JPS6161278B2 - - Google Patents

Info

Publication number
JPS6161278B2
JPS6161278B2 JP53148897A JP14889778A JPS6161278B2 JP S6161278 B2 JPS6161278 B2 JP S6161278B2 JP 53148897 A JP53148897 A JP 53148897A JP 14889778 A JP14889778 A JP 14889778A JP S6161278 B2 JPS6161278 B2 JP S6161278B2
Authority
JP
Japan
Prior art keywords
josephson junction
striped
superconductor
pulse generator
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53148897A
Other languages
Japanese (ja)
Other versions
JPS5574237A (en
Inventor
Azusa Matsuda
Haruo Yoshikyo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14889778A priority Critical patent/JPS5574237A/en
Publication of JPS5574237A publication Critical patent/JPS5574237A/en
Publication of JPS6161278B2 publication Critical patent/JPS6161278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/38Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of superconductive devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、2つのストライプ状超伝導体層間に
トンネリング用非超伝導体層が介挿されてジヨセ
フソン接合を形成せる構成を有するジヨセフソン
接合線路を用いて、予定のパルス出力を得る様に
なされた、新規な超伝導パルス発生装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a Giosefson junction line having a configuration in which a tunneling non-superconductor layer is interposed between two striped superconductor layers to form a Giosefson junction. This invention relates to a novel superconducting pulse generator designed to obtain output.

以下図面を伴なつて本発明の実施例を詳述する
に、第1図〜第3図は本発明の第1の実施例を示
し、絶縁基板1上にストライプ状超導体層2が形
成され、又絶縁基板1及びストライプ状超伝導体
層2上に、ストライプ状超伝導体層2上に於てそ
れをその幅よりも小なる幅を以つて外部に臨ませ
るストライプ状の窓3を有する絶縁層4が形成さ
れ、更に絶縁層4のストライプ状の窓3内に例え
ば絶縁層でなるストライプ状のトンネリング用非
超伝導体層5が、ストライプ状超伝導体層2と接
触する如く形成され、又絶縁層4上のストライプ
状超伝導体層2に対応する位置にストライプ状超
伝導体層6が、それが絶縁層4のストライプ状の
窓3を通じてトンネリング用非超伝導体層5と接
触する如く形成され、依つて絶縁基板1上に、2
つのストライプ状超伝導体層2及び6間にストラ
イプ状のトンネリング用非超伝導体層5が介挿さ
れてストライプ状のジヨセフソン接合7を形成せ
る構成を有するジヨセフソン接合線路8が形成さ
れている。この場合ストライプ状のジヨセフソン
接合7の長さが、 λJ=√20 c ……(1) で表わされるジヨセフソン侵入深さλJに比し十
分長い長さに選定されているものである。但し(1)
式に於てhはプランク定数、eは電子の電荷、μ
は真空透磁率、dはジヨセフソン接合7のロン
ドン侵入深さをλL,トンネリング用非超伝導体
層5の厚さをt0とするとき(2λL+t0)で表わさ
れるパラメータ、jcはジヨセフソン接合7の最
大ジヨセフソン電流密度を夫夫示す。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIGS. 1 to 3 show a first embodiment of the present invention, in which a striped superconductor layer 2 is formed on an insulating substrate 1, Further, on the insulating substrate 1 and the striped superconductor layer 2, there is provided an insulator having a striped window 3 that exposes the striped superconductor layer 2 to the outside with a width smaller than the width of the striped superconductor layer 2. A layer 4 is formed, and a striped tunneling non-superconductor layer 5 made of, for example, an insulating layer is formed in the striped window 3 of the insulating layer 4 so as to be in contact with the striped superconductor layer 2, Further, a striped superconductor layer 6 is placed on the insulating layer 4 at a position corresponding to the striped superconductor layer 2, and contacts the non-superconductor layer 5 for tunneling through the striped window 3 of the insulating layer 4. Thus, on the insulating substrate 1, 2
A striped non-superconductor layer 5 for tunneling is interposed between two striped superconductor layers 2 and 6 to form a Josephson junction line 8 having a structure in which a striped Josephson junction 7 is formed. In this case, the length of the striped Josephson junction 7 is selected to be sufficiently longer than the Josephson penetration depth λ J expressed by λ J =√2 0 c (1). However (1)
In the formula, h is Planck's constant, e is the electron charge, μ
0 is the vacuum permeability, d is the parameter expressed as (2λ L + t 0 ), where λ L is the London penetration depth of Josephson junction 7, and t 0 is the thickness of the non-superconductor layer 5 for tunneling, j c indicates the maximum Josephson current density of Josephson junction 7.

