JPH0420162B2 - - Google Patents

Info

Publication number
JPH0420162B2
JPH0420162B2 JP4444984A JP4444984A JPH0420162B2 JP H0420162 B2 JPH0420162 B2 JP H0420162B2 JP 4444984 A JP4444984 A JP 4444984A JP 4444984 A JP4444984 A JP 4444984A JP H0420162 B2 JPH0420162 B2 JP H0420162B2
Authority
JP
Japan
Prior art keywords
lens group
lens
entire system
infinity
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4444984A
Other languages
Japanese (ja)
Other versions
JPS60188918A (en
Inventor
Masakazu Yamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP4444984A priority Critical patent/JPS60188918A/en
Publication of JPS60188918A publication Critical patent/JPS60188918A/en
Publication of JPH0420162B2 publication Critical patent/JPH0420162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、口径比が1:2.8程度で画角が約25°
の、無限遠より等倍率の最短距離までの全撮影範
囲にわたり収差補正が良好になされた接写兼用レ
ンズ系に関するものである。 従来、主に近距離撮影に使用されるレンズとし
てマイクロまたはマクロレンズと呼ばれるものが
あるが、このようなレンズを設計する場合には、
一般に1/5〜1/10倍時における収差の補正に重点
が置かれており、無限遠のときの収差はあまり重
要視されていなかつた。そのため他の一般の撮影
レンズと比較して無限遠付近の収差はあまり良好
だとは言えなかつた。従つて、この種の従来のレ
ンズにおいては、無限遠付近の収差をある程度良
好に保つために、口系比は1:3.5〜4程度まで
しか明るくできなかつた。また撮影距離変化によ
る収差の変化を補正するためのフローテイング機
能を採用した口系比が1:2.8程度のレンズも見
られるが、このフローテイング機能を有する何れ
のレンズも、本発明レンズ系のような、レンズ本
体で無限遠より最短距離で等倍率に焦点合わせが
できるものは見られなかつた。従つて、このフロ
ーテイング機能を有するレンズで等倍率の撮影を
する時は、接写リング等のアダプターが必要とな
り不便であつた。 本発明の目的は、画角が約25°で口系比1:2.8
程度と比較的明るく、無限遠から等倍の近距離ま
たレンズ本体で焦点合わせができ、しかも全撮影
範囲にわたり収差が良好に補正されたレンズ系を
提供することにある。 まず、本発明レンズ系を説明すると、本発明の
レンズ構成は、物体側より順に、負の屈折力を有
する第1レンズ群L〓と、正の屈折力を有する第
2レンズ群L〓と、負の屈折力を有する第3レン
ズ群L〓とから構成され、第1レンズ群L〓と第2
レンズ群L〓の間隔を縮小しながら該両群を第3
レンズ群L〓に対し相対的にくり出すことにより
無限遠から至近距離までの焦点合わせが可能とな
り、かつ次の各条件は満足していることを特徴と
する接写兼用レンズ系である。 (1) 0.69<f〓〓/f<0.81 (2) 4.52<|f〓|/f〓<11.03 (3) 0.86<S〓〓(-1)/S(-1)<0.99 (4) 4.80<P〓〓/P<7.16 但し、f〓〓は第1レンズ群L〓と第2レンズ群L〓
の合成焦点距離、fは無限遠撮影状態の全系の焦
点距離、f〓とf〓はそれぞれ第1レンズ群L〓と第2
レンズ群L〓の焦点距離、S〓〓(-1)とS(-1)はそれぞ
れ等倍率の最短距離撮影状態における第1レンズ
群L〓より第2レンズ群L〓までと全系のザイデル
の3次の球面係数、P〓〓とPはそれぞれ第1レン
ズ群L〓より第2レンズ群L〓までと全系のペツツ
バール和とする。 このような本発明のレズ構成によれば、第1、
第2レンズ群の第3レンズ群に対するくり出し量
は、全体くり出しの場合に比べてほぼ半分近くに
なるため、鏡枠本体の構造が比較的小型にでき、
機構的に有利となるものである。 次に上記各条件について説明する。 (1)の条件は、無限遠撮影状態において、第1レ
ンズ群L〓と第2レンズ群L〓の合成焦点距離f〓〓
の、全系の焦点距離fに対する範囲を示すもの
で、本発明の如く口径比1:2.8程度で画角が約
25°のレンズ系を達成するのに必要な条件である。
この条件(1)の下限を越えると、第1、第2レンズ
群L〓、L〓の第3レンズ群L〓に対するくり出し量
はより短かくできるが、第3レンズ群L〓の負の
屈折力が強くなり過ぎるため、全系のペツツバー
ル和が極めて小さな値または負の値になつてしま
い、非点収差及び像面弯曲を補正するのが困難に
なり、結像性能が満足できなくなる。逆に上限を
越えると、諸収差の補正は比較的容易になるが、
第1、第2レンズ群のくり出し量は急激に長くな
り、通常の全体くり出し方式のレンズ系と近似す
るため本発明の目的が達成できなくなる。 (2)の条件は、第1レンズ群L〓の第2レンズ群
L〓に対する焦点距離の比について規定したもの
で、無限遠より等倍近辺までの各撮影倍率の諸収
差を、第1レンズ群L〓と第2レズ群L〓の間隔を
変化させて補正する作用を持たせてある。この条
件(2)の下限を越えると、条件(1)により規制される
第2レンズ群L〓の焦点距離f〓が短かくなりすぎ
るため、球面収差、コマ収差等の補正が困難にな
り、口径比1:2.8程度の明るさは保てなくなる。
また上限を越えると、第2レンズ群の焦点距離f〓
は長くなり、収差補正は比較的容易となるが、各
撮影倍率の収差を最良状態に補正する作用かなく
なるので、本発明の目的が達成されなくなる。 (3)の条件は、等倍撮影状態における第1レンズ
群L〓より第2レンズ群L〓までのザイデルの3次
の球面係数S〓〓(-1)と全系のデイザルの3次の球面
係数S(-1)の比を表わしたものであり、最短距離撮
影状態の球面収差の補正が適正にできる範囲を示
すものである。この条件(3)の下限を越えると第2
レンズ群までの球面収差は補正過剰になり、また
逆に上限を越えると補正不足となるため、第3レ
ンズ群L〓での補正だけでは全系の球面収差の適
正補正が困難になり望ましくない。 (4)の条件は、第1レンズ群L〓より第2レンズ
群L〓までのペツツバール和P〓〓と全系のペツツバ
ール和Pの比を表わしたもので、非点収差と像面
弯曲の補正に重要な条件である。本発明のレンズ
系にあつては、結像性能を良好に保つのに全系の
ペツツバール和Pを0.02乃至0.13程度にするのが
望ましいが、本発明の第3レンズ群L〓は負の屈
折力を有するため、全系のペツツバール和は非常
に小さな値または負の値となる傾向がある。した
がつて、第1レンズ群より第2レンズ群までのペ
ツツバール和P〓〓と全系のペツツバール和Pの比
は条件式(4)で表わされる範囲内にある必要があ
る。因みに、この条件(4)の下限を越える場合に
は、即ち前記ペツツバール和P〓〓が負または非
常に小さな値をとる場合には、画面周辺部の非点
収差補正が困難になり、良好な結像性能は望め
ず、また、全系のペツツバール和Pが大きくな
る場合には、非点収差のバランスが良好にでき
ず、特に画面の中間部の結像性能の低下が著しく
なり望ましくない。逆に上限を越える場合には、
即ち、前記ペツツバール和P〓〓が大きくなる場
合には、第2レンズ群までの非点収差の補正が適
正にできなくなるため、たとえ第1レンズ群をフ
ローテイングさせても、各倍率の収差の最適補正
ができず、また、全系のペツツバール和Pが小
さくなる場合には、たとえ第1レンズ群をフロー
テイングさせ各倍率の収差補正を行つても、画面
周辺部の非点収差の補正は満足できず、結像性能
は低下することになる。 以下、本発明の実施例のデータを示し説明す
る。
The present invention has an aperture ratio of about 1:2.8 and an angle of view of about 25°.
The present invention relates to a lens system for close-up photography in which aberrations are well corrected over the entire photographing range from infinity to the shortest distance at equal magnification. Traditionally, there are lenses called micro or macro lenses that are mainly used for close-up photography, but when designing such lenses,
