JPS6161164B2 - - Google Patents
Info
- Publication number
- JPS6161164B2 JPS6161164B2 JP12268976A JP12268976A JPS6161164B2 JP S6161164 B2 JPS6161164 B2 JP S6161164B2 JP 12268976 A JP12268976 A JP 12268976A JP 12268976 A JP12268976 A JP 12268976A JP S6161164 B2 JPS6161164 B2 JP S6161164B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- gap
- sendust
- magnetic material
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 54
- 229910000702 sendust Inorganic materials 0.000 claims description 33
- 239000000696 magnetic material Substances 0.000 claims description 31
- 229910045601 alloy Inorganic materials 0.000 claims description 28
- 239000000956 alloy Substances 0.000 claims description 28
- 229910044991 metal oxide Inorganic materials 0.000 claims description 19
- 150000004706 metal oxides Chemical class 0.000 claims description 19
- 239000011882 ultra-fine particle Substances 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 2
- 238000007496 glass forming Methods 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 229910000859 α-Fe Inorganic materials 0.000 description 10
- 239000010410 layer Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 230000004907 flux Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000012790 adhesive layer Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/187—Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
- G11B5/23—Gap features
- G11B5/235—Selection of material for gap filler
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Description
【発明の詳細な説明】
本発明は、ビデオ信号等の記録再生に用いる磁
気ヘツドに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic head used for recording and reproducing video signals and the like.
周知の如く、金属酸化物磁性材料は、高周波に
おける渦流損が少く、実効透磁率が大きいのでビ
デオ信号等の高周波の記録再生用ヘツド材料とし
て用いられている。しかし材料特有の脆性のた
め、短波長記録に必要な動作ギヤツプ面の加工精
度が得がたいこと、およびテープ摺動によるチツ
ピングさらにまた飽和磁束密度も比較的小さいな
どの欠点がある。 As is well known, metal oxide magnetic materials have low eddy current loss at high frequencies and high effective magnetic permeability, and are therefore used as head materials for recording and reproducing high frequency signals such as video signals. However, due to the inherent brittleness of the material, it is difficult to obtain the machining accuracy of the operating gap surface required for short wavelength recording, chipping due to tape sliding, and the saturation magnetic flux density is also relatively low.
従来このチツピングによる問題を軽減する手段
として、ガラス質の非磁性材料をギヤツプのスペ
ーサとして熔着充填する方法がある。この際ガラ
ス質非磁性材料と金属酸化物磁性材料とは高温で
融着させる必要があるので、金属酸化物磁性材料
とガラス質が界面において相互に熱拡散し、両者
の接合部境界が組成的に明確でなくなる。その様
子を第1図および第2図に示す。 Conventionally, as a means to alleviate the problem caused by chipping, there is a method of welding and filling the gap with a glassy non-magnetic material as a spacer. At this time, the glassy non-magnetic material and the metal oxide magnetic material need to be fused together at high temperatures, so the metal oxide magnetic material and the glassy material will thermally diffuse into each other at the interface, and the bonded boundary between the two will be compositionally becomes unclear. The situation is shown in FIGS. 1 and 2.
第1図は金属酸化物磁性材料、例えばフエライ
ト磁芯1よりなる磁気ヘツドの動作ギヤツプ部の
ギヤツプ間隔dにガラス2を熔融充填したもので
ある。第2図は該フエライトのギヤツプ近傍のフ
エライト組成の濃度分布を模式的に示している。
融着の際の熱拡散によりフエライト組成の一部分
が動作ギヤツプに充填されたガラス中に拡散する
ため点線で示した理想的濃度分布を呈することは
不可能であり、実線の如く濃度分布は除々に変化
し、明確な所定のギヤツプ間隔dを得られないた
め、いわゆるギヤツプ損失となり、短波長記録効
率を損う結果となつている。 FIG. 1 shows a magnetic head made of a metal oxide magnetic material, for example, a ferrite magnetic core 1, in which glass 2 is melt-filled in the gap distance d of the operating gap portion. FIG. 2 schematically shows the concentration distribution of the ferrite composition near the gap of the ferrite.