又上述せる絶縁層4にそのストライプ状超伝導
体層6下の位置に於てストライプ状の窓10が形
成され、而してそのストライプ状の窓10内にス
トライプ状の抵抗層11がジヨセフソン接合線路
8を構成せるストライプ状超伝導体層2及び6間
に延長して形成されている。
Further, a striped window 10 is formed in the above-mentioned insulating layer 4 at a position below the striped superconductor layer 6, and a striped resistance layer 11 is formed within the striped window 10 to form a Josephson junction. It is formed extending between the striped superconductor layers 2 and 6 that constitute the line 8.

更に絶縁基板1上に、ジヨセフソン接合線路8
を構成せるストライプ状超伝導体層2の長さ方向
にとつた複数の位置より夫々外方に延長せる超伝
導体でなるを可とするストライプ状導体層12が
形成され、又絶縁層4上に、ストライプ状超伝導
体層6のストライプ状導体層12と対応する位置
より外方に延長せるストライプ状導体層12と同
様のストライプ状導体層13が形成されている。
Further, on the insulating substrate 1, a Josephson junction line 8 is provided.
A striped conductor layer 12 made of a superconductor is formed which can extend outwardly from a plurality of positions along the length of the striped superconductor layer 2 constituting the insulating layer 4. A striped conductor layer 13 similar to the striped conductor layer 12 is formed extending outward from a position corresponding to the striped conductor layer 12 of the striped superconductor layer 6 .

以上が本発明の第1の実施例の構成であるが、
斯る構成によれば、それが上述せる(1)式で表わさ
れるジヨセフソン侵入深さλJに比し十分長いジ
ヨセフソン接合7を有するジヨセフソン接合線路
8に、抵抗層11がジヨセフソン接合線路8のス
トライプ状超伝導体層2及び6間に延長せる態様
を以つて即ちジヨセフソン接合7と並列関係とな
る態様を以つて附加され、又ジヨセフソン接合線
路8に、ストライプ状導体層12及び13がそれ
等を用いてジヨセフソン接合7の長さ方向にとつ
た複数の位置に電流を流し得る態様を以つて附加
されてなる構成を有するものである。
The above is the configuration of the first embodiment of the present invention,
According to such a configuration, the resistance layer 11 is formed by forming a stripe of the Josephson junction line 8 on the Josephson junction line 8 having the Josephson junction 7 which is sufficiently long compared to the Josephson penetration depth λ J expressed by the above equation (1). Striped conductor layers 12 and 13 are added to the Josephson junction line 8 in such a way that they extend between the superconductor layers 2 and 6, i.e. in a parallel relationship with the Josephson junction 7. It has a configuration in which a current can be applied to a plurality of positions along the length of the Josephson junction 7 using the electric current.

