JPS6161365B2 - - Google Patents

Info

Publication number
JPS6161365B2
JPS6161365B2 JP509980A JP509980A JPS6161365B2 JP S6161365 B2 JPS6161365 B2 JP S6161365B2 JP 509980 A JP509980 A JP 509980A JP 509980 A JP509980 A JP 509980A JP S6161365 B2 JPS6161365 B2 JP S6161365B2
Authority
JP
Japan
Prior art keywords
lens
lenses
object side
positive
surface facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP509980A
Other languages
Japanese (ja)
Other versions
JPS56102819A (en
Inventor
Keiji Ikemori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP509980A priority Critical patent/JPS56102819A/en
Publication of JPS56102819A publication Critical patent/JPS56102819A/en
Publication of JPS6161365B2 publication Critical patent/JPS6161365B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、35ミリ一眼レフレツクスカメラの標
準もしくはその近傍の画角に適した写真用レンズ
に関し、殊にガウス型レンズの改良に関するもの
である。 従来よりガウス型レンズは35ミリ一眼レフレツ
クスカメラの標準画角に適しているため、広く使
用されまた種々の改良がなされている。そしてこ
れら周知のレンズの内、最も多く採用されている
レンズ配置は物体合側より順に、正メニスカスレ
ンズ、正と負を貼合わせた負メニスカスレンズ、
絞り、負と正を貼合わせた負メニスカスレンズそ
して1枚及至2枚の正レンズから成るものであ
る。 一方、それ程高度の性能を要求されない写真レ
ンズの場合、レンズをコンパクトにするのに有利
なため、貼合せレンズの一方を単レンズで構成し
たものも知られている。従来、5群5枚のレンズ
構成(正・正・負・負・正)でFナンバー2クラ
スの標準レンズを実現しようとすると、6枚構成
の標準レンズと比較し、絞り近傍のレンズが単レ
ンズのため、軸上色収差、倍率色収差、色のコマ
収差等の補正が困難となり、これら収差を改善す
るために多少の無理をするので球面収差、像面湾
曲も悪化し、各収差量が多くなつて、性能上はつ
きり差が認められるのが普通である。そのため、
画角を小さくするかあるいはFナンバーを大きく
することによつて性能の悪化を防ぐことが実行さ
れている。 本発明の目的は5群5枚構成で従来の6枚構成
の標準レンズと同等の性能を得ると共にレンズ系
を極めてコンパクトにすることにあり、後述の実
施例に示す通り画角45.5度、Fナンバー1:2の
高性能レンズを実現し得た。本発明は、物体側よ
り順に、それぞれ凸面を物体側に向けた第1正メ
ニスカスレンズ、第2正メニスカスレンズ、凸面
を物体側に向けた第3負メニスカスレンズ、凸面
を像側に向けた第4負メニスカスレンズ、および
像側の面の方が曲率の強い第5正レンズでレンズ
系を構成し、以下の条件を満足する。 (1) 1.7<(N1+N2+N5)1/3<1.8 (2) 0.2<|φ|・f<0.4 (φ<0) (3) 7<(1/R6+1/|R7|)・f<8.5 (4) 0.5<|φ|・f<0.63 (φ<0) (5) 10<ν−ν<20 (6) ν<29、N3>1.73 (7) ν>49 ここで、fは全系の焦点距離、N1,N2,N3
N5はそれぞれ第1・第2・第3・第5レンズの
d−線に対する屈折率、ν,ν,νはそれ
ぞれ第2・第3・第5レンズのアツベ数、R6
R7はそれぞれ第3レンズの像側・第4レンズの
物体側のレンズ面曲率半径、φは第2レンズと
第3レンズの間の空気レンズの屈折力(焦点距離
の逆数)、φは第4レンズの屈折力を示す。 次に各条件の意義を説明する。 (1)はレンズ系中の正レンズの屈折率を規制する
ことで像面湾曲を良好に補正する条件である。条
件式の下限値以下ではペツツバール和が大きく成
り過ぎて像面湾曲が増大し、一方、上限値を越え
るとペツツバール和は改善されるが、普通に入手
し得る硝種の内から選択し得るアツベ数(νd)
の範囲は制限されるので色収差の補正が困難とな
る。従つて、補正に適した硝種を捜すとなれば極
めて高価なものとなつて一般向きでない。条件(2)
は条件(3)と相まつて球面収差、像面湾曲、コマ収
差、サジタル・ハローおよび色収差を良好にバラ
ンス良く補正するための条件である。つまり条件
(3)で絞り前後の面R6,R7の曲率をある程度弱く
制約し、サジタルハロー中間画角のコマ収差の改
善を計り、その結果、悪化した球面収差、像面湾
曲非点収差を、条件(2)で第2レンズと第3レンズ
の間の空気レンズのパワーをある程度強く保つこ
とにより、良好に補正している。従つて条件(2)の
下限値以下では球面収差・非点収差が補正不足と
なり、上限値以上では逆に前記収差が補正過剰と
なり、色収差のバランスも悪くなつてしまう。ま
た条件(3)の下限値以下では、球面収差・像面湾
曲・非点収差を補正することが不可能となり、上
限値以上では、サジタル・ハロー、中間画角のコ
マ収差の発生が極めて著るしくなる。 (4)は第4レンズのパワーを制約し、バツクフオ
ーカスを必要量保つことと、球面収差を良好に補
正するための条件で、下限値以下だとバツクフオ
ーカスを必要量保つことが出来なくなり、カメラ
内でミラーアツプをするに十分な空間を採れなく
なる。 また倍率色収差(g−線)が補正不足となり、
上限値以上だとバツクフオーカスは必要量以上と
なるが、4レンズのパワーが強くなると、第5レ
ンズのパワーも強くしなければならず、(焦点距
離を一定に保つため)高次収差が極めて多く発生
し、特に球面収差をすなおに良好に補正すること
が不可能となつてしまう。 (5)、(6)、(7)は、色収差以外の諸収差を悪化させ
ることなく軸上色収差と倍率色収差をバランス良
く良好に補正するための条件である。本発明の構
成は絞り以後のレンズに、従来のガウス型6枚構