Because part of the ferrite composition diffuses into the glass filled in the working gap due to thermal diffusion during fusion, it is impossible to exhibit the ideal concentration distribution shown by the dotted line, and the concentration distribution gradually changes as shown by the solid line. As a result, a clear predetermined gap distance d cannot be obtained, resulting in a so-called gap loss, which impairs short wavelength recording efficiency.
他の方法として、フエライト磁芯の動作ギヤツ
プ構成面に靭性に富み機械的加工の精度も得やす
い金属磁性材料例えばセンダストの薄片を接合剤
により貼着する方法がある。 Another method is to use a bonding agent to attach a thin piece of a magnetic metal material, such as sendust, which is highly tough and easy to obtain mechanical processing precision, to the surface of the ferrite core that constitutes the operating gap.
この場合、センダスト薄片の厚さとしては、高
周波磁束に対する表皮効果厚を考慮して十分薄く
する必要があるが、例えばビデオ信号の周波数に
対応するセンダスト薄片を貼着することは工作上
極めて困難で、必然的に渦流損の大きい範囲の厚
板を動作ギヤツプ構成面に貼着することになり、
磁気特性を劣化させる。 In this case, the thickness of the Sendust flake needs to be sufficiently thin, taking into consideration the skin effect thickness against high-frequency magnetic flux, but it is extremely difficult to attach a Sendust flake that corresponds to the frequency of a video signal, for example. , it is inevitable that a thick plate with a large eddy current loss will be attached to the operating gap component surface.
Degrades magnetic properties.
また、このように接着剤を使用してフエライト
とセンダスト片を貼着すると、必然的に信号磁束
の流れる磁路中に非磁性の接着剤層が存在するこ
ととなるため、磁路の磁気抵抗が大きくなるとと
もに、この接着剤層が擬似ギヤツプを形成する虞
れも生じる。さらに、フエライトとセンダストの
磁気的な結合を強くするためには前記接着剤層を
十分薄くする必要があり、接着剤層を薄くすると
フエライトとセンダストの十分な機械的な結合が
得られない問題がある。 In addition, when the ferrite and sendust pieces are attached using adhesive in this way, a non-magnetic adhesive layer is inevitably present in the magnetic path through which the signal magnetic flux flows, which reduces the magnetic resistance of the magnetic path. As the gap becomes larger, there is a possibility that this adhesive layer will form a false gap. Furthermore, in order to strengthen the magnetic bond between ferrite and sendust, it is necessary to make the adhesive layer sufficiently thin, and if the adhesive layer is made thin, there is a problem that sufficient mechanical bonding between ferrite and sendust cannot be obtained. be.
また、他の方法として、金属磁性材料をメツキ
または蒸着により付着せしめることが考えられて
いる。 Furthermore, as another method, it has been considered to attach a metal magnetic material by plating or vapor deposition.
第3図はこの方法によつて得られた磁気ヘツド
の例を示す。1はフエライト磁芯、2はガラス質
非磁性材料で形成された幅d1の動作ギヤツプ、3
は動作ギヤツプ構成面に付着された厚さd2の金属
メツキ層を示す。一般にフエライト等の酸化物上
へのメツキや蒸着は、その結合力に乏しいため実
用的なヘツドの構成には不適当であるが、結合性
をよくするため前処理として酸化物表面を水素等
で還元し、組成金属を表面に析出させてメツキの
下地とし、その上にパーマロイ等の強磁性金属を
メツキした後、アニールを施す方法がある。この
方法では酸化物の表面層のみの還元制御が困難で
あり、還元層はかなりの深さとなる。また後処理
のアニールに於ては、酸化物と金属の界面で酸化
還元反応を起し易く、良好な磁性を得る温度条件
では接合面の材料組成はかなり変化するため、そ
の組成変化部における磁気特性の劣化あるいはそ
の組成変化部が擬似ギヤツプとして動作する問題
が生じる。 FIG. 3 shows an example of a magnetic head obtained by this method. 1 is a ferrite magnetic core, 2 is an operating gap with a width d 1 made of a glassy non-magnetic material, and 3
shows a layer of metal plating with a thickness of d 2 deposited on the surface of the working gap. Generally, plating or vapor deposition on oxides such as ferrite is unsuitable for practical head construction due to its poor bonding strength, but in order to improve bonding properties, the oxide surface may be coated with hydrogen, etc. as a pretreatment. There is a method in which the metal is reduced, the compositional metal is precipitated on the surface to serve as a plating base, a ferromagnetic metal such as permalloy is plated on top of the plating base, and then annealing is performed. In this method, it is difficult to control the reduction of only the surface layer of the oxide, and the reduced layer is quite deep. In addition, during post-treatment annealing, redox reactions are likely to occur at the interface between oxide and metal, and the material composition of the bonding surface changes considerably under temperature conditions that provide good magnetism. A problem arises in which the characteristics deteriorate or the compositionally changed portion operates as a pseudo gap.