所で第1図にて上述せる本発明の第1の実施例
に於て、そのジヨセフソン接合線路8に抵抗層1
1及びストライプ状導体層12及び13が上述せ
る如くに附加されていない構成従つてジヨセフソ
ン接合線路8のみによる構成は、そのジヨセフソ
ン接合線路8を構成せるストライプ状超伝導体層
2及び6の一方の遊端部を端子T1及びT1′、
他方の遊端部を端子T2及びT2′とすれば、第
4図に示す如く、端子T1及びT1′とT2及び
T2′との間に、ジヨセフソン接合線路8のジヨ
セフソン接合7の単位長さ分のジヨセフソン接合
7′と、そのジヨセフソン接合7′に分布する容量
21と、ジヨセフソン接合7′の準粒子抵抗22
との並列回路で表わされる単位分の等価回路の複
数が、M1,M2……としてストライプ状超伝導
体層2及び6の単位長さ分のインダクタ23を介
して縦続接続されてなるという等価回路で表わさ
れる構成を有し、又 Γ=g√2c ……(2) で表わされるパラメータΓを有するものである。
但し(2)式に於てgはジヨセフソン接合7の単位面
積当りの等価コンダクタンス、εは非超伝導体層
5の誘電率を示す。
By the way, in the first embodiment of the present invention described above with reference to FIG.
1 and stripe-shaped conductor layers 12 and 13 are not added as described above, that is, a structure with only the Josephson junction line 8, one of the striped superconductor layers 2 and 6 constituting the Josephson junction line 8. The free ends are connected to terminals T1 and T1',
If the other free ends are terminals T2 and T2', as shown in FIG. The Josephson junction 7', the capacitance 21 distributed in the Josephson junction 7', and the quasiparticle resistance 22 of the Josephson junction 7'
An equivalent circuit in which a plurality of unit equivalent circuits represented by parallel circuits are cascade-connected as M1, M2... via inductors 23 of unit length of striped superconductor layers 2 and 6. It has a configuration expressed as follows, and a parameter Γ expressed as Γ=g√2 c (2).
However, in equation (2), g represents the equivalent conductance per unit area of Josephson junction 7, and ε represents the dielectric constant of non-superconductor layer 5.

従つて第1図にて上述せる本発明の実施例の構
成は、第5図に示す如く、第4図にて上述せる等
価回路に於て、その単位分の等価回路M1,M2
……がジヨセフソン接合7′、容量21及び準粒
子抵抗22の外準粒子抵抗22と並列に接続せる
抵抗層11の単位長さ分の抵抗11′を有する単
位分の等価回路M1′,M2′……に置換され、又
その等価回路M1′,M2′……の夫夫に於けるジ
ヨセフソン接合7′に導体層12及び13を介し
て外部より電流ieが流される様になされている
ことを除いては第4図の場合と同様の等価回路で
表わされる構成を有し、又 Γ′=g′√2c ……(3) で表わされるパラメータΓ′を有し(但し(3)式に
於てg′はジヨセフソン接合7の単位面積当りの等
価コンダクタンスと抵抗層11の単位面積当りの
等価コンダクタンスとの和である)を有し、従つ
てジヨセフソン接合線路8のみによる構成での(2)
式のパラメータΓの値が、抵抗層11が設けられ
たことにより大ならしめられてなる構成を有し、
更にジヨセフソン接合線路8のみよる構成でのジ
ヨセフソン接合7での磁束量子が、導体層12及
び13が設けられてジヨセフソン接合7に電流i
eを流す様にしていることにより生ずるジヨセフ
ソン接合線路の長さ方向の磁場によるローレンツ
力によつて、端子T1及びT1′側より端子T2
及びT2′側に γ=ie/jc ……(4) で表わされるパラメータγで表わされる加速力を
以つて加速され、 μ=μ(πγ/4Γ) /√1+(44) ……(5) で表わされる送度μ(但し(5)式に於けるμはジ
ヨセフソン接合線路8のみによる構成での磁束量
子の速度を示し、√0 で表わされる)
を以つて端子T1及びT1′側より端子T2及び
T2′側に伝送せしめられるという構成を有する
ものである。
Therefore, the configuration of the embodiment of the present invention described above in FIG. 1 is as shown in FIG. 5, in the equivalent circuit described above in FIG.
... is an equivalent circuit M1', M2' for a unit, which has a Josephson junction 7', a capacitance 21, and a resistance 11' for a unit length of the resistance layer 11 connected in parallel with the external quasi-particle resistor 22 of the quasi-particle resistor 22. . . . and the equivalent circuits M1', M2', . It has a configuration expressed by an equivalent circuit similar to that in Fig. 4 except for , and has a parameter Γ ′ expressed as In the equation, g' is the sum of the equivalent conductance per unit area of the Josephson junction 7 and the equivalent conductance per unit area of the resistance layer 11), and therefore, in the configuration with only the Josephson junction line 8, ( 2)
It has a configuration in which the value of the parameter Γ in the equation is increased by providing the resistance layer 11,
Furthermore, the magnetic flux quantum at the Josephson junction 7 in the configuration based only on the Josephson junction line 8 is reduced by the current i in the Josephson junction 7 when the conductor layers 12 and 13 are provided.
Due to the Lorentz force caused by the magnetic field in the length direction of the Josephson junction line, which is caused by the flow of e , the terminal T2 is
And on the T2' side, it is accelerated with the acceleration force represented by the parameter γ, which is expressed as γ=i e /j c ...(4), and μ=μ 0 (πγ/4Γ) /√1+(44) 2 ... ...Feed rate μ expressed by (5) (However, μ 0 in equation (5) indicates the speed of the magnetic flux quantum in the configuration with only the Josephson junction line 8, and is expressed as √ 0 0 )
The signal is transmitted from the terminals T1 and T1' to the terminals T2 and T2'.