成の標準レンズの様な貼合せ面を持たないので、
上記色収差を良好に補正するために第5レンズは
出来るだけ低分散の硝種にする必要があり、少な
くとも条件(7)の範囲が重要である。また第3レン
ズも同じ目的で出来るだけ高分散の硝種にする必
要があり、さらに球面収差、サジタルハローの補
正のため高屈率にしなければならず、条件(6)の範
囲を設定する。この範囲以外では輪帯球面収差が
大きくなり、サジタルハローも増大し、高性能化
は不可能となる。条件(5)は第2レンズと第3レン
ズのアツベ数の差を制約し、第2レンズのパワー
をある程度強く保たせて、色収差と非点収差を良
好に補正するためのものであり、下限値以下だ
け、軸上色収差(g−線)が補正不足となり、上
限値以上であると、中間画角の非点収差が補正不
足になつてしまい、共に高性能化は困難となる。 以上の結果、本発明の条件を満足することによ
り、本実施例に見る如く、5群5枚構成で、画角
45.5゜、Fナンバー1:2の仕様で、コンパクト
で性能良好なる標準レンズが実現出来た。第1図
は実施例1の断面形状を示すものとし、他の実施
例はこのレンズ形態を目立つて変形させないの
で、断面形状の図示を省く。また無限遠に対する
球面収差、正弦条件(S.C.)、非点収差、歪曲、
倍率色収差そしてコマ収差を示す第2図〜第8図
は、順に第1実施例〜第7実施例に対応する。 実施例 1
The present invention relates to a photographic lens suitable for a standard or near standard angle of view for a 35 mm single-lens reflex camera, and in particular to an improvement of a Gaussian lens. Gaussian lenses have been widely used and have undergone various improvements because they are suitable for the standard angle of view of 35mm single-lens reflex cameras. Among these well-known lenses, the most commonly used lens arrangements are: positive meniscus lens, negative meniscus lens with positive and negative lenses bonded together,
It consists of an aperture, a negative meniscus lens with a negative and a positive lens attached together, and one or two positive lenses. On the other hand, in the case of photographic lenses that do not require such high performance, it is known that one side of the laminated lens is composed of a single lens because it is advantageous to make the lens compact. Conventionally, when trying to create a standard lens with an F number of 2 class with a lens configuration of 5 elements in 5 groups (positive, positive, negative, negative, positive), the lens near the aperture was single compared to a standard lens with 6 elements. Due to the nature of the lens, it is difficult to correct axial chromatic aberration, lateral chromatic aberration, chromatic coma, etc., and as it takes some effort to improve these aberrations, spherical aberration and curvature of field also worsen, and the amount of each aberration increases. As a result, it is normal to see a difference in performance. Therefore,
Preventing the deterioration of performance is being carried out by reducing the angle of view or increasing the F-number. The purpose of the present invention is to use a 5-element construction in 5 groups to achieve performance equivalent to a conventional 6-element standard lens system, and to make the lens system extremely compact. We were able to create a high-performance lens with a ratio of 1:2. The present invention includes, in order from the object side, a first positive meniscus lens with its convex surface facing the object side, a second positive meniscus lens with its convex surface facing the object side, a third negative meniscus lens with its convex surface facing the object side, and a third