第4図は第3図に示した磁気ヘツドの動作ギヤ
ツプ周辺の材料の磁性的組成変化を模式的に示し
たものであり、aは第3図のフエライト磁芯1、
bは金属メツキ層2の接合面における変化を示し
ている。 FIG. 4 schematically shows changes in the magnetic composition of materials around the operating gap of the magnetic head shown in FIG.
b shows a change in the bonding surface of the metal plating layer 2.
さらにメツキまたは蒸着法の可能な磁性合金は
かなり制限され、動作ギヤツプの形成に必要な磁
気的、機械的に良好な性質を有する合金磁性材
料、特にセンダスト系合金の如き材料のメツキは
現在の技術では極めて困難である。 Furthermore, the range of magnetic alloys that can be plated or vapor-deposited is quite limited, and current technology does not allow for the plating of alloyed magnetic materials, particularly materials such as sendust alloys, that have the good magnetic and mechanical properties necessary to form the working gap. This is extremely difficult.
以上の多くの例で示した如く、従来の金属酸化
物磁性材料を磁芯とする短波長記録の磁気ヘツド
の動作ギヤツプ部において、磁気的、機械的な諸
問題があつた。 As shown in the many examples above, there have been various magnetic and mechanical problems in the operating gap portion of the conventional magnetic head for short wavelength recording using a metal oxide magnetic material as the magnetic core.
本発明は上記問題点を解決するものであり、金
属酸化物磁性材料と金属磁性材料との結合部にお
いても金属磁性材料と非磁性材料の結合部におい
ても、各々の組成を変化せしむることなく強固に
結合せしめた磁気ヘツドを提供するものである。 The present invention solves the above-mentioned problems by changing the compositions of both the bonding portion between the metal oxide magnetic material and the metal magnetic material and the bonding portion between the metal magnetic material and the non-magnetic material. The present invention provides a magnetic head that is firmly coupled with no magnetic head.
即ち、本発明の骨子は金属酸化物磁性材料に結
合させる合金磁性材料として、センダスト系合金
を選び結合法として、プラズマイオンの加速エネ
ルギーによりセンダスト系合金の微粒子あるいは
その成分元素を加速して金属磁性材料面に打ち込
み、極めて強固な結合力をもつて緻密な組織のセ
ンダスト系合金膜を形成し、このセンダスト系合
金膜面をもつて動作ギヤツプの対向面を形成する
ことにある。この構成においては、動作ギヤツプ
部が高透磁率、高飽和磁束密度、高硬度を有する
センダスト系合金膜によつて明確に区別されるた
め、高密度記録再生用磁気ヘツドとして高性能を
発揮するものである。 That is, the gist of the present invention is to select a sendust alloy as the alloy magnetic material to be bonded to the metal oxide magnetic material, and use the acceleration energy of plasma ions to accelerate fine particles of the sendust alloy or its constituent elements as a bonding method to produce metal magnetism. The purpose is to form a sendust-based alloy film with extremely strong bonding strength and a dense structure by driving it into the material surface, and to form the opposing surface of the operating gap with this sendust-based alloy film surface. In this configuration, the operating gap portion is clearly distinguished by a sendust alloy film with high magnetic permeability, high saturation magnetic flux density, and high hardness, so it exhibits high performance as a magnetic head for high-density recording and reproducing. It is.
第5図は金属酸化物磁性材料面にセンダスト合
金膜を強固に結合して形成させる方法の一例を示
す。 FIG. 5 shows an example of a method of forming a sendust alloy film firmly bonded to the surface of a metal oxide magnetic material.
