JPS6161203B2 - - Google Patents

Info

Publication number
JPS6161203B2
JPS6161203B2 JP54073387A JP7338779A JPS6161203B2 JP S6161203 B2 JPS6161203 B2 JP S6161203B2 JP 54073387 A JP54073387 A JP 54073387A JP 7338779 A JP7338779 A JP 7338779A JP S6161203 B2 JPS6161203 B2 JP S6161203B2
Authority
JP
Japan
Prior art keywords
resin
insulating layer
polyamide
imide
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54073387A
Other languages
Japanese (ja)
Other versions
JPS55165515A (en
Inventor
Katsuyuki Yamazaki
Isao Shirahata
Bunichi Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7338779A priority Critical patent/JPS55165515A/en
Publication of JPS55165515A publication Critical patent/JPS55165515A/en
Publication of JPS6161203B2 publication Critical patent/JPS6161203B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた耐熱性、機械的特性、耐薬品性
を有し、特に含浸処理後の耐熱衝撃特性に優れた
絶縁電線に関する。 従来から耐熱性の合成樹脂としてポリエステル
樹脂、ポリエステルイミド樹脂などのポリエステ
ル系樹脂、ポリアミドイミド樹脂、ポリエステル
アミドイミド樹脂などのポリアミドイミド系樹脂
及びポリイミド系樹脂などが知られている。 ポリエステル系樹脂を得る方法として、ジカル
ボン酸又はその誘導体(例えばメチルエステルな
ど)或いはイミドジカルボン酸或いはこれらの混
合酸成分とポリオールとを反応せしめる方法が一
般的に知られ、得られる樹脂はフエノール、クレ
ゾール、キシレノールの如き安価なフエノール系
溶剤を用いてしかも高濃度で使用することがで
き、又水溶化して用いる方法、溶融して用いる方
法などが知られており、これらポリエステル系樹
脂溶液を導体に塗布焼付けたポリエステル系絶縁
電線は優れた耐熱性を有する反面、耐熱衝撃特
性、機械的特性、耐薬品性等が充分ではなく機器
の信頼性に不安があつた。 又、ポリアミドイミド系樹脂を得る方法として
はトリカルボン酸無水物とジイソシアネートとを
有機極性溶媒中で反応せしめる方法、過剰のトリ
カルボン酸無水物とジイソシアネートとをフエノ
ール系溶媒中で反応せしめた後更にポリオールを
反応せしめる方法などが知られており、これらポ
リアミドイミド系樹脂溶液を導体に塗布焼付けた
ポリアミドイミド系絶縁電線は耐熱性、耐熱衝撃
特性、機械的特性、耐薬品性に優れ、バランスの
とれた特性を有している。 更に、ポリイミド系樹脂を得る方法としては、
芳香族テトラカルボン酸二無水物とジアミンとを
有機極性溶媒中で反応せしめて可溶性のポリアミ
ド酸樹脂溶液とし、このポリアミド酸樹脂溶液を
使用時加熱処理してポリイミド樹脂に転化せしめ
る方法が知られているが、ポリアミド酸樹脂溶液
は非常に不安定で常温でも徐々にイミド化が生起
して溶液がゲル化するため冷凍保存を必要とし、
又溶媒としてN−メチル−2−ピロリドン、ジメ
チルアセトアミド、ジメチルホルムアミドの如き
高価で吸湿性の大きな溶媒しか用いることができ
ずこの為得られる塗料は高価でしかも樹脂濃度が
低い為に製線加工性が悪く、従つてこの塗料を用
いたポリイミド絶縁電線は高価になるという欠点
を有していた。 一方、1・2・3・4−ブタンテトラカルボン
酸とジアミンとをフエノール系溶媒中で反応せし
めて得られるポリイミド樹脂は高濃度で使用する
ことができ、又1・2・3・4−ブタンテトラカ
ルボン酸二無水物とジアミンとを有機極性溶媒中
で反応せしめて得られるポリアミド酸樹脂は容易
に水溶化することも可能であり、前記芳香族テト
ラカルボン酸二無水物を用いる場合に比べて耐熱
性は劣るが、高濃度化あるいは水溶化等により低
公害の樹脂溶液として有用であるばかりか樹脂溶
液は熱的に安定で製線加工性にも優れている。 しかるに本発明者らがこれら耐熱性樹脂塗料を
用いて製造した耐熱性絶縁電線の耐ワニス性につ
いて検討したところ、ポリアミドイミド系絶縁電
線及び1・2・3・4−ブタンテトラカルボン酸
単位のポリイミド系絶縁電線はコイル加工後、コ
イル含浸に一般的に用いられている含浸樹脂例え
ばポリエステル樹脂、エポキシ樹脂、フエノール
樹脂或いはこれらの混合樹脂等で含浸処理を施す
とポリエステル系絶縁電線に比べて耐熱衝撃特性
が大巾に低下することが判明した。 本発明はポリアミドイミド系絶縁電線及び1・
2・3・4−ブタンテトラカルボン酸単位から成
るポリイミド系絶縁電線の改良に係り、上述の如
き欠点を改良した高信頼性の絶縁電線に関するも
ので、図を用いて説明すると導体1上に、1・
2・3・4−ブタンテトラカルボン酸単位のポリ
イミド系樹脂、またはポリアミドイミド系樹脂か
らなる第1絶縁層2ポリエステル系樹脂からなる
第2絶縁層31・2・3・4−ブタンテトラカル
ボン酸単位のポリイミド樹脂、またはポリアミド
イミド系樹脂からなる第3絶縁層4が順次設けら
れ(但し、第1絶縁層と第3絶縁層がポリアミド
イミド系樹脂からなる場合を除く)前記第2絶縁
層3及び第3絶縁層4の厚みが、それぞれ合計絶
縁層厚の5〜30%の範囲内としたことを特徴とす
るものである。 本発明を更に詳細に説明するとポリアミドイミ
ド系絶縁電線及び1・2・3・4−ブタンテトラ
カルボン酸単位のポリイミド系絶縁電線に於ける
前述の如き欠点の原因については明白ではない
が、その現象は空気に直接接している含浸樹脂層
が熱劣化して亀裂を生じ、この亀裂が含浸樹脂層
に密着したポリアミドイミド系樹脂層あるいはポ
リイミド系樹脂層まで波及し、やがて導体にまで
達するものであつた。 これに対してポリエステル系絶縁電線において
は含浸樹脂層に亀裂が生じてもこの亀裂は含浸樹
脂層と密着したポリエステル系樹脂層まで波及し
なかつた。かかる事実の発見に伴ない発明者らは
ポリイミド樹脂、ポリアミドイミド樹脂などの耐
熱性樹脂からなる絶縁体層の中間にポリエステル
系樹脂を介在させたところ、この複合絶縁体層は
含浸樹脂層が熱劣化し最外層のポリイミド系樹脂
或いはポリアミドイミド系樹脂層に波及しても生
じた亀裂は中間層のポリエステル系樹脂層で緩和
され下層のポリイミド系樹脂層まで波及せず、よ
つて、この絶縁電線は従来品に見られた如き含浸
樹脂処理後の耐熱衝撃特性の大巾な低下を生起し
ない高信頼性の絶縁電線となることを見出したも
のである。 本発明に於いて絶縁層を上述の如き複合構造と
した理由は第3絶縁層のポリアミドイミド系樹脂
または1・2・3・4−ブタンテトラカルボン酸
単位のポリイミド系樹脂層は第2絶縁層のポリエ
ステル系樹脂層の欠点である機械的特性の他、耐
薬品性を良くする目的で塗布されるもので、全絶
縁層厚の5〜30%の厚みにするのが良い。その理
由はこれらの絶縁層が5%以下の厚みの場合には
機械的特性、耐薬品性等が低下するためである。
また、30%以下と限定した理由はこれらの絶縁層
が全絶縁層厚に対して30%以上の厚みの場合に
は、前述の如く含浸ワニス処理後の熱衝撃により
含浸樹脂層に生ずる亀裂が下層のポリイミド系樹
脂またはポリアミドイミド系樹脂層に波及し導体
にまで達しないまでも、それだけ亀裂が深くなる
ためか耐熱衝撃特性が低下するからである。 また第2絶縁層のポリエステル系樹脂層は含浸
ワニス処理によるポリアミドイミド系絶縁電線及
び1・2・3・4−ブタンテトラカルボン酸単位
のポリイミド系絶縁電線にみられるような耐熱衝
撃特性の低下を防止する目的で設けられるもので
あるが、ポリアミドイミド絶縁電線及び1・2・
3・4−ブタンテトラカルボン酸単位のポリイミ
ド系絶縁電線の優れた特性を維持するためには、
全絶縁層厚の30%以下の厚みにするのが良い。し
かしあまり薄い場合には含浸ワニス処理後の耐熱
衝撃特性の低下を防止する役割をはたさないので
少くとも5%以上の厚みが必要である。 かくの如く本発明の絶縁電線は機械的特性、耐
薬品性、含浸ワニス処理後の耐熱衝撃特性に優れ
ており、機器の信頼性を高めるのに好適に使用し
得るものである。 また本発明の絶縁電線において第3絶縁層をポ