In general, emphasis has been placed on correcting aberrations at magnifications of 1/5 to 1/10, and less importance has been placed on aberrations at infinity. Therefore, compared to other general photographic lenses, it could not be said that the aberrations near infinity were very good. Therefore, in this type of conventional lens, in order to maintain aberrations near infinity to a certain degree, the aperture ratio could only be made brighter to about 1:3.5 to 4. In addition, there are lenses with an aperture ratio of about 1:2.8 that employ a floating function to correct changes in aberrations due to changes in the shooting distance, but any lens with this floating function is not suitable for the lens system of the present invention. I have never seen a lens that can focus at the same magnification at the shortest distance from infinity. Therefore, when photographing at the same magnification with a lens having this floating function, an adapter such as a close-up ring is required, which is inconvenient. The purpose of the present invention is to have an angle of view of approximately 25° and a mouth ratio of 1:2.8.
To provide a lens system that is comparatively bright, capable of focusing from infinity to close distances of equal magnification, and with the lens body, and in which aberrations are well corrected over the entire photographing range. First, to explain the lens system of the present invention, the lens configuration of the present invention includes, in order from the object side, a first lens group L having a negative refractive power, a second lens group L having a positive refractive power, It is composed of a third lens group L〓 having negative refractive power, and a first lens group L〓 and a second lens group L〓.
While reducing the distance between lens group L〓, both the lens groups are
This is a close-up lens system that allows focusing from infinity to close range by extending it relative to the lens group L〓, and that it satisfies the following conditions. (1) 0.69<f〓〓/f<0.81 (2) 4.52<|f〓|/f〓<11.03 (3) 0.86<S〓〓 (-1) /S (-1) <0.99 (4) 4.80 <P〓〓/P<7.16 However, f〓〓 is the first lens group L〓 and the second lens group L〓
, f is the focal length of the entire system in the infinity shooting state, f〓 and f〓 are the first lens group L〓 and second lens group, respectively.
The focal lengths of the lens group L〓, S〓〓 (-1) and S (-1) are the Seidel values of the entire system from the first lens group L to the second lens group L under the same magnification and shortest distance shooting condition, respectively. The third-order spherical coefficients P〓〓 and P are the Petzval sums of the entire system from the first lens group L〓 to the second lens group L〓, respectively. According to such a lesbian configuration of the present invention, the first,
Since the amount by which the second lens group extends relative to the third lens group is approximately half that of the case where the entire lens group is extended, the structure of the lens frame body can be made relatively compact.
This is mechanically advantageous. Next, each of the above conditions will be explained. Condition (1) is the composite focal length f〓〓 of the first lens group L〓 and the second lens group L〓 in the infinity photography state.
This shows the range for the focal length f of the entire system, and the angle of view is approximately 1:2.8 with an aperture ratio of approximately 1:2.8 as in the present invention.
This is a necessary condition to achieve a 25° lens system.
If the lower limit of this condition (1) is exceeded, the amount of protrusion of the first and second lens groups L〓 and L〓 relative to the third lens group L〓 can be made shorter, but the negative refraction of the third lens group L〓 Since the force becomes too strong, the Petzval sum of the entire system becomes an extremely small value or a negative value, making it difficult to correct astigmatism and field curvature, and resulting in unsatisfactory imaging performance. On the other hand, if the upper limit is exceeded, correction of various aberrations becomes relatively easy, but