negative meniscus lens with its convex surface facing the image side. A lens system is composed of four negative meniscus lenses and a fifth positive lens whose image side surface has a stronger curvature, and satisfies the following conditions. (1) 1.7<(N 1 +N 2 +N 5 )1/3<1.8 (2) 0.2<|φ 1 |・f<0.4 (φ 1 <0) (3) 7<(1/R 6 +1/| R 7 |)・f<8.5 (4) 0.5<|φ 2 |・f<0.63 (φ 2 <0) (5) 10<ν 2 −ν 3 <20 (6) ν 3 <29, N 3 > 1.73 (7) ν 5 >49 Here, f is the focal length of the entire system, N 1 , N 2 , N 3 ,
N 5 is the refractive index for the d-line of the first, second, third, and fifth lenses, respectively; ν 2 , ν 3 , and ν 5 are the Abbe numbers of the second, third, and fifth lenses, respectively; R 6 ,
R7 is the radius of curvature of the lens surface on the image side of the third lens and the object side of the fourth lens, respectively, φ1 is the refractive power (reciprocal of the focal length) of the air lens between the second and third lenses, and φ2 indicates the refractive power of the fourth lens. Next, the significance of each condition will be explained. (1) is a condition for satisfactorily correcting field curvature by regulating the refractive index of the positive lens in the lens system. Below the lower limit of the conditional formula, the Petzval sum becomes too large and the curvature of field increases; on the other hand, when the upper limit is exceeded, the Petzval sum improves, but the Atsbe number that can be selected from commonly available glass types is (vd)
Since the range of is limited, it becomes difficult to correct chromatic aberration. Therefore, if one were to find a type of glass suitable for correction, it would be extremely expensive and not suitable for general use. Condition (2)
Together with condition (3), these are conditions for correcting spherical aberration, field curvature, coma aberration, sagittal halo, and chromatic aberration in a well-balanced manner. In other words, the condition
In (3), the curvatures of the surfaces R 6 and R 7 before and after the aperture are somewhat weakly constrained to improve the comatic aberration at the intermediate angle of view of the sagittal halo, and as a result, the worsened spherical aberration and curvature of field astigmatism are reduced. In condition (2), by keeping the power of the air lens between the second lens and the third lens strong to a certain extent, the correction is performed satisfactorily. Therefore, below the lower limit of condition (2), spherical aberration and astigmatism will be under-corrected, and above the upper limit, the aberrations will be over-corrected, and the balance of chromatic aberration will deteriorate. Furthermore, below the lower limit of condition (3), it becomes impossible to correct spherical aberration, field curvature, and astigmatism, and above the upper limit, the occurrence of sagittal halo and coma aberration at intermediate