鉄、硅素、アルミニユームを主体とするセンダ
スト系合金5と、磁気ヘツドの磁路構成用金属酸
化物磁性体6を対峙させて、気圧10-2〜10-3トー
ルのアルゴン等の不活性ガスのグロー放電気中4
に配置し、アルゴンイオンの衝撃によりセンダス
ト系合金5の超微粒子あるいはその成分元素を加
速飛散させて、この超微粒子あるいはその成分元
素の運動エネルギーにより、金属酸化物磁性材料
6の表面に前記超微粒子あるいはその成分元素を
打ち込みセンダスト合金膜7を形成させるもので
ある。 A sendust alloy 5 mainly composed of iron, silicon, and aluminum and a metal oxide magnetic material 6 for forming the magnetic path of the magnetic head are placed facing each other, and an inert gas such as argon at an atmospheric pressure of 10 -2 to 10 -3 Torr is heated. During glow discharge 4
The ultrafine particles of the sendust alloy 5 or its component elements are accelerated and scattered by the impact of argon ions, and the ultrafine particles are deposited on the surface of the metal oxide magnetic material 6 by the kinetic energy of the ultrafine particles or their component elements. Alternatively, the component elements are implanted to form the sendust alloy film 7.
この際、金属酸化物磁性材料は常時不活性ガス
中にあるため表面が清浄に保たれ、そこに飛来す
るセンダスト系合金の超微粒子あるいはその成分
元素は酸化物磁性体6の表面原子層に打ち込んで
強固な結合層が成立し、その結合層を下地とし
て、その上に極めて緻密な組織のセンダスト系合
金膜が所定の厚さに形成される。 At this time, since the metal oxide magnetic material is always in an inert gas, the surface is kept clean, and the ultrafine particles of the sendust alloy or its component elements that fly there are implanted into the surface atomic layer of the oxide magnetic material 6. A strong bonding layer is formed, and a sendust-based alloy film with an extremely dense structure is formed on the bonding layer to a predetermined thickness using the bonding layer as a base.
第6図は、第5図の手段によつてセンダスト系
合金膜7が、金属酸化物磁性材料よりなり、磁気
ヘツドの磁路の主体となるヘツド磁芯6,6′の
それぞれの動作ギヤツプ構成面に付着された状態
を示すもので、以後は、従来の磁気ヘツドの製造
法と同様にセンダスト合金膜7間に動作ギヤツプ
となるガラスを700℃〜800℃の温度で介在せしめ
て両ヘツド磁芯6,6′を接合した後に、所定の
幅に切断して個々の磁気ヘツドコアとする。 FIG. 6 shows a structure in which the sendust alloy film 7 is made of a metal oxide magnetic material by the means shown in FIG. This shows the state in which the magnetic head is attached to the surface. From now on, as in the conventional manufacturing method of magnetic heads, a glass serving as an operating gap is interposed between the sendust alloy films 7 at a temperature of 700°C to 800°C, and both heads are magnetized. After the cores 6, 6' are joined, they are cut to a predetermined width to form individual magnetic head cores.
そして、このようにして得られた磁気ヘツド
は、動作ギヤツプ構成面にセンダスト合金膜7が
形成されているため、非磁性材であるガラスとセ
ンダスト合金膜7とが界面において相互に熱拡散
することはなくなり、動作ギヤツプ部がセンダス
ト合金膜によつて明確に区別されることとなる。 In the thus obtained magnetic head, since the sendust alloy film 7 is formed on the surface of the operating gap, the glass, which is a non-magnetic material, and the sendust alloy film 7 can mutually diffuse heat at the interface. The movement gap part is clearly distinguished by the sendust alloy film.
第7図は、本発明により得られた磁気ヘツドの
一例を示した図である。 FIG. 7 is a diagram showing an example of a magnetic head obtained according to the present invention.
第7図において、8は動作ギヤツプ、9は電磁
変換用コイル、10はバツクギヤツプ、11は動
作ギヤツプ8の側部に設けられた切欠部に充填さ
れたガラス材層を示す。 In FIG. 7, reference numeral 8 indicates an operating gap, 9 indicates an electromagnetic conversion coil, 10 indicates a back gap, and 11 indicates a glass material layer filled in a notch provided on the side of the operating gap 8.