The amount of protrusion of the first and second lens groups increases rapidly, and the objective of the present invention cannot be achieved because the lens system becomes similar to a normal lens system using the entire protrusion method. Condition (2) is the second lens group of the first lens group L
It stipulates the ratio of the focal length to L〓, and various aberrations at each imaging magnification from infinity to near 1x are corrected by changing the distance between the first lens group L〓 and the second lens group L〓. It has an effect. If the lower limit of condition (2) is exceeded, the focal length f of the second lens group L, which is regulated by condition (1), becomes too short, making it difficult to correct spherical aberration, coma, etc. The brightness of the aperture ratio of about 1:2.8 cannot be maintained.
Moreover, if the upper limit is exceeded, the focal length of the second lens group f〓
becomes longer, and aberration correction becomes relatively easy, but the effect of correcting aberrations at each imaging magnification to the best condition is lost, so the object of the present invention cannot be achieved. Condition (3) is based on Seidel's third-order spherical coefficient S〓〓〓〓 (-1) from the first lens group L to the second lens group L in the same magnification shooting state, and the third-order Desal of the entire system. It represents the ratio of the spherical coefficient S (-1) , and indicates the range in which spherical aberration can be appropriately corrected in the shortest distance photographing state. If the lower limit of this condition (3) is exceeded, the second
Spherical aberration up to the lens group will be over-corrected, and conversely if the upper limit is exceeded, it will be under-corrected, so if only the third lens group L is corrected, it will be difficult to properly correct the spherical aberration of the entire system, which is not desirable. . Condition (4) expresses the ratio of the Petzval sum P〓〓〓 from the first lens group L〓 to the second lens group L〓 and the Petzval sum P〓〓〓〓〓〓〓〓〓〓〓 from the first lens group L〓〓〓〓〓〓〓〓> This is an important condition for correction. In the lens system of the present invention, it is desirable that the Pettuval sum P of the entire system is approximately 0.02 to 0.13 in order to maintain good imaging performance, but the third lens group L of the present invention has negative refraction. Because of this, the Petzval sum of the entire system tends to be very small or negative. Therefore, the ratio of the Petzval sum P from the first lens group to the second lens group and the Petzval sum P of the entire system must be within the range expressed by conditional expression (4). Incidentally, if the lower limit of this condition (4) is exceeded, that is, if the Petzval sum P〓〓 takes a negative or very small value, it becomes difficult to correct astigmatism at the periphery of the screen, resulting in a good result. Imaging performance cannot be expected, and if the Petzval sum P of the entire system becomes large, astigmatism cannot be well balanced, and the imaging performance, especially in the middle part of the screen, deteriorates significantly, which is not desirable. Conversely, if the upper limit is exceeded,
In other words, if the Petzval sum P〓〓 becomes large, the astigmatism up to the second lens group cannot be properly corrected, so even if the first lens group is floated, the aberrations of each magnification will be If optimal correction cannot be made and the Petzval sum P of the entire system becomes small, even if the first lens group is floated and aberrations are corrected at each magnification, astigmatism at the periphery of the screen cannot be corrected. This will not be satisfactory and the imaging performance will deteriorate. Hereinafter, data of examples of the present invention will be shown and explained.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 ここで、これら各実施例の前記各条件式に対応
する数値を示す。
[Table] Here, numerical values corresponding to the above-mentioned conditional expressions of each of these examples are shown.

