JPS6161193B2 - - Google Patents

Info

Publication number
JPS6161193B2
JPS6161193B2 JP5681679A JP5681679A JPS6161193B2 JP S6161193 B2 JPS6161193 B2 JP S6161193B2 JP 5681679 A JP5681679 A JP 5681679A JP 5681679 A JP5681679 A JP 5681679A JP S6161193 B2 JPS6161193 B2 JP S6161193B2
Authority
JP
Japan
Prior art keywords
levitation
magnetic head
slider
amount
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5681679A
Other languages
Japanese (ja)
Other versions
JPS55150124A (en
Inventor
Fumio Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5681679A priority Critical patent/JPS55150124A/en
Publication of JPS55150124A publication Critical patent/JPS55150124A/en
Publication of JPS6161193B2 publication Critical patent/JPS6161193B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/10Indicating arrangements; Warning arrangements

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【発明の詳細な説明】 本発明は磁気デイスク装置等に使用される微小
浮揚量の浮揚型磁気へツドにおいて、その微小浮
揚量の動的な変動を電気的信号として取り出すた
めの構造を付加した磁気へツドに関するものであ
り、さらに詳しく述べると、静電容量法による浮
揚量の測定が可能な構造を有する浮揚型磁気ヘツ
ドの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a floating magnetic head with a minute levitation amount used in magnetic disk devices, etc., which has a structure added thereto for extracting dynamic fluctuations in the minute levitation amount as an electrical signal. The present invention relates to a magnetic head, and more specifically, it relates to an improvement in a levitating magnetic head having a structure that allows the amount of levitation to be measured by the capacitance method.

磁気デイスク装置においては、記録媒体と磁気
へツドとの微小な間隙を安定に保つため、記録媒
体である磁気デイスクの回転に伴なつてその表面
に発生する気体膜境界層の動圧を利用して磁気デ
イスク面上に微小な浮揚量で対向させた浮揚型磁
気へツドが使用されている。
In magnetic disk drives, in order to keep the tiny gap between the recording medium and the magnetic head stable, the dynamic pressure of the gas film boundary layer that is generated on the surface of the magnetic disk as the recording medium rotates is used. A floating magnetic head is used, which is opposed to the surface of the magnetic disk with a small amount of levitation.

浮揚型磁気へツドにおいては、この浮揚量がそ
の電磁特性に支配的な影響力をもち、磁気デイス
ク装置の性能向上のためには浮揚量の微小化と浮
揚量の動的変動の低減化、浮揚姿勢の安定化が必
要とされている。これらの要請を満たすには浮揚
量の動的な微小変動を直接電気信号として取り出
す測定手段が必要となり、これには磁気へツドに
形成した電極面と磁気デイスク面との静電容量を
測定して浮揚量を求める静電容量法が適してい
る。
In a levitating magnetic head, the amount of levitation has a dominant influence on its electromagnetic properties, and in order to improve the performance of magnetic disk drives, it is necessary to miniaturize the amount of levitation and reduce dynamic fluctuations in the amount of levitation. Stabilization of the floating posture is required. To meet these demands, a measurement method that directly extracts dynamic minute fluctuations in the amount of levitation as an electrical signal is required, and this involves measuring the capacitance between the electrode surface formed on the magnetic head and the magnetic disk surface. The capacitance method, which calculates the amount of levitation using

次に従来の浮揚量測定用の磁気へツドについて
図を参照して説明する。
Next, a conventional magnetic head for measuring the amount of levitation will be explained with reference to the drawings.

第1図は従来の浮揚量測定用磁気へツドの斜視
図であり、101は非導電性材料からなるスライ
ダで、102a,b,cがスライダ浮揚面であ
り、103はスライダ浮揚面102a,102b
に埋込まれ、蒸着膜(図示せず)などを介してス
ライダ101と結合された4個のメツキによる金
属膜であり、スライダ浮揚面と同一面に形成され
たこの金属膜103の面が、4個の電極面104
を形成している。また105はメツキによる金属
膜103と導通接続された金属の蒸着膜で、スラ
イダ背面でリード線(図示せず)に導通接続され
ている。
FIG. 1 is a perspective view of a conventional magnetic head for measuring the amount of levitation, in which 101 is a slider made of a non-conductive material, 102a, b, c are slider levitation surfaces, and 103 are slider levitation surfaces 102a, 102b.
The surface of this metal film 103, which is formed on the same plane as the slider floating surface, is embedded in the slider 101 and connected to the slider 101 via a vapor deposited film (not shown). 4 electrode surfaces 104
is formed. Reference numeral 105 denotes a vapor deposited metal film which is electrically connected to the metal film 103 by plating, and is electrically connected to a lead wire (not shown) on the back surface of the slider.