リアミドイミド系樹脂にて形成すると特に耐摩耗
性に優れ、自動巻線加工性が向上し好ましいもの
である。 尚、本発明でいうポリアミドイミド系樹脂とし
ては例えば以下の方法により作られたものが用い
られる。 例 1 トリメリツト酸無水物1.0モル及びジフエニル
メタンジイソシアネート1.05モルをN−メチル−
2−ピロリドン中で加熱反応せしめて得られるポ
リアミドイミド樹脂溶液を加熱乾燥せしめて得ら
れる樹脂。 例 2 トリメリツト酸無水物4−アリールエステル
0.5モル及びジアミノジフエニルメタン0.4モルを
無溶媒あるいは溶媒中で加熱反応せしめた後更に
トリス(2−ヒドロキシエチル)イソシアヌレー
ト0.3モル、エチレングリコール0.1モル及びテレ
フタル酸ジメチル0.3モルを加えて加熱反応せし
めて得られるフエノール系溶媒に可溶のポリエス
テルアミドイミド樹脂溶液を加熱乾燥せしめて得
られる樹脂。 又、本発明でいうポリエステル系樹脂とは例え
ば日触スケネクタデイ社製商品名イソネル200、
日東電工社製商品名デコラートE210G等のポリエ
ステル樹脂溶液、大日精化社製商品名アロベツク
E−541、日触スケネクタデイ社製商品名アイソ
ミツドRH等のポリエステルイミド樹脂溶液を加
熱乾燥して得られる樹脂が用いられる。 更に、テトラカルボン酸単位が1・2・3・4
−ブタンテトラカルボン酸単位より成るポリイミ
ド系樹脂とは例えば日東電工社製商品名X−400
或いはX−600W等を加熱乾燥して得られる樹脂
が用いられる。 以下、本発明を実施例をもつて示す。 実施例 1 芯線径1000mmの銅線上にポリイミド系樹脂塗料
(商品名X−600W日東電工社製)を常法により塗
布焼付けて0.031mmのポリイミド系樹脂層を設
け、この上にポリエステル系樹脂塗料(商品名ア
イソミツドRH日触スケネクタデイ社製)を塗布
焼付けて0.007mmのポリエステルイミド樹脂層を
設け、更にこの上にポリイミド系樹脂塗料(商品
名X−600W)を塗布焼付けて0.008mmのポリイミ
ド系樹脂層を設けて仕上外径1.092mmの絶縁電線
を得た。 実施例 2〜5 実施例1にて用いた各々の樹脂塗料を用いて各
樹脂層の厚さを種々変えて実施例1と同様にして
得られた絶縁電線の構造を表1に示す。
The present invention relates to an insulated wire having excellent heat resistance, mechanical properties, and chemical resistance, and particularly excellent thermal shock resistance after impregnation treatment. BACKGROUND ART Conventionally, heat-resistant synthetic resins include polyester resins such as polyester resins and polyesterimide resins, polyamide-imide resins such as polyamide-imide resins, and polyesteramide-imide resins, and polyimide resins. As a method for obtaining a polyester resin, a method is generally known in which dicarboxylic acid or a derivative thereof (such as methyl ester), imidodicarboxylic acid, or a mixed acid component thereof is reacted with a polyol. It is possible to use an inexpensive phenolic solvent such as xylenol at a high concentration, and there are also known methods such as making it water-soluble and melting it, and applying these polyester resin solutions to the conductor. Although baked polyester insulated wires have excellent heat resistance, they do not have sufficient thermal shock resistance, mechanical properties, chemical resistance, etc., and there are concerns about the reliability of equipment. In addition, as a method for obtaining polyamide-imide resin, there is a method in which tricarboxylic acid anhydride and diisocyanate are reacted in an organic polar solvent, and a method in which excess tricarboxylic acid anhydride and diisocyanate are reacted in a phenolic solvent and then a polyol is further added. Polyamide-imide insulated wires made by coating and baking these polyamide-imide resin solutions on conductors have excellent heat resistance, thermal shock resistance, mechanical properties, and chemical resistance, and have well-balanced properties. have. Furthermore, as a method for obtaining polyimide resin,
There is a known method in which an aromatic tetracarboxylic dianhydride and a diamine are reacted in an organic polar solvent to form a soluble polyamic acid resin solution, and this polyamic acid resin solution is converted into a polyimide resin by heat treatment before use. However, polyamic acid resin solutions are extremely unstable and imidization occurs gradually even at room temperature, causing the solution to gel, requiring frozen storage.
In addition, only expensive and highly hygroscopic solvents such as N-methyl-2-pyrrolidone, dimethylacetamide, and dimethylformamide can be used as solvents, and the resulting paint is expensive and has low resin concentration, making it difficult to form wires. Therefore, polyimide insulated wires using this paint had the disadvantage of being expensive. On the other hand, polyimide resin obtained by reacting 1,2,3,4-butanetetracarboxylic acid and diamine in a phenolic solvent can be used in high concentration, and 1,2,3,4-butane A polyamic acid resin obtained by reacting a tetracarboxylic dianhydride and a diamine in an organic polar solvent can be easily made