angles of view becomes extremely significant. It becomes brighter. (4) is a condition for constraining the power of the fourth lens to maintain the required amount of back focus and to properly correct spherical aberration.If it is below the lower limit, it will not be possible to maintain the required amount of back focus, and the In this case, there will not be enough space for mirror-up. Also, lateral chromatic aberration (g-line) is undercorrected,
If the upper limit is exceeded, the back focus will be more than necessary, but if the power of the 4th lens becomes stronger, the power of the 5th lens must also be made stronger, and higher-order aberrations will be extremely large (to keep the focal length constant). In particular, it becomes impossible to properly correct spherical aberration. (5), (6), and (7) are conditions for correcting longitudinal chromatic aberration and lateral chromatic aberration in a well-balanced manner without worsening various aberrations other than chromatic aberration. The structure of the present invention does not have a bonding surface on the lens after the diaphragm, unlike the conventional standard lens with 6 Gaussian lenses.
In order to properly correct the above-mentioned chromatic aberration, the fifth lens must be made of a glass material with as low dispersion as possible, and at least the range of condition (7) is important. Furthermore, for the same purpose, the third lens must be made of a glass material with as high a dispersion as possible, and must also have a high refractive index in order to correct spherical aberration and sagittal halo, thus setting the range of condition (6). Outside this range, the annular spherical aberration increases, the sagittal halo also increases, and high performance becomes impossible. Condition (5) is to restrict the difference in Atsube number between the second lens and the third lens, to maintain the power of the second lens strong to some extent, and to properly correct chromatic aberration and astigmatism. Below this value, axial chromatic aberration (g-line) will be under-corrected, and above the upper limit, astigmatism at intermediate angles of view will be under-corrected, making it difficult to achieve high performance. As a result of the above, by satisfying the conditions of the present invention, as shown in this example, the angle of view is
With specifications of 45.5° and an F number of 1:2, we were able to create a standard lens that is compact and has good performance. FIG. 1 shows the cross-sectional shape of Example 1, and since other examples do not noticeably deform this lens shape, the cross-sectional shapes are not shown. Also, spherical aberration for infinity, sine condition (SC), astigmatism, distortion,
FIGS. 2 to 8 showing lateral chromatic aberration and coma aberration correspond to the first to seventh embodiments in order. Example 1