この磁気へツドを製作するには浮揚面の研摩を
行なう必要があるが、この際金属膜103とスラ
イダ101の材質が異なるため、両者の研摩速度
に差が生じ、一般にスライダ101に比して柔ら
かい材質が使用される金属膜103が速く研摩さ
れる。この結果電極面と浮揚面とを同一面に形成
することは困難であり、両者の間に段差δが生じ
る。
In order to manufacture this magnetic head, it is necessary to polish the floating surface, but since the materials of the metal film 103 and the slider 101 are different, there is a difference in polishing speed between the two, and in general, compared to the slider 101, there is a difference in polishing speed. The metal film 103, which is made of a soft material, is polished quickly. As a result, it is difficult to form the electrode surface and the floating surface on the same surface, and a step difference δ occurs between them.

第2図は第1図の従来の浮揚量測定用磁気へツ
ドの断面図であり、この図に従つて前述の段差δ
を説明する。すなわち、スライダ101の浮揚面
102a,102bと金属膜103で形成される
電極面104との間には研摩速度の差により図示
されるような段差δが生じる。段差δの値は0.05
μm〜0.2μm程度と小さいが、浮揚量が0.5μm
以下の磁気へツドの場合にはこの段差δが浮揚特
性に多大な影響を与える。例えば浮揚量0.35μm
段差δ=0.05μmの場合にも段差のない場合に比
べて浮揚力が8%以上減少する。
FIG. 2 is a sectional view of the conventional magnetic head for measuring the amount of levitation shown in FIG.
Explain. That is, between the floating surfaces 102a, 102b of the slider 101 and the electrode surface 104 formed of the metal film 103, a step difference δ as shown is generated due to the difference in polishing speed. The value of step δ is 0.05
It is small, about μm to 0.2μm, but the floating amount is 0.5μm.
In the case of the following magnetic head, this step difference δ has a great effect on the levitation characteristics. For example, levitation amount 0.35μm
Even when the step difference δ is 0.05 μm, the buoyancy force is reduced by more than 8% compared to the case without the step difference.

また従来の浮揚量測定用磁気へツドにおいて
は、この他にも電極面の表面粗さが浮揚面より粗
くなり、汚れが付着し易くなること、磁気デイス
クの起動停止時における磁気デイスクと磁気へツ
ドとの接触摺動の際に電極面に傷が入り易いこ
と、更にはメツキ膜の均質な形成が難かしいなど
の欠点を有していた。
In addition, in conventional magnetic heads for measuring the amount of levitation, the surface roughness of the electrode surface is rougher than that of the levitation surface, making it easier for dirt to adhere to it, and the fact that the magnetic disk and magnetic This method has drawbacks such as the electrode surface being easily scratched when sliding in contact with the plating, and furthermore, it is difficult to form a uniform plating film.

本発明は、これらの欠点を除去するため金属ス
パツタなどにより浮揚面上に電極を形成し、この
上に石英などの保護膜をかぶせたもので、以下図
面に従つて詳細に説明する。
In order to eliminate these drawbacks, the present invention forms electrodes on the floating surface using metal sputtering or the like, and covers the electrodes with a protective film made of quartz or the like, and will be described in detail below with reference to the drawings.

第3図は本発明の一実施例を示す浮揚面側から
みた斜視図であり、第4図は縦方向の断面図であ
り、第5図は横方向の断面図であり、第6図は浮
揚面と反対側からみた斜視図である。
FIG. 3 is a perspective view of an embodiment of the present invention seen from the floating surface side, FIG. 4 is a vertical sectional view, FIG. 5 is a lateral sectional view, and FIG. 6 is a lateral sectional view. It is a perspective view seen from the side opposite to a floating surface.