この為第1図にて上述せる本発明の第1の実施
例の場合、端子T1及びT1′間にパルス発生用
電圧源31を接続し、そしてジヨセフソン接合線
路8の一端側にパルス発生用電圧Gを与えること
により、ジヨセフソン接合線路8の他端側即ち端
子T2及びT2′間にて、パルス発生用電圧Gが
端子T1及びT1′側より端子T2及びT2′側に
伝送されんとするものであるがそのときそれに時
間積分効果が与えられるからであるということで
説明される理由で、 τJ=√2c 0 ……(6) で表わされる時間τJの数倍程度のパルス幅を有
する出力パルスFが、パルス発生用電圧Gの時間
幅、振幅に応じた態様を以つて得られるものであ
る。例えばジヨセフソン接合線路8の実効長が30
λJである場合に於て、 V0=√c 02 ……(7) で表わされる電圧V0を基準として、第6図Aに
示す如き0.4V0の振幅を有し、且15τJの時間幅を
有する時点5τJより得られる電圧をパルス発生
用電圧Gとして用いた場合、第6図Bに示す如き
2τj程度の幅を有する単一パルスがパルス出力
Fとして時点50τJで得られ、又第6図Cに示す
如き1.3V0の振幅を有し、且15τJの時間幅を有す
る時点5τJより得られる電圧をパルス発生用電
圧Gとして用いた場合、第6図Dに示す如き2τ
J程度の幅を有する3つのパルスが時点40τJ后連
続して略々5τJの間隔でパルス出力Fとして得
られ、更に第6図Eに示す如き9.4V0の振幅を有
し、且略々1τJの時間幅を有する時点5τJより
得られる電圧をパルス発生用電圧Gとして用いた
場合、第6図Fに示す如き2τJ程度の幅を有す
る3つのパルスが時点40τJ后連続して略々2.5τ
Jの間隔でパルス出力Fとして得られるものであ
る。
For this reason, in the case of the first embodiment of the present invention described above in FIG. 1, a pulse generation voltage source 31 is connected between terminals T1 and T1', and a pulse generation voltage By applying G, the pulse generation voltage G is transmitted from the terminals T1 and T1' to the terminals T2 and T2' at the other end of the Josephson junction line 8, that is, between the terminals T2 and T2'. However , at that time, the pulse width is about several times the time τ J expressed as The output pulse F is obtained in a manner corresponding to the time width and amplitude of the pulse generation voltage G. For example, the effective length of Josephson junction line 8 is 30
When λ J , V 0 =√ c 0 2 ...(7) has an amplitude of 0.4V 0 as shown in FIG. 6A, and 15τ J When the voltage obtained at time 5τ J with a time width of If the voltage obtained at time 5τ J with an amplitude of 1.3V 0 and a time width of 15τ J as shown in FIG. 6C is used as the pulse generation voltage G, as shown in FIG. 6D. 2τ as shown
Three pulses having a width of about J are obtained as a pulse output F successively after a time 40τ J at intervals of approximately 5τ J , and further have an amplitude of 9.4 V 0 as shown in FIG. 6E, and approximately If the voltage obtained from time 5τ J with a time width of 1τ J is used as the pulse generation voltage G , three pulses with a width of about 2τ J as shown in FIG. Approximately 2.5τ
This is obtained as a pulse output F at intervals of J.