water-soluble, compared to the case where the aromatic tetracarboxylic dianhydride is used. Although it has poor heat resistance, it is useful as a low-pollution resin solution by increasing its concentration or making it water-soluble, and the resin solution is thermally stable and has excellent wire-making processability. However, when the present inventors investigated the varnish resistance of heat-resistant insulated wires manufactured using these heat-resistant resin coatings, they found that polyamide-imide-based insulated wires and polyimide with 1,2,3,4-butanetetracarboxylic acid units After coil processing, insulated wires are impregnated with impregnating resins commonly used for coil impregnation, such as polyester resin, epoxy resin, phenol resin, or a mixture of these resins, resulting in better thermal shock resistance than polyester insulated wires. It was found that the characteristics were significantly degraded. The present invention relates to a polyamide-imide insulated wire and a
This relates to an improvement of polyimide-based insulated wires consisting of 2,3,4-butanetetracarboxylic acid units, and relates to highly reliable insulated wires that have improved the above-mentioned drawbacks. 1・
First insulating layer made of polyimide resin or polyamideimide resin containing 2,3,4-butanetetracarboxylic acid units 2 Second insulating layer made of polyester resin 31,2,3,4-butanetetracarboxylic acid units A third insulating layer 4 made of a polyimide resin or a polyamide-imide resin is sequentially provided (except when the first insulating layer and the third insulating layer are made of a polyamide-imide resin). The third insulating layer 4 is characterized in that the thickness thereof is within a range of 5 to 30% of the total insulating layer thickness. To explain the present invention in more detail, the causes of the above-mentioned defects in polyamide-imide insulated wires and polyimide insulated wires containing 1,2,3,4-butanetetracarboxylic acid units are not clear, but the phenomenon The impregnated resin layer that is in direct contact with the air deteriorates due to heat and cracks occur, and these cracks spread to the polyamide-imide resin layer or polyimide resin layer that is in close contact with the impregnated resin layer, and eventually reach the conductor. Ta. On the other hand, in the polyester insulated wire, even if a crack occurred in the impregnated resin layer, this crack did not spread to the polyester resin layer that was in close contact with the impregnated resin layer. Upon discovering this fact, the inventors interposed a polyester resin in the middle of an insulating layer made of a heat-resistant resin such as polyimide resin or polyamide-imide resin. Even if the cracks deteriorate and spread to the outermost polyimide resin or polyamide-imide resin layer, the cracks that occur will be alleviated by the intermediate polyester resin layer and will not spread to the lower polyimide resin layer. The inventors have discovered that a highly reliable insulated wire can be obtained, which does not suffer from the drastic deterioration in thermal shock resistance after treatment with an impregnated resin, as seen in conventional products. In the present invention, the reason why the insulating layer has the above-mentioned composite structure is that the third insulating layer of polyamide-imide resin or the polyimide-based resin layer of 1,2,3,4-butanetetracarboxylic acid units is the second insulating layer. In addition to mechanical properties, which are a drawback of the polyester resin layer, it is coated for the purpose of improving chemical resistance, and the thickness is preferably 5 to 30% of the total insulating layer thickness. The reason for this is that when the thickness of these insulating layers is less than 5%, mechanical properties, chemical resistance, etc. deteriorate.