図において201は非導電性材料からなるスラ
イダで、202a,b,cがスライダ浮揚面であ
る。スライダ201は通常の商用磁気デイスク装
置に使用されている磁気へツドのスライダと同一
のものである。203は4個の薄い金属膜で、例
えばクロムなどの1μm程度以下の膜として、ス
ライダ浮揚面202a,202b上にスパツタな
どの手法により作られる。ここで金属膜203は
浮揚面以外の面まで被つても構わないが、4個の
金属膜203が導通しないことが必要である。こ
の場合浮揚面上に存在する金属膜の表面のみが静
電容量の電極面204として作用する。更に電極
面204及びスライダ浮揚面202a,b,cの
上にはガラスあるいは石英などの硬質の非導電性
材料の保護膜205がスパツタなどの手法により
被せてあり、この保護膜の表面206は鏡面研摩
面に仕上げられている。ここで保護膜205は浮
揚面以外の面まで被つても構わない。
In the figure, 201 is a slider made of a non-conductive material, and 202a, b, and c are slider floating surfaces. The slider 201 is the same as the slider of a magnetic head used in ordinary commercial magnetic disk drives. Reference numeral 203 denotes four thin metal films, such as chromium films with a thickness of about 1 μm or less, which are formed on the slider floating surfaces 202a and 202b by a method such as sputtering. Here, the metal film 203 may cover surfaces other than the floating surface, but it is necessary that the four metal films 203 are not electrically conductive. In this case, only the surface of the metal film present on the floating surface acts as the capacitance electrode surface 204. Furthermore, a protective film 205 made of a hard, non-conductive material such as glass or quartz is placed over the electrode surface 204 and the slider floating surfaces 202a, b, and c by a method such as sputtering, and the surface 206 of this protective film has a mirror surface. Finished with a polished surface. Here, the protective film 205 may cover surfaces other than the floating surface.

更にこの実施例においては第3図及び第5図に
みるように金などの導電性材料の薄膜207をス
パツタ等によりスライダ側面208からスライダ
背面209にかけて引き回し、この薄膜の一端が
電極を形成している金属膜203に、他の一端が
スライダ背面209でリード線210に導通結合
される構造を有している。
Furthermore, in this embodiment, as shown in FIGS. 3 and 5, a thin film 207 of a conductive material such as gold is routed from the slider side surface 208 to the slider back surface 209 by sputtering or the like, and one end of this thin film forms an electrode. The metal film 203 has a structure in which the other end is conductively coupled to a lead wire 210 at the slider back surface 209.

これを用いて浮揚特性の測定を行なうには第4
図のようにスライダ201を磁気デイスク表面2
11に浮揚させ、スライダの電極面203と磁気
デイスク中の導電体212の表面213との間の
静電容量を測定すればよい。この場合4個の電極
の静電容量をそれぞれ測定すれば、各電極面の部
分の保護膜表面と磁気デイスク表面との間隙すな
わち浮揚量がそれぞれ独立に求まる。すなわち最
小浮揚量だけでなく、浮揚姿勢も求めることがで
きる。更に動的な静電容量の変化を求めることに
より、浮揚姿勢をも含めた動的な浮揚量変化を測
定することができる。
To measure the levitation characteristics using this, the fourth step is
As shown in the figure, move the slider 201 to the magnetic disk surface 2.
11 and measure the capacitance between the electrode surface 203 of the slider and the surface 213 of the conductor 212 in the magnetic disk. In this case, by measuring the capacitance of each of the four electrodes, the gap between the protective film surface of each electrode surface and the magnetic disk surface, that is, the amount of levitation can be determined independently. In other words, not only the minimum levitation amount but also the levitation attitude can be determined. Furthermore, by determining dynamic changes in capacitance, it is possible to measure dynamic changes in the amount of levitation, including the levitation posture.

次に第3図の実施例の製造方法について述べ
る。第7図は本発明の実施例の製造途中を示す断
面図である。この実施例の構造を形成するには第
7図にみるようにスライダ201の浮揚面上にス
パツタなどにより4固の金属膜203を形成し、
更にこの上にスパツタなどによりガラスまたは石
英などの保護膜205を均一に付与する。この場
合保護膜205の厚さは金属膜203よりも0.5
〜1μm程度厚くし、また保護膜の被膜範囲はス
ライダ浮揚面202a,b,cを被えば良いが、
浮揚面以外の面まで被つても構わない。この後保
護膜205AA線まで鏡面研摩して第4図に示し
たように仕上げる。
Next, a method of manufacturing the embodiment shown in FIG. 3 will be described. FIG. 7 is a sectional view showing the manufacturing process of the embodiment of the present invention. To form the structure of this embodiment, as shown in FIG. 7, a solid metal film 203 is formed on the floating surface of the slider 201 by sputtering or the like.
Furthermore, a protective film 205 made of glass or quartz is uniformly applied thereon by sputtering or the like. In this case, the thickness of the protective film 205 is 0.5
The thickness of the protective film should be approximately 1 μm, and the protective film should cover the slider floating surfaces 202a, b, and c.
It does not matter if it covers surfaces other than the floating surface. After that, the protective film 205 is mirror-polished to the AA line and finished as shown in FIG.

