ダイオードに流れるよう経路を切換える切換スイッチと
、この切換スイッチと前記レーザダイオードとの間に設
けられた電流積分器とからなる光送信装置。
(2) In an optical transmitter that uses a laser diode to output an optical signal corresponding to transmission data that occurs intermittently, a transmission request signal and transmission data synchronized with the transmission request signal are input, and a modulation current corresponding to the transmission data is generated. a reference signal source, a light-receiving element that receives a portion of the laser diode output light, an averaging circuit that averages the output of the light-receiving element over a period longer than the transmission request signal cycle; an amplifier that outputs a current according to the difference between the output of the reference signal source and the average output of the light receiving element; and a changeover switch that switches the path so that the output current of the amplifier flows to the laser diode when the transmission request signal is significant. , and a current integrator provided between the changeover switch and the laser diode.
JP59182719A 1984-09-03 1984-09-03 Optical transmitter Granted JPS6161535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59182719A JPS6161535A (en) 1984-09-03 1984-09-03 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59182719A JPS6161535A (en) 1984-09-03 1984-09-03 Optical transmitter

Publications (2)

Publication Number Publication Date
JPS6161535A true JPS6161535A (en) 1986-03-29
JPH0261184B2 JPH0261184B2 (en) 1990-12-19

Family

ID=16123242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59182719A Granted JPS6161535A (en) 1984-09-03 1984-09-03 Optical transmitter

Country Status (1)

Country Link
JP (1) JPS6161535A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302924A (en) * 1988-05-31 1989-12-06 Sumitomo Electric Ind Ltd Light transmitter for burst signal
JPH02179138A (en) * 1988-10-31 1990-07-12 American Teleph & Telegr Co <Att> Method and device for controlling optical fiber bus
WO1998018222A1 (en) * 1996-10-18 1998-04-30 Hitachi, Ltd. Optical transmitter and optical transmission system
WO1998018221A1 (en) * 1996-10-18 1998-04-30 Hitachi, Ltd. Optical transmitter and optical transmission system
JP2012010138A (en) * 2010-06-25 2012-01-12 Mitsubishi Electric Corp Pon system, slave station side device thereof and data transmission method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121834A (en) * 1983-09-19 1985-06-29 ゼネラル・エレクトリック・カンパニイ Electric circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121834A (en) * 1983-09-19 1985-06-29 ゼネラル・エレクトリック・カンパニイ Electric circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302924A (en) * 1988-05-31 1989-12-06 Sumitomo Electric Ind Ltd Light transmitter for burst signal
JPH02179138A (en) * 1988-10-31 1990-07-12 American Teleph & Telegr Co <Att> Method and device for controlling optical fiber bus
WO1998018222A1 (en) * 1996-10-18 1998-04-30 Hitachi, Ltd. Optical transmitter and optical transmission system
WO1998018221A1 (en) * 1996-10-18 1998-04-30 Hitachi, Ltd. Optical transmitter and optical transmission system
JP2012010138A (en) * 2010-06-25 2012-01-12 Mitsubishi Electric Corp Pon system, slave station side device thereof and data transmission method

Also Published As

Publication number Publication date
JPH0261184B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
US4709416A (en) Laser bias current stabilization for burst mode fiber optic communication system
US6181454B1 (en) Adaptive threshold controlled decision circuit immune to ringing components of digital signals
JPH01502469A (en) optical network
JP2747311B2 (en) Apparatus and method for controlling enable response time of optical transmitter used in digital optical communication device
US5224112A (en) Semiconductor laser device driving circuit
JPS6161535A (en) Optical transmitter
JPH0997924A (en) Light-emitting element driver and insulated transmitter
Shumate et al. Lightwave transmitters
US5991059A (en) Marshalling in optical TDMA systems
JPH06334609A (en) Burst mode digital receiver
JPH0575544A (en) Automatic gain control circuit
KR20040081372A (en) Driving circuit for semiconductor laser
JP2751229B2 (en) APD bias voltage control circuit
JP2003198476A (en) Optical coupling device
JPH08274719A (en) Optical output control circuit of optical communication system
JP3612147B2 (en) Optical receiver circuit and optical transmission system
JPH03135123A (en) Optical transmission circuit
JPS61224385A (en) Semiconductor laser drive circuit
JP3177115B2 (en) Receiver amplifier
JPS5918497Y2 (en) constant current circuit
JP3612794B2 (en) Optoelectronic integrated circuit
JPH0221182B2 (en)
JPH03151732A (en) Laser diode drive circuit
JPH033527A (en) Extinction ratio compensation circuit
SU913609A1 (en) Device for converting telegraphic single polar to bipolar signals

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term