The reason for limiting the thickness to 30% or less is that if these insulating layers have a thickness of 30% or more of the total insulating layer thickness, cracks may occur in the impregnated resin layer due to thermal shock after the impregnated varnish treatment, as described above. This is because even if the cracks do not spread to the underlying polyimide resin or polyamide-imide resin layer and reach the conductor, the thermal shock resistance deteriorates, probably because the cracks become deeper. In addition, the polyester resin layer of the second insulating layer prevents the thermal shock resistance from decreasing as seen in polyamide-imide insulated wires and polyimide insulated wires containing 1,2,3,4-butanetetracarboxylic acid units due to impregnation varnish treatment. Although it is provided for the purpose of preventing polyamide-imide insulated wires and
In order to maintain the excellent properties of the polyimide insulated wire containing 3,4-butanetetracarboxylic acid units,
It is recommended that the thickness be 30% or less of the total insulation layer thickness. However, if it is too thin, it will not serve to prevent the thermal shock resistance from deteriorating after the impregnation varnish treatment, so the thickness must be at least 5% or more. As described above, the insulated wire of the present invention has excellent mechanical properties, chemical resistance, and thermal shock resistance after being treated with impregnated varnish, and can be suitably used to improve the reliability of equipment. Further, in the insulated wire of the present invention, it is preferable that the third insulating layer is formed of a polyamide-imide resin because it has particularly excellent wear resistance and improves automatic winding processability. In addition, as the polyamide-imide resin referred to in the present invention, for example, one made by the following method is used. Example 1 1.0 mol of trimellitic anhydride and 1.05 mol of diphenylmethane diisocyanate were mixed with N-methyl-
A resin obtained by heating and drying a polyamideimide resin solution obtained by a heating reaction in 2-pyrrolidone. Example 2 Trimellitic anhydride 4-aryl ester
0.5 mol and 0.4 mol of diaminodiphenylmethane were reacted by heating without a solvent or in a solvent, and then 0.3 mol of tris(2-hydroxyethyl)isocyanurate, 0.1 mol of ethylene glycol, and 0.3 mol of dimethyl terephthalate were added and the mixture was reacted with heating. A resin obtained by heating and drying a phenolic solvent-soluble polyesteramideimide resin solution. In addition, the polyester resin referred to in the present invention is, for example, Isonel 200 manufactured by Nippon Schenectaday Co., Ltd.
Resins obtained by heating and drying polyester resin solutions such as Nitto Denko's product name Decorate E210G, Dainichiseika Chemical Co.'s product name Arobetsu E-541, and Nissoku Schenectaday's product name Isomit RH, etc. used. Furthermore, the tetracarboxylic acid unit is 1, 2, 3, 4
- The polyimide resin consisting of butanetetracarboxylic acid units is, for example, Nitto Denko's product name X-400.
Alternatively, a resin obtained by heating and drying X-600W or the like may be used. The present invention will be illustrated below with examples. Example 1 Polyimide resin paint (product name: A 0.007 mm polyesterimide resin layer was formed by applying and baking Isomitzu (trade name: Isomit RH manufactured by Nippon Schenectaday), and then a 0.008 mm polyimide resin layer was applied and baked on top of this by applying polyimide resin paint (trade name: X-600W). An insulated wire with a finished outer diameter of 1.092 mm was obtained. Examples 2 to 5 Table 1 shows the structures of insulated wires obtained in the same manner as in Example 1, using each of the resin coatings used in Example 1 and varying the thickness of each resin layer.