上述せる如く第1図にて上述せる本発明の第1
の実施例によれば、ジヨセフソン接合線路8に、
そのストライプ状超伝導体層2及び6間に延長せ
る抵抗層11を附加することによつて、ジヨセフ
ソン接合線路8にそのジヨセフソン接合7の等価
コンダクタンスを増大せしめる手段が施され、又
ジヨセフソン接合線路8にそのジヨセフソン接合
7にストライプ状導体層12及び13を附加する
ことによつて、ジヨセフソン接合線路にそのジヨ
セフソン接合7での磁束量子を加速する手段が施
されているという簡単な構成で、ジヨセフソン接
合線路8の一端側に予定の振幅を有するパルス発
生用電圧が与えらることによりジヨセフソン接合
線路8の他端側より予定のパルス出力が得られる
という大なる特徴を有するものである。
As mentioned above, the first aspect of the present invention shown in FIG.
According to the embodiment, in the Josephson junction line 8,
By adding an extendable resistive layer 11 between the striped superconductor layers 2 and 6, the Josephson junction line 8 is provided with means for increasing the equivalent conductance of the Josephson junction 7, and the Josephson junction line 8 By adding striped conductor layers 12 and 13 to the Josephson junction 7, the Josephson junction line is provided with means for accelerating the magnetic flux quantum at the Josephson junction 7. It has a great feature in that by applying a pulse generation voltage having a predetermined amplitude to one end of the line 8, a predetermined pulse output can be obtained from the other end of the Josephson junction line 8.

尚上述に於ては、ジヨセフソン接合線路8のΓ
の値を、ジヨセフソン接合線路8にそそのジヨセ
フソン接合7の等価コンダクタンスを増大せしめ
る手段を施して、その手段の施されていない場合
のそれに比して大ならしめた場合につき述べた
が、第7図に示す如く、詳細説明はこれを省略す
るも、第1図にて上述せる構成に於ける抵抗層1
1が省略され、然し乍らストライプ状超伝導体層
6とトンネリング用非超伝導体層5間に、例えば
Al,Sn等の金属でなる常伝導体層41を介挿す
る構成とすることにより、ジヨセフソン接合7の
最大ジヨセフソン電流密度jcを低下せしめる手
段を施し、ジヨセフソン接合7のパラメータΓの
値を、上記手段の施されていない場合のそれに比
し大ならしめることも出来、この常伝導体層41
は上述せる如く一方のストライプ状超伝導体層6
とトンネリング用非超伝導体層5間のみならず、
他方のストライプ状超伝導体層2とトンネリング
用非超伝導体層5間、或は双方のストライプ状超
伝導体層2及び6とトンネリング用非超伝導体層
5間に介挿する構成とすることも出来るものであ
る。又第8図に示す如く、詳細説明はこれを省略
するも、第1図にて上述せる構成に於けるストラ
イプ状導体層12及び13が省略され、然し乍ら
ストライプ状超伝導体層6上に於て絶縁層42が
形成され、更に絶縁層42上のストライプ状超伝
導体層6に対応する位置にジヨセフソン接合線路
8に沿つて一端側より他端側に向うに従い徐々に
小となる幅を呈して延長せる導体層43を形成
し、その導体層43の一端側より他端側に向けて
磁束量子用加速電流を流し、ジヨセフソン接合線
路8にその一端側より他端側に向うに従い徐々に
磁界強度が大となる磁界分布を与える構成とする
ことにより、ジヨセフソン接合7での磁束量子を
加速することも出来るものである。
In addition, in the above, Γ of Josephson junction line 8
We have described the case in which the value of is made larger by applying means to increase the equivalent conductance of the Josephson junction line 8 to the Josephson junction line 8 compared to the case where no such means is applied. As shown in the figure, although detailed explanation is omitted, the resistance layer 1 in the configuration described above in FIG.
1 is omitted, however, between the striped superconductor layer 6 and the non-superconductor layer 5 for tunneling, for example,
By inserting a normal conductor layer 41 made of a metal such as Al or Sn, a means for reducing the maximum Josephson current density j c of the Josephson junction 7 is taken, and the value of the parameter Γ of the Josephson junction 7 is This normal conductor layer 41 can be made larger than that in the case where the above means are not applied.
As mentioned above, one striped superconductor layer 6
Not only between and the tunneling non-superconductor layer 5,
The structure is such that it is inserted between the other striped superconductor layer 2 and the non-superconductor layer 5 for tunneling, or between both striped superconductor layers 2 and 6 and the non-superconductor layer 5 for tunneling. It is also possible. Further, as shown in FIG. 8, although detailed explanation is omitted, the striped conductor layers 12 and 13 in the configuration described above in FIG. An insulating layer 42 is formed on the insulating layer 42 at a position corresponding to the striped superconductor layer 6, and a width gradually decreases from one end to the other end along the Josephson junction line 8. A conductor layer 43 that can be extended is formed, and an accelerating current for magnetic flux quantum is passed from one end of the conductor layer 43 to the other end, and a magnetic field is gradually applied to the Josephson junction line 8 from one end to the other end. By adopting a configuration that provides a magnetic field distribution with a large intensity, it is also possible to accelerate the magnetic flux quantum at the Josephson junction 7.