【表】 実施例 2【table】 Example 2

【表】 実施例 3【table】 Example 3

【表】 実施例 4【table】 Example 4

【表】 実施例 5【table】 Example 5

【表】【table】

【表】 実施例 6【table】 Example 6

【表】 実施例 7【table】 Example 7

【表】【table】

【表】【table】

【表】【table】

【表】 以下に実施例(実)1〜7と数値条件との対応
を示す。
[Table] The correspondence between Examples 1 to 7 and numerical conditions is shown below.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1のレンズ断面図。第2図から
第8図までは、順次実施例1から実施例7の収差
曲線図。 図中、Rはレンズ面、Dはレンズ厚もしくはレ
ンズ間隔、Sはサジタル像面、mはメリデイオナ
ル像面である。
FIG. 1 is a cross-sectional view of the lens of Example 1. FIG. 2 to FIG. 8 are aberration curve diagrams of Examples 1 to 7 in sequence. In the figure, R is a lens surface, D is a lens thickness or lens interval, S is a sagittal image surface, and m is a meridional image surface.

Claims (1)

【特許請求の範囲】 1 物体側より順に、それぞれ凸面を物体側に向
けた第1正メニスカスレンズ、第2正メニスカス
レンズ、凸面を物体側に向けた第3負メニスカス
レンズ、凸面を像側に向けた第4負メニスカスレ
ンズ、および像側の面の方が曲率の強い第5正レ
ンズでレンズ系を構成し、以下の条件を満足する
ことを特徴とする小型な写真用レンズ。 (1) 1.7<(N1+N2+N5)1/3<1.8 (2) 0.2<|φ|・f<0.4 φ<0 (3) 7<(1/R6+1/|R7|)・f<8.5 (4) 0.5<|φ|・f<0.63 φ<0 (5) 10<ν−ν<20 (6) ν<29、N3>1.73 (7) ν>49 但し、fは全系の焦点距離、N1,N2,N3,N5
はそれぞれ第1・第2・第3・第5レンズのd−
線に対する屈折率、ν,ν,νはそれぞれ
第2・第3・第5レンズのアツベ数、R6,R7
それぞれ第3レンズの像側・第4レンズの物体側
のレンズ面曲率半径、φは第2レンズと第3レ
ンズの間の空気レンズの屈折力(焦点距離の逆
数)、φは第4レンズの屈折力を示す。
[Claims] 1. In order from the object side, a first positive meniscus lens with its convex surface facing the object side, a second positive meniscus lens with its convex surface facing the object side, a third negative meniscus lens with its convex surface facing the object side, and a third negative meniscus lens with its convex surface facing the image side. 1. A compact photographic lens comprising a fourth negative meniscus lens that faces toward the camera and a fifth positive lens whose image side surface has a stronger curvature, and which satisfies the following conditions. (1) 1.7<(N 1 +N 2 +N 5 )1/3<1.8 (2) 0.2<|φ 1 |・f<0.4 φ 1 <0 (3) 7<(1/R 6 +1/|R 7 |)・f<8.5 (4) 0.5<|φ 2 |・f<0.63 φ 2 <0 (5) 10<ν 2 −ν 3 <20 (6) ν 3 <29, N 3 >1.73 (7) ν 5 > 49 However, f is the focal length of the entire system, N 1 , N 2 , N 3 , N 5
are the d- of the first, second, third, and fifth lenses, respectively.
The refractive index for the line, ν 2 , ν 3 , and ν 5 are the Abbe numbers of the second, third, and fifth lenses, respectively, and R 6 and R 7 are the image side of the third lens and the object side of the fourth lens, respectively. The radius of surface curvature, φ 1 is the refractive power (reciprocal of the focal length) of the air lens between the second and third lenses, and φ 2 is the refractive power of the fourth lens.
JP509980A 1980-01-18 1980-01-18 Small-sized photographic lens Granted JPS56102819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP509980A JPS56102819A (en) 1980-01-18 1980-01-18 Small-sized photographic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP509980A JPS56102819A (en) 1980-01-18 1980-01-18 Small-sized photographic lens

Publications (2)

Publication Number Publication Date
JPS56102819A JPS56102819A (en) 1981-08-17
JPS6161365B2 true JPS6161365B2 (en) 1986-12-25

Family

ID=11601924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP509980A Granted JPS56102819A (en) 1980-01-18 1980-01-18 Small-sized photographic lens

Country Status (1)

Country Link
JP (1) JPS56102819A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671626A (en) * 1984-03-21 1987-06-09 Minolta Camera Kabushiki Kaisha Photographic lens system
JP2000171701A (en) * 1998-09-30 2000-06-23 Fuji Photo Optical Co Ltd Deformable gauss type lens
TWI548893B (en) 2014-11-12 2016-09-11 大立光電股份有限公司 Photographing optical lens assembly, image capturing device and electronic device

Also Published As

Publication number Publication date
JPS56102819A (en) 1981-08-17

Similar Documents

Publication Publication Date Title
JP3769373B2 (en) Bright wide-angle lens
JPH05157965A (en) Wide-angle lens
JPS6119016B2 (en)
JPS6119008B2 (en)
JP2991524B2 (en) Wide-angle lens
JPH06324264A (en) Wide angle lens
JPS6048013B2 (en) Finder optical system
JP4217040B2 (en) Large aperture wide angle lens
JP4098586B2 (en) Zoom lens
JP2000028919A (en) Middle telephotographic lens
JPS627525B2 (en)
JPH0420162B2 (en)
US4176915A (en) Wide angle lens
JPS6132654B2 (en)
JPH10301021A (en) Small-sized lens
US4257678A (en) Wide angle photographic lens
JPS6153695B2 (en)
JPH07168095A (en) Triplet lens
JPH07104183A (en) Bright triplet lens
JP2711717B2 (en) High power zoom lens for finite distance
JP3038974B2 (en) Small wide-angle lens
JPH07333494A (en) Photographing lens
JPH0850238A (en) Wide angle lens
JPS6131847B2 (en)
JPS6161365B2 (en)