【表】 実施例 6 芯線径1.000mmの銅線上に前記例2により得ら
れたポリエステルアミドイミド樹脂溶液を常法に
より塗布焼付けて0.030mmの樹脂層を設け、この
上にポリエステル系樹脂塗料(商品名イソネル
200日触スケネクタデイ社製)を塗布焼付けて
0.008mmのポリエステル樹脂層を設け、更にこの
上にポリイミド系樹脂塗料(商品名X−400日東
電工社製)を塗布焼付けて0.008mmのポリイミド
系樹脂層を設けて仕上外径1.092mmの絶縁電線を
得た。 実施例 7 芯線径1.000mmの銅線上にポリイミド系樹脂塗
料(商品名X−600W)を常法により塗布焼付け
て0.030mmのポリイミド系樹脂層を設け、この上
にポリエステル系樹脂塗料(商品名デラコート
E210G日東電工社製)を塗布焼付けて0.008mmの
ポリエステル樹脂層を設け、更にこの上に前記例
1により得られたポリアミドイミド樹脂溶液を塗
布焼付けて0.008mmの樹脂層を設けて仕上外径
1.092mmの絶縁電線を得た。 参考例 1 芯線径1.000mmの銅線上に前記例1により得ら
れたポリアミドイミド樹脂溶液を常法により塗布
焼付けて0.046mmの樹脂層を設けて仕上外径1.092
mmのポリアミドイミド絶縁電線を得た。 参考例 2 芯線径1.000mmの銅線上にポリイミド系樹脂塗
料(商品名X−600W)を用いて参考例1と同様
にして仕上外径1.093mmの絶縁電線を得た。 参考例 3 芯線径1.000mmの銅線上にポリエステル系樹脂
塗料(商品名アイソミツドRH)を用いて参考例
1と同様にして仕上外径1.092mmの絶縁電線を得
た。 参考例 4 芯線径1.000mmの銅線上にポリイミド系樹脂塗
料(商品名X−600W)を常法により塗布焼付け
て0.023mmのポリイミド系樹脂層を設け、この上
にポリエステル系樹脂塗料(商品名アイソミツド
RH)を塗布焼付けて0.020mmのポリエステルイミ
ド樹脂層を設け、更にこの上にポリイミド系樹脂
塗料(商品名X−600W)を塗布焼付けて0.003mm
のポリイミド系樹脂層を設けて仕上外径1.092mm
の絶縁電線を得た。 参考例 5〜6 実施例1にて用いた各々の樹脂塗料を用いて各
樹脂層の厚さを種々変えて参考例4と同様にして
得られた絶縁電線の構造を表2に示す。
[Table] Example 6 The polyester amide-imide resin solution obtained in Example 2 was coated and baked on a copper wire with a core diameter of 1.000 mm to form a 0.030 mm resin layer, and a polyester resin paint (commercial product) was applied on top of this. name isonel
Apply and bake 200 days (manufactured by Schenectaday)
A 0.008 mm polyester resin layer is provided, and then a polyimide resin paint (product name: I got it. Example 7 Polyimide resin paint (product name:
E210G manufactured by Nitto Denko Corporation) was applied and baked to form a 0.008 mm polyester resin layer, and on top of this, the polyamide-imide resin solution obtained in Example 1 was applied and baked to form a 0.008 mm resin layer, resulting in a finished outer diameter.
A 1.092mm insulated wire was obtained. Reference Example 1 The polyamide-imide resin solution obtained in Example 1 above was applied and baked on a copper wire with a core wire diameter of 1.000 mm by a conventional method to form a resin layer of 0.046 mm, resulting in a finished outer diameter of 1.092 mm.
A polyamide-imide insulated wire of mm was obtained. Reference Example 2 An insulated wire with a finished outer diameter of 1.093 mm was obtained in the same manner as in Reference Example 1 using a polyimide resin paint (trade name: X-600W) on a copper wire with a core wire diameter of 1.000 mm. Reference Example 3 An insulated wire with a finished outer diameter of 1.092 mm was obtained in the same manner as in Reference Example 1 using a polyester resin paint (trade name: Isomid RH) on a copper wire with a core wire diameter of 1.000 mm. Reference example 4 Polyimide resin paint (product name:
RH) was applied and baked to form a 0.020mm polyesterimide resin layer, and on top of this, a polyimide resin paint (product name X-600W) was applied and baked to form a 0.003mm layer.
Finished with a polyimide resin layer with an outer diameter of 1.092 mm.
An insulated wire was obtained. Reference Examples 5 to 6 Table 2 shows the structures of insulated wires obtained in the same manner as in Reference Example 4 using each of the resin coatings used in Example 1 and varying the thickness of each resin layer.