尚、第1図乃至第8図にて上述せる構成のジヨ
セフソン接合線路8は分布常数型線路として述べ
たものであるが、第9図に示す如く、詳細説明は
これを省略するも、第1図にて上述せる構成に於
けるジヨセフソン接合線路8に沿つて延長せるス
トライプ状のトンネリング用非超伝導体層5に代
え、これを間断せしめたトンネリング超伝導体層
45とすることにより、集中常数型線路とするこ
とも出来、その他本発明の精神を脱することなし
に種々の変型変更をなし得るであろう。
Note that the Josephson junction line 8 having the above-described configuration in FIGS. 1 to 8 is described as a distributed constant type line, but as shown in FIG. In place of the striped tunneling non-superconductor layer 5 extending along the Josephson junction line 8 in the configuration described above in the figure, by using an interrupted tunneling superconductor layer 45, the lumped constant It could also be a molded line, and various other modifications could be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超伝導パルス発生装置の
一例を示す略線的平面図、第2図及び第3図はそ
の―線、及び―線に於ける断面図、第4
図及び第5図は本発明による超伝導パルス発生装
置の説明に供する等価回路図、第6図は本発明に
よる超伝導パルス発生装置の入出力特性を示す曲
線図、第7図は本発明による超伝導パルス発生装
置の他の例を示す断面図、第8図及び第9図は本
発明による超伝導パルス発生装置の更に他の例を
示す略線的平面図である。 図中1は絶縁基板、2及び6はストライプ状超
伝導体層、3及び10は窓、4及び42は絶縁
層、5及び45はトンネリング用非超伝導体層、
7はジヨセフソン接合、8はジヨセフソン接合線
路、11は抵抗層、12及び13はストライプ状
導体層、21は容量、22は準粒子抵抗、23は
インダクタ、31はパルス発生用電圧源、41は
常伝導体層、43は導体層、T1,T1′,T2
及びT2′は端子を夫々示す。
FIG. 1 is a schematic plan view showing an example of a superconducting pulse generator according to the present invention, FIGS. 2 and 3 are sectional views taken along lines - and -, and FIG.
5 and 5 are equivalent circuit diagrams for explaining the superconducting pulse generator according to the present invention, FIG. 6 is a curve diagram showing the input/output characteristics of the superconducting pulse generator according to the present invention, and FIG. 7 is a diagram according to the present invention. A sectional view showing another example of a superconducting pulse generator, and FIGS. 8 and 9 are schematic plan views showing still other examples of the superconducting pulse generator according to the present invention. In the figure, 1 is an insulating substrate, 2 and 6 are striped superconductor layers, 3 and 10 are windows, 4 and 42 are insulating layers, 5 and 45 are non-superconductor layers for tunneling,
7 is a Josephson junction, 8 is a Josephson junction line, 11 is a resistance layer, 12 and 13 are striped conductor layers, 21 is a capacitor, 22 is a quasi-particle resistor, 23 is an inductor, 31 is a voltage source for pulse generation, 41 is a regular Conductor layer, 43 is conductor layer, T1, T1', T2
and T2' indicate terminals, respectively.