【表】
また、これらの実施例における最短距離撮影状
態の第1レンズ群L〓及び第2レンズ群L〓の第3
レンズ群L〓に対するくり出し量は次のとおりで
ある。
【table】
In addition, in these embodiments, the third lens group L of the first lens group L and the second lens group L in the shortest distance photographing state
The amount of protrusion for the lens group L is as follows.

【表】 上記実施例1、2、3、4の無限遠撮影状態の
構成図をそれぞれ第1図、第4図、第7図、第1
0図に示し、その場合の収差図をそれぞれ第2
図、第5図、第8図、第11図に示すと共に、上
記の撮影倍率のときの収差図をそれぞれ第3図、
第6図、第9図、第12図に示した。 尚、これら各実施例において、f、FNO、ω及
びfBはそれぞれ無限遠撮影状態のときの全系の焦
点距離、口径比、半画角帯びバツクフオーカスを
表わし、rはレンズ各面の曲率半径、dはレンズ
の肉厚及び空気間隔、ndはd線の屈折率νdはd
線に対するアツベ数を表わす。また収差図中のF
は最短距離撮影状態の口径比、Yは像高とする。
[Table] The configuration diagrams of the infinity shooting state of Examples 1, 2, 3, and 4 are shown in Fig. 1, Fig. 4, Fig. 7, and Fig. 1, respectively.
The aberration diagrams in that case are shown in the second figure.
5, 8, and 11, and the aberration diagrams at the above imaging magnifications are shown in FIGS. 3 and 3, respectively.
It is shown in FIG. 6, FIG. 9, and FIG. 12. In each of these examples, f, F NO , ω, and f B represent the focal length, aperture ratio, and half angle of view of the entire system when shooting at infinity, and r represents the curvature of each lens surface. radius, d is the lens thickness and air gap, nd is the d-line refractive index νd is d
Represents the Atsube number for a line. Also, F in the aberration diagram
is the aperture ratio in the shortest distance photographing state, and Y is the image height.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第4図、第7図、第10図はそれぞれ
本発明の実施例1、2、3、4の無限遠撮影状態
のレンズ構成図、第2図、第5図、第8図、第1
1図はそれぞれ実施例1、2、3、4の無限遠撮
影状態の収差図、第3図、第6図、第9図、第1
2図はそれぞれ実施例1、2、3、4の最短距離
撮影時の収差図である。
1, 4, 7, and 10 are lens configuration diagrams in the infinity photography state of Examples 1, 2, 3, and 4 of the present invention, and FIGS. 2, 5, and 8 respectively. , 1st
Figure 1 is an aberration diagram of Examples 1, 2, 3, and 4 in the infinity photography state, Figure 3, Figure 6, Figure 9, and Figure 1.
FIG. 2 is an aberration diagram of Examples 1, 2, 3, and 4 when photographing at the shortest distance, respectively.