【表】 尚、実施例1〜7、参考例1〜6に於ける塗料
の焼付は堅型炉を用い、焼付温度400℃、線速9
m/分の条件で行つた。 実施例1〜7、参考例1〜6で得られた絶縁電
線の耐熱衝撃特性をJIS−C−3003の絶縁破壊の
項目に従つて二個撚試料を作成し、各々の試料を
含浸樹脂溶液に1分間浸漬し、30分間風乾後100
℃で30分、150℃で3時間加熱硬化せしめた後、
下記の加熱−放冷試験を繰り返したのち、常温で
線間に1.000Vを印加し、線間短絡したときのサ
イクル数を、
[Table] In Examples 1 to 7 and Reference Examples 1 to 6, a vertical furnace was used for baking the paint, and the baking temperature was 400°C and the linear speed was 9.
The test was carried out under conditions of m/min. The thermal shock resistance properties of the insulated wires obtained in Examples 1 to 7 and Reference Examples 1 to 6 were evaluated by preparing two twisted samples according to the dielectric breakdown section of JIS-C-3003, and applying each sample to an impregnating resin solution. Soaked in water for 1 minute and air-dried for 30 minutes.
After heating and curing at ℃ for 30 minutes and 150℃ for 3 hours,
After repeating the heating-cooling test below, apply 1.000V between the lines at room temperature and calculate the number of cycles when the lines are short-circuited.