Claims (1)

【特許請求の範囲】 1 第1及び第2のストライプ状超伝導体層間に
トンネリング用非超伝導体層が介挿されてジヨセ
フソン接合を形成せる構成を有するジヨセフソン
接合線路を具備し、該ジヨセフソン接合線路に、
そのジヨセフソン接合の等価コンダクタンスを増
大せしめる手段及び上記ジヨセフソン接合の最大
ジヨセフソン電流密度を低下せしめる手段の何れ
か一方又は双方が施されて、 Γ=g√2c で表わされる上記ジヨセフソン接合のパラメータ
Γ(但しgはジヨセフソン接合の単位面積当りの
等価コンダクタンス、hはプランク定数、dはλ
Lロンドン侵入深さ、t0を上記トンネリング用非
超伝導体層の厚さとするとき(2λL+t0)で表わ
されるパラメータ、eは電子の電荷、Jcはジヨ
セフソン接合の最大ジヨセフソン電流密度、εは
上記トンネリング非超伝導体層の誘電率を夫々示
す)の値が、上記手段の施されていない場合のそ
れに比して大ならしめられ、且上記ジヨセフソン
接合線路にそのジヨセフソン接合での磁束量子を
加速する手段が施され、依つて上記ジヨセフソン
接合線路の一端側に予定の振幅を有するパルス発
生用電圧が与えられることにより上記ジヨセフソ
ン接合線路の他端側より予定のパルス出力が得ら
れる様になされた事を特徴とする超伝導パルス発
生装置。 2 特許請求の範囲第1項所載の超伝導パルス発
生装置に於て、ジヨセフソン接合の等価コンダク
タンスを増大せしめる手段が、上記第1及び第2
のストライプ状超伝導体層間に延長せる抵抗層を
有して構成されてなる事を特徴とする超伝導パル
ス発生装置。 3 特許請求の範囲第1項所載の超伝導パルス発
生装置に於て、上記ジヨセフソン接合の最大ジヨ
セフソン電流密度を低下せしめる手段が、上記第
1及び第2のストライプ状超伝導体層の何れか一
方又は双方と上記トンネリング用非超伝導体層間
に介挿せる常伝導体層を有して構成されてなる事
を特徴とする超伝導パルス発生装置。 4 特許請求の範囲第1項所載の超伝導パルス発
生装置に於て、上記ジヨセフソン接合での磁束量
子を加速する手段が、上記ジヨセフソン接合に所
要の磁束量子加速用電流を流すべく上記第1及び
第2のストライプ状超伝導体層より夫々延長せる
導体層を有して構成されてなる事を特徴とする超
伝導パルス発生装置。 5 特許請求の範囲第1項所載の超伝導パルス発
生装置に於て、上記ジヨセフソン接合での磁束量
子を加速する手段が、一端側より他端側に向けて
磁束量子加速用電流が流され、これにより上記ジ
ヨセフソン接合線路にその一端側より他端側に向
うに従い徐々に磁界強度が大となる磁界分布を与
えるべく、上記ジヨセフソン接合線路に沿つて一
端側より他端側に向うに従い徐々に小となる幅を
呈して延長せる導体層を有して構成されてなる事
を特徴とする超伝導パルス発生装置。
[Scope of Claims] 1. A Josephson junction line having a configuration in which a non-superconductor layer for tunneling is interposed between first and second striped superconductor layers to form a Josephson junction, the On the railway line,
Either or both of the means for increasing the equivalent conductance of the Josephson junction and the means for reducing the maximum Josephson current density of the Josephson junction are applied, so that the parameter Γ ( However, g is the equivalent conductance per unit area of Josephson junction, h is Planck's constant, and d is λ
L London penetration depth, t 0 is the thickness of the non-superconductor layer for tunneling, a parameter expressed as (2λ L + t 0 ), e is the electron charge, J c is the maximum Josephson current density of the Josephson junction, (ε represents the dielectric constant of the tunneling non-superconductor layer) is made larger than that in the case where the above means are not applied, and the magnetic flux at the Josephson junction is increased to the Josephson junction line. A means for accelerating the quantum is provided, and by applying a pulse generation voltage having a predetermined amplitude to one end of the Josephson junction line, a predetermined pulse output can be obtained from the other end of the Josephson junction line. A superconducting pulse generator characterized by its features. 2. In the superconducting pulse generator recited in claim 1, the means for increasing the equivalent conductance of the Josefson junction comprises the first and second
1. A superconducting pulse generator comprising a resistive layer extending between striped superconductor layers. 3. In the superconducting pulse generator recited in claim 1, the means for lowering the maximum Josephson current density of the Josephson junction may be any one of the first and second striped superconductor layers. A superconducting pulse generator comprising a normal conductor layer interposed between one or both of the tunneling non-superconductor layers. 4. In the superconducting pulse generator recited in claim 1, the means for accelerating the magnetic flux quantum in the Josephson junction includes the first and a second striped superconductor layer, each of which has a conductor layer extending from the second stripe-shaped superconductor layer. 5. In the superconducting pulse generator recited in claim 1, the means for accelerating the magnetic flux quanta in the Josephson junction is such that a current for accelerating the magnetic flux quanta is passed from one end to the other end. In this way, in order to give the Josephson junction line a magnetic field distribution in which the magnetic field strength gradually increases from one end to the other end, the A superconducting pulse generator characterized in that it is constructed with a conductor layer that exhibits a narrow width and is extendable.
JP14889778A 1978-11-30 1978-11-30 Generator for superconduction pulse Granted JPS5574237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14889778A JPS5574237A (en) 1978-11-30 1978-11-30 Generator for superconduction pulse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14889778A JPS5574237A (en) 1978-11-30 1978-11-30 Generator for superconduction pulse