Claims (1)

【特許請求の範囲】 1 物体側より順に、負の屈折力を有する第1レ
ンズ群と、正の屈折力を有する第2レンズ群と、
負の屈折力を有する第3レンズ群とから構成さ
れ、第1レンズ群と第2レンズ群との間隔を縮小
しながら該両群を第3レンズ群に対して相対的に
くり出すことにより無限遠から至近距離までの焦
点合わせが可能となり、かつ次の各条件を満足し
ていることを特徴とする接写兼用レンズ系。 (1) 0.69<f〓〓/f<0.81 (2) 4.52<|f〓|/f〓<11.03 (3) 0.86<S〓〓(-1)/S(-1)<0.99 (4) 4.80<P〓〓/P<7.16 但し、f〓〓は第1レンズ群と第2レンズ群の合
成焦点距離、fは無限遠撮影状態の全系の焦点距
離f〓とf〓はそれぞれ第1レンズ群と第2レンズ群
の焦点距離、S〓〓(-1)とS(-1)はそれぞれ等倍率の最
短距離撮影状態における第1レンズ群より第2レ
ンズ群までと全系のザイデルの3次の球面係数、
P〓〓とPはそれぞれ第1レンズ群より第2レンズ
群までと全系のペツツバール和とする。
[Claims] 1. In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power,
It consists of a third lens group with negative refractive power, and by reducing the distance between the first lens group and the second lens group and extending both groups relative to the third lens group, A lens system for close-up photography that is capable of focusing from far to close distances and satisfies the following conditions. (1) 0.69<f〓〓/f<0.81 (2) 4.52<|f〓|/f〓<11.03 (3) 0.86<S〓〓 (-1) /S (-1) <0.99 (4) 4.80 <P〓〓/P<7.16 However, f〓〓 is the combined focal length of the first lens group and second lens group, and f is the focal length of the entire system in the infinity shooting state, and f〓 and f〓 are respectively the first lens The focal lengths of the lens group and the second lens group, S〓〓 (-1) and S (-1) are Seidel's 3 for the entire system, from the first lens group to the second lens group, and for the entire system, respectively, in the shortest distance shooting state at the same magnification. The following spherical coefficients,
P〓〓 and P are the Petzval sums of the entire system from the first lens group to the second lens group, respectively.
JP4444984A 1984-03-07 1984-03-07 Closeup combined lens system Granted JPS60188918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4444984A JPS60188918A (en) 1984-03-07 1984-03-07 Closeup combined lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4444984A JPS60188918A (en) 1984-03-07 1984-03-07 Closeup combined lens system