【表】 〓 〓
又、機械的特性として、各々の絶縁電線をJIS
−C−3003にて規定された往復式耐摩耗性の項に
従つて試験した。更に耐薬品性として各々の絶縁
電線を20mmの丸棒に10ターンほど緊密に巻付けた
ヘリカルコイルをキシレン中に2分間浸漬してク
レージング発生の有無を調べた。上記ヘリカルコ
イルをフロン(R−22)中に90℃で3日間浸漬後
直ちに150℃で10分加熱した時の皮膜発泡の有無
を調べた。以上の試験結果を表3に示した。
[Table] 〓 〓
In addition, as for mechanical properties, each insulated wire is JIS
Tested according to the reciprocating wear resistance section specified in -C-3003. Furthermore, for chemical resistance, a helical coil in which each insulated wire was tightly wound about 10 turns around a 20 mm round rod was immersed in xylene for 2 minutes to check for crazing. The helical coil was immersed in Freon (R-22) at 90°C for 3 days and then immediately heated at 150°C for 10 minutes, and the presence or absence of film foaming was examined. The above test results are shown in Table 3.

【表】【table】

【表】 以上、表3の結果から明らかな如く、本発明の
絶縁電線は含浸処理後の耐熱衝撃特性に優れ、か
つ機械的特性、耐薬品性に優れており、電気機器
の信頼性を高めるに好適に使用することができ
る。
[Table] As is clear from the results in Table 3, the insulated wire of the present invention has excellent thermal shock resistance after impregnation treatment, as well as excellent mechanical properties and chemical resistance, and improves the reliability of electrical equipment. It can be suitably used for.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明により得られる絶縁電線の横断面図
の1例である。 1は電気導体、2はポリイミド系樹脂皮膜層、
3はポリエステル系樹脂皮膜層、4はポリイミド
系樹脂皮膜層。
The figure is an example of a cross-sectional view of an insulated wire obtained by the present invention. 1 is an electric conductor, 2 is a polyimide resin film layer,
3 is a polyester resin film layer, and 4 is a polyimide resin film layer.