Publications (2)

Publication Number Publication Date
JPS5574237A JPS5574237A (en) 1980-06-04
JPS6161278B2 true JPS6161278B2 (en) 1986-12-24

Family

ID=15463125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14889778A Granted JPS5574237A (en) 1978-11-30 1978-11-30 Generator for superconduction pulse

Country Status (1)

Country Link
JP (1) JPS5574237A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2325003C1 (en) * 2006-12-05 2008-05-20 Институт радиотехники и электроники Российской Академии Наук Cryogenerator of local oscillator based on distribution tunneling junction designed for integrated spectrometer of submillimetric waves with phase locking (pll)

Also Published As

Publication number Publication date
JPS5574237A (en) 1980-06-04

Similar Documents

Publication Publication Date Title
Giaever Detection of the ac Josephson effect
JPS58119113A (en) Transmission line
Yip Conductance anomalies for normal-metal–insulator–superconductor contacts
AR247645A1 (en) Electrical stress control
CA2029687A1 (en) Planar coil construction
Guttman et al. Thermopower of mesoscopic and disordered systems
US2962681A (en) Superconductor circuits
JPS6161278B2 (en)
US2568600A (en) Low-ohmic electrical resistance
US3225223A (en) Pulse generator
US3098967A (en) Cryotron type switching device
Tidecks et al. The influence of high? frequency radiation on the U? I characteristics of superconducting tin whiskers
US3158502A (en) Method of manufacturing electrically insulated devices
US3440336A (en) Web-shaped superconductor
US6573526B1 (en) Single electron tunneling transistor having multilayer structure
US3514524A (en) Transposed low temperature strip electric cable
US3245020A (en) Superconductive gating devices and circuits having two superconductive shield planes
JPS5836405B2 (en) Baldfish head
JP2582643B2 (en) Superconducting transistor
US4164030A (en) Film cryotron
Newhouse et al. The crossed-film cryotron and its application to digital computer circuits
JPS6288381A (en) Superconducting switching apparatus
Rowell Tunneling between superconductors
US3384794A (en) Superconductive logic device
DE19704944A1 (en) Effectiveness amplifier for thermoelectric energy converters