このように本発明によれば、最終的な鏡面研摩
において保護膜だけを研摩するため、従来のよう
に材質の差による浮揚面の段差が生じない。更に
本発明の実施例は電極のない通常の磁気へツドに
ミクロンオーダの薄膜を付加したものであるか
ら、この実施例の外形寸法は通常の磁気へツドの
許容寸法公差内に入つており、付加した薄膜の重
量の影響は全くない。従つて本発明の実施例と電
極のない通常の磁気へツドとの静的及び動的な浮
揚特性は全く同一になり、通常の磁気へツドの浮
揚特性を本発明の実施例により測定することがで
きる。
As described above, according to the present invention, only the protective film is polished in the final mirror polishing, so that there is no step difference in the floating surface due to the difference in materials as in the conventional method. Furthermore, since the embodiment of the present invention is an ordinary magnetic head without electrodes with a thin film on the order of microns, the external dimensions of this embodiment are within the permissible dimensional tolerances of ordinary magnetic heads. There is no effect of the weight of the added thin film. Therefore, the static and dynamic levitation characteristics of the embodiment of the present invention and an ordinary magnetic head without electrodes are exactly the same, and the levitation characteristics of an ordinary magnetic head can be measured by the embodiment of the invention. I can do it.

この他本発明によれば通常の磁気へツドのスラ
イダを何等加工することなしに、この上にスパツ
タ等の技法により電極及び保護膜などを形成する
ことができ、最後の鏡面仕上げも非常に僅かな研
摩量で良いため、従来のものに比べ非常に少ない
工数で浮揚量測定用の磁気へツドを提供すること
ができる。
In addition, according to the present invention, electrodes and protective films can be formed on the slider of a normal magnetic head by sputtering or other techniques without any processing, and the final mirror finish is also very slight. Since only a small amount of polishing is required, a magnetic head for measuring the amount of levitation can be provided with significantly fewer man-hours than conventional ones.

また本発明によれば磁気デイスクの起動停止時
に磁気へツドと磁気デイスクが接触摺動する際、
磁気へツド側の摺動面はガラスや石英などの硬質
の鏡面となるため摺動特性が非常によく、従来の
ように電極面に傷が入つたり汚れが付着したりす
ることはない。
Further, according to the present invention, when the magnetic head and the magnetic disk come into contact and slide when the magnetic disk starts and stops,
The sliding surface on the magnetic head side is a hard mirror surface made of glass or quartz, so it has very good sliding characteristics, and unlike conventional electrode surfaces, there is no scratching or dirt adhering to them.

以上説明してきたように、本発明を実施するこ
とにより、通常の磁気へツドと全く同じ浮揚特性
を有する浮揚量測定用電極付の磁気へツドが容易
に提供できる。この結果従来の浮揚量測定用の磁
気へツドと実際の磁気デイスク装置における通常
の磁気へツドの間にあつた浮揚特性の差による測
定誤差を完全に解消することができる。また摺動
特性も著しく向上する。
As described above, by carrying out the present invention, it is possible to easily provide a magnetic head with electrodes for measuring the amount of levitation that has exactly the same levitation characteristics as a normal magnetic head. As a result, it is possible to completely eliminate the measurement error caused by the difference in levitation characteristics between the conventional magnetic head for measuring the levitation amount and the normal magnetic head in an actual magnetic disk device. Furthermore, the sliding properties are also significantly improved.

このため本発明を実施した磁気へツドは単に磁
気へツドの浮揚動特性の実験に使われるだけでな
く、磁気デイスクあるいは磁気デイスク装置の検
査に使用することができる。
Therefore, a magnetic head embodying the present invention can be used not only for testing the levitation characteristics of a magnetic head, but also for testing magnetic disks or magnetic disk devices.