Claims (1)

【特許請求の範囲】 1 導体上に、テトラカルボン酸単位が1・2・
3・4−ブタンテトラカルボン酸単位であるポリ
イミド系樹脂、またはポリアミドイミド系樹脂か
らなる第1絶縁層、ポリエステル系樹脂からなる
第2絶縁層、テトラカルボン酸単位が1・2・
3・4−ブタンテトラカルボン酸単位であるポリ
イミド系樹脂またはポリアミドイミド系樹脂から
なる第3絶縁層が順次設けられ、(但し、第1絶
縁層と第3絶縁層がポリアミドイミド系樹脂から
なる場合を除く)前記第2絶縁層および第3絶縁
層の厚みがそれぞれ合計絶縁層厚の5〜30%の範
囲内としたことを特徴とする絶縁電線。 2 第3絶縁層がポリアミドイミド系樹脂にて形
成されている特許請求の範囲第1項記載の絶縁電
線。
[Claims] 1. On the conductor, the tetracarboxylic acid units are 1, 2,
A first insulating layer made of polyimide resin or polyamideimide resin which is 3,4-butanetetracarboxylic acid unit, a second insulating layer made of polyester resin, and tetracarboxylic acid unit is 1,2,
A third insulating layer made of a polyimide-based resin or a polyamide-imide-based resin, which is a 3,4-butanetetracarboxylic acid unit, is sequentially provided (However, when the first insulating layer and the third insulating layer are made of a polyamide-imide resin, An insulated wire characterized in that the thicknesses of the second insulating layer and the third insulating layer are each within a range of 5 to 30% of the total insulating layer thickness. 2. The insulated wire according to claim 1, wherein the third insulating layer is made of polyamide-imide resin.
JP7338779A 1979-06-11 1979-06-11 Insulated wire Granted JPS55165515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7338779A JPS55165515A (en) 1979-06-11 1979-06-11 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7338779A JPS55165515A (en) 1979-06-11 1979-06-11 Insulated wire

Publications (2)

Publication Number Publication Date
JPS55165515A JPS55165515A (en) 1980-12-24
JPS6161203B2 true JPS6161203B2 (en) 1986-12-24

Family

ID=13516723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7338779A Granted JPS55165515A (en) 1979-06-11 1979-06-11 Insulated wire

Country Status (1)

Country Link
JP (1) JPS55165515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421001U (en) * 1987-07-28 1989-02-02

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033669A (en) * 2011-08-03 2013-02-14 Sumitomo Electric Wintec Inc Multilayer insulated electric wire, electric coil using the same, and motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128419A (en) * 1974-09-03 1976-03-10 Sharp Kk
JPS533796A (en) * 1976-06-30 1978-01-13 Sharp Corp Battery driven apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128419A (en) * 1974-09-03 1976-03-10 Sharp Kk
JPS533796A (en) * 1976-06-30 1978-01-13 Sharp Corp Battery driven apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421001U (en) * 1987-07-28 1989-02-02

Also Published As

Publication number Publication date
JPS55165515A (en) 1980-12-24

Similar Documents

Publication Publication Date Title
JP5626530B2 (en) Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same
CN109887656B (en) Polyester enameled wire capable of being directly welded and production method thereof
US3822147A (en) Insulated electrical conductor and coils formed thereof
US5750257A (en) Insulated electric wire
JPS6161203B2 (en)
US4480007A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
CN109293920B (en) Resin composition and insulated wire using same
JPS6221203B2 (en)
US4346136A (en) Bondable magnet wire comprising polyamide-imide coating containing residual solvent
KR101708498B1 (en) Insulated Wire
US4404331A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
JPS6043604B2 (en) self-adhesive insulated wire
US4485127A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
JPS6315686B2 (en)
KR100879002B1 (en) Insulating varnish composition containing polyamideimide and Insulated wire containing insulated layer coated thereof
CN111675964B (en) Polyamide-imide varnish, insulating film, insulated wire, coil, and motor
CN110301015B (en) Insulated wire
KR100644338B1 (en) The manufacture method of the polyamideimide resin solution for enamel copper wire clothing that the antiwear characteristic was strengthened
CA1186839A (en) Enamel having improved coatability comprising a polyesterimide resin and a nylon polymer
JP3490895B2 (en) Insulated wire
JP2968641B2 (en) Insulated wire
JPS58127B2 (en) insulated wire
JP2801189B2 (en) Heat resistant electrical insulation paint
JP3737913B2 (en) Insulated wire
JPS5916363B2 (en) Refrigerant resistant insulated wire