第8図は本発明による磁気ヘツドの他の一例を
示すもので、金属酸化物磁性材料よりなるヘツド
磁芯6,6′の動作ギヤツプ構成面を含むヘツド
磁芯6,6′の内側全面に前述と同様の手段によ
りセンダスト系合金膜7を形成せしめている。 FIG. 8 shows another example of the magnetic head according to the present invention, in which the entire inner surface of the head cores 6, 6', including the surfaces forming the operating gap, is made of a metal oxide magnetic material. The sendust alloy film 7 is formed by the same means as described above.
この構成によると、バツクギヤツプ構成面にも
センダスト系合金膜7が存在するため、このセン
ダスト系合金膜7を利用して、金属酸化物磁性材
料間では困難な金属ろう付が可能となり、より強
固に両ヘツド磁芯6,6′を接合できるものであ
る。 According to this configuration, since the sendust alloy film 7 is also present on the backgap forming surface, metal brazing, which is difficult to do between metal oxide magnetic materials, is possible by using the sendust alloy film 7, making it even stronger. Both head cores 6, 6' can be joined together.
以上のように本発明によれば金属酸化物磁性材
料で磁路の主体となる2個の磁気コアを形成し、
この磁気コアにおける互いに相対向して作動ギヤ
ツプを構成すべきギヤツプ構成面全面のみにセン
ダスト合金膜が形成されているため、ガラスで2
個の磁気コアを接合する際、ガラスとセンダスト
合金膜とが界面において相互に熱拡散することは
なくなり、動作ギヤツプ部が明確な磁気ヘツドを
提供できる。 As described above, according to the present invention, two magnetic cores, which are the main bodies of the magnetic path, are formed of metal oxide magnetic material,
Since the sendust alloy film is formed only on the entire surface of the magnetic core that faces each other and constitutes the operating gap, the glass
When the individual magnetic cores are joined together, there is no mutual thermal diffusion between the glass and the sendust alloy film at the interface, and a magnetic head with a clear operating gap can be provided.
また、本発明では金属酸化物磁性材料よりなる
コアのギヤツプ構成面全面のみにセンダスト合金
膜を設けるものであるため、磁気テープと接する
テープ摺動面の大半は金属酸化物磁性材料である
ため、この金属酸化物磁性材料の有する耐摩耗性
の優れた点はこのまま生かされるものである。 Furthermore, in the present invention, since the sendust alloy film is provided only on the entire gap-constituting surface of the core made of metal oxide magnetic material, most of the tape sliding surface in contact with the magnetic tape is made of metal oxide magnetic material. The excellent wear resistance of this metal oxide magnetic material can be utilized as is.
さらに、センダスト合金膜厚は、付着効率と時
間によつて精密に制御できるため、予定する高周
波磁束の周波数に対応して渦流損失の影響を極小
となるような厚さに選定することが容易に可能な
ものである。 Furthermore, since the Sendust alloy film thickness can be precisely controlled by the adhesion efficiency and time, it is easy to select a thickness that minimizes the effect of eddy current loss in accordance with the frequency of the planned high-frequency magnetic flux. It is possible.
第1図および第3図は、それぞれ従来の磁気ヘ
ツドを示す斜視図、第2図および第4図はそれぞ
れ従来の磁気ヘツドの動作ギヤツプ近傍の磁性材
料の特性変化を模式的に示す図、第5図は本発明
の磁気ヘツドを得るための装置の一例を示す構成
図、第6図は本発明の磁気ヘツドの製造過程にお
けるヘツド磁芯の一例を示す斜視図、第7図およ
び第8図はそれぞれ本発明による磁気ヘツドの実
施例を示す斜視図である。
6,6′……ヘツド磁芯、7……センダスト系
合金膜、8……動作ギヤツプ、10……バツクギ
ヤツプ。
1 and 3 are perspective views showing a conventional magnetic head, respectively. FIGS. 2 and 4 are diagrams schematically showing changes in the characteristics of the magnetic material near the operating gap of a conventional magnetic head, and FIG. FIG. 5 is a block diagram showing an example of an apparatus for obtaining the magnetic head of the present invention, FIG. 6 is a perspective view showing an example of a head core in the manufacturing process of the magnetic head of the present invention, and FIGS. 7 and 8. FIG. 1 is a perspective view showing an embodiment of a magnetic head according to the present invention. 6, 6'... Head magnetic core, 7... Sendust alloy film, 8... Operating gap, 10... Back gap.