なお本発明は実施例に示した以外の形状のスラ
イダにおいても適用でき、電極面の数も任意であ
る。
Note that the present invention can be applied to sliders having shapes other than those shown in the embodiments, and the number of electrode surfaces is also arbitrary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の浮揚量測定用磁気へツドを示す
斜視図、第2図は第1図の磁気へツドの断面図、
第3図は本発明の一実施例を浮揚面側からみた斜
視図、第4図は第3図の実施例を磁気デイスクと
ともに示す縦方向の断面図、第5図は第3図の実
施例の横方向の断面図、第6図は第3図の実施例
を浮揚面と反対側からみた斜視図、第7図は第3
図の実施例の製造途中を示す断面図である。 図において、201はスライダ、202a,
b,cはスライダ浮揚面、203は金属膜、20
4は電極面、205は保護膜、207は導電性薄
膜、210はリード線を表わす。
Figure 1 is a perspective view showing a conventional magnetic head for measuring levitation, Figure 2 is a sectional view of the magnetic head in Figure 1,
3 is a perspective view of an embodiment of the present invention seen from the floating surface side, FIG. 4 is a vertical sectional view showing the embodiment of FIG. 3 together with a magnetic disk, and FIG. 5 is an embodiment of the embodiment of FIG. 3. 6 is a perspective view of the embodiment of FIG. 3 viewed from the side opposite to the buoyancy surface, and FIG.
It is a sectional view showing the manufacturing process of the embodiment shown in the figure. In the figure, 201 is a slider, 202a,
b, c are slider floating surfaces, 203 is a metal film, 20
4 represents an electrode surface, 205 a protective film, 207 a conductive thin film, and 210 a lead wire.

Claims (1)

【特許請求の範囲】[Claims] 1 静電容量法により浮揚量を測定する磁気へツ
ドにおいて、電気的不良導体材料で形成されたス
ライダの浮揚面の一部に電極面が設けられてお
り、該電極面を含む浮揚面全体が表面が鏡面研摩
面である硬質な電気的不良導体材料で形成された
保護膜で被覆された構造を特徴とする浮揚型磁気
ヘツド。
1. In a magnetic head that measures the amount of levitation using the capacitance method, an electrode surface is provided on a part of the levitation surface of a slider made of an electrically poor conductor material, and the entire levitation surface including the electrode surface is A floating magnetic head characterized by a structure coated with a protective film made of a hard, electrically poor conductor material with a mirror-polished surface.
JP5681679A 1979-05-09 1979-05-09 Floating type magnetic head Granted JPS55150124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5681679A JPS55150124A (en) 1979-05-09 1979-05-09 Floating type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5681679A JPS55150124A (en) 1979-05-09 1979-05-09 Floating type magnetic head

Publications (2)

Publication Number Publication Date
JPS55150124A JPS55150124A (en) 1980-11-21
JPS6161193B2 true JPS6161193B2 (en) 1986-12-24

Family

ID=13037893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5681679A Granted JPS55150124A (en) 1979-05-09 1979-05-09 Floating type magnetic head

Country Status (1)

Country Link
JP (1) JPS55150124A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220187A (en) * 1985-07-19 1987-01-28 Toshiba Corp Magnetic disc device
US6876509B2 (en) 2001-01-25 2005-04-05 Seagate Technology Llc Integrated electrostatic slider fly height control

Also Published As

Publication number Publication date
JPS55150124A (en) 1980-11-21

Similar Documents

Publication Publication Date Title
US5557492A (en) Thin film magnetoresistive head with reduced lead-shield shorting
EP0584707B1 (en) Laminate and wear-resistant thin-film magnetic head assembly formed thereon
US8035929B2 (en) Magnetic head assembly and magnetic tape driving apparatus
US5588199A (en) Lapping process for a single element magnetoresistive head
US20030043497A1 (en) System and method for electrostatic fly height control
US6046596A (en) Capacitance probe for magnetic recording head transducer to disc surface spacing measurement
JPS5817966B2 (en) magnetic head assembly
GB2270193A (en) Thin film magnetic head
JPH02260106A (en) Thin-film magnetic head
US6421205B1 (en) Recessed slider trailing edge for reducing stiction
US9892746B1 (en) ABS design with soft bumper pads (SBP) for mitigating media damage and thermal erasure in hard disk drives (HDD)
JPS6161193B2 (en)
US6269687B1 (en) Force sensing slider
JPH0320812B2 (en)
JP2510968B2 (en) Manufacturing method of thin film magnetic head
JPS623476A (en) Floating head mechanism and formation of said mechanism
JPS6266Y2 (en)
US5915271A (en) Head/disc force transducer
JPH02236812A (en) Thin-film magnetic head
US5675463A (en) Slider with a transparent coating on a rail and a reflective material within a recess of the rail
JPS60239911A (en) Magnetic resistance effect type reproducing head
JPS6161192B2 (en)
Best et al. Effect of disk roughness on slider dynamics
JP2767353B2 (en) Flying thin film magnetic head
JPS60193181A (en) Magnetic head