Publications (2)

Publication Number Publication Date
JPS60188918A JPS60188918A (en) 1985-09-26
JPH0420162B2 true JPH0420162B2 (en) 1992-03-31

Family

ID=12691796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4444984A Granted JPS60188918A (en) 1984-03-07 1984-03-07 Closeup combined lens system

Country Status (1)

Country Link
JP (1) JPS60188918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596280B2 (en) * 2007-12-14 2010-12-08 ソニー株式会社 Video output device and method for forcibly displaying menu screen of video output device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812328B2 (en) * 1985-10-21 1996-02-07 キヤノン株式会社 Projection lens
JPS62160412A (en) * 1986-01-08 1987-07-16 Asahi Optical Co Ltd Macrolens
US5737129A (en) * 1994-12-26 1998-04-07 Nikon Corporation Wide-angle zoom lens
JPH08220424A (en) * 1995-02-10 1996-08-30 Nikon Corp Gauss type lens having vibration proof function
JPH08234106A (en) * 1995-02-23 1996-09-13 Nikon Corp Zoom lens
JPH08248305A (en) * 1995-03-10 1996-09-27 Nikon Corp Long focus microlens
JPH08278445A (en) * 1995-04-04 1996-10-22 Nikon Corp Zoom lens having vibration-isolating function
JP3495623B2 (en) * 1998-12-24 2004-02-09 ペンタックス株式会社 Zoom lens system
JP4156828B2 (en) 2001-11-27 2008-09-24 オリンパス株式会社 Macro lens and camera equipped with the same
JP5110104B2 (en) 2010-02-26 2012-12-26 株式会社ニコン Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP5500382B2 (en) 2010-09-22 2014-05-21 株式会社ニコン Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596280B2 (en) * 2007-12-14 2010-12-08 ソニー株式会社 Video output device and method for forcibly displaying menu screen of video output device

Also Published As

Publication number Publication date
JPS60188918A (en) 1985-09-26

Similar Documents

Publication Publication Date Title
JPH0217084B2 (en)
JPH0420162B2 (en)
JPH08286105A (en) Wide-angle lens system
JPS6361213A (en) Inverted telephoto type wide angle lens
JPH0412448B2 (en)
JP4098586B2 (en) Zoom lens
JP4007468B2 (en) Wide-angle lens with long back focus
JP2000028919A (en) Middle telephotographic lens
JPH0314323B2 (en)
JPH0443245B2 (en)
JPS6132654B2 (en)
JPH09179023A (en) Wide-angle soft-focus lens
JPH11271610A (en) Medium telephoto lens
JPH11119094A (en) Retrofocusing wide-angle lens having large diameter ratio
JPH0850238A (en) Wide angle lens
JPS6048014B2 (en) wide field eyepiece
JPS6233568B2 (en)
JPS6358324B2 (en)
JPH07333494A (en) Photographing lens
JPH0363613A (en) Retrofocus type wide-angle lens
JPH0510645B2 (en)
JPS6119009B2 (en)
JPS6161365B2 (en)
JPS6132646B2 (en)
JPH10197808A (en) Eyepiece lens system