Claims (1)
の磁気コアを形成し、この磁気コアにおける互い
に相対向して作動ギヤツプを構成すべきギヤツプ
構成面全面のみに不活性ガス中のプラズマイオン
のエネルギーにより、センダスト系合金の超微粒
子あるいはその成分元素を加速して打ち込み、そ
の金属酸化物磁性材料と強固に結合したセンダス
ト合金膜を形成し、その2個の磁気コアのギヤツ
プ構成面全面のみにそれぞれ形成されたセンダス
ト系合金膜間に前記磁気ヘツドの作動ギヤツプと
なるガラスを形成してなる磁気ヘツド。1. Two magnetic cores, which are the main components of a magnetic path, are formed using a metal oxide magnetic material, and plasma ions in an inert gas are formed only on the entire gap-constituting surfaces of these magnetic cores that face each other and constitute an operating gap. The ultrafine particles of the sendust alloy or its component elements are accelerated and implanted using the energy of A magnetic head comprising glass forming an operating gap of the magnetic head between sendust alloy films formed on the magnetic head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12268976A JPS5347811A (en) | 1976-10-12 | 1976-10-12 | Magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12268976A JPS5347811A (en) | 1976-10-12 | 1976-10-12 | Magnetic head |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21568387A Division JPS63100605A (en) | 1987-08-28 | 1987-08-28 | Magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5347811A JPS5347811A (en) | 1978-04-28 |
JPS6161164B2 true JPS6161164B2 (en) | 1986-12-24 |
Family
ID=14842175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12268976A Granted JPS5347811A (en) | 1976-10-12 | 1976-10-12 | Magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5347811A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS563424A (en) * | 1979-06-19 | 1981-01-14 | Hitachi Ltd | Magnetic head |
JPS5641520A (en) * | 1979-09-13 | 1981-04-18 | Hitachi Ltd | Magnetic head |
WO1983003918A1 (en) * | 1982-05-04 | 1983-11-10 | Eastman Kodak Company | Magnetic head having highly saturable gap liner |
JPH01316626A (en) * | 1988-03-14 | 1989-12-21 | Ajinomoto Co Inc | Method for inspecting sealing performance of plastic container |
-
1976
- 1976-10-12 JP JP12268976A patent/JPS5347811A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5347811A (en) | 1978-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4361860A (en) | Magnetic transducer head and method of manufacturing the same | |
JPS6124806B2 (en) | ||
JPH0758527B2 (en) | Magnetic head | |
JPS6161164B2 (en) | ||
JPH0772927B2 (en) | Magnetic head | |
US5038242A (en) | Magnetic head containing a barrier layer | |
JPS6180512A (en) | Magnetic head | |
JPS63100605A (en) | Magnetic head | |
JPS6236283B2 (en) | ||
JPS6013314A (en) | Composite type magnetic head | |
KR100202481B1 (en) | A m.i.g type thin film magnetic head and method of fabricating thereof | |
JPH0648530B2 (en) | Magnetic head | |
JPS6174109A (en) | Magnetic head | |
JPH09231512A (en) | Manufacture of magnetic head | |
JPS6350907A (en) | Magnetic head | |
JPS59116918A (en) | Magnetic head and production of magnetic head | |
JPS6350910A (en) | Production of magnetic head | |
JPH0580724B2 (en) | ||
JPH01298509A (en) | Composite magnetic head | |
JPS61280009A (en) | Magnetic head | |
JPS63209014A (en) | Joined magnetic head | |
JPH0628622A (en) | Magnetic head | |
JPS6331855B2 (en) | ||
JPS61120347A (en) | Manufacture of magnetic recording medium | |
JPS58179920A (en) | Magnetic head and its production |