JPS6161003A - Method and instrument for measuring thickness of plating layer by x rays - Google Patents

Method and instrument for measuring thickness of plating layer by x rays

Info

Publication number
JPS6161003A
JPS6161003A JP18423584A JP18423584A JPS6161003A JP S6161003 A JPS6161003 A JP S6161003A JP 18423584 A JP18423584 A JP 18423584A JP 18423584 A JP18423584 A JP 18423584A JP S6161003 A JPS6161003 A JP S6161003A
Authority
JP
Japan
Prior art keywords
rays
measured
plating layer
ray tube
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18423584A
Other languages
Japanese (ja)
Other versions
JPH0253723B2 (en
Inventor
Hiroshi Ishijima
石島 博史
Susumu Hiradate
平舘 暹
Yutaka Ichinomiya
豊 一宮
Minoru Handa
伴田 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP18423584A priority Critical patent/JPS6161003A/en
Priority to DE19853531460 priority patent/DE3531460A1/en
Publication of JPS6161003A publication Critical patent/JPS6161003A/en
Publication of JPH0253723B2 publication Critical patent/JPH0253723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure with a high accuracy and by on-line a thickness of a plating part formed on the surface of a basis material by bringing an X-ray tube bulb to pulse-driving while making it synchronize with the repeat pattern of an object to be measured, and detecting generated fluorescent X rays. CONSTITUTION:A measured part detector 1, an X-ray tube bulb 11, an X-ray detector 12, a multi-channel analyzer 15, a CPU16, etc. are provided on a part of an electric circuit. In this case, the plating layer and the basis material of an object to be measured which has received an irradiation of X rays emitted from the X-ray tube bulb 11, emit fluorescent X rays. This fluorescent X rays are converted to an electric signal by the X-ray detector 12, subjected to a synchronizing rectification by a switch 14, and inputted to the analyzer 15. The analyzer 15 discriminates a signal component based on the plating layer and outputs it to the CPU16. The CPU16 calculates the thickness of the plating layer based on the inputted signal. When the time corresponding to an X-ray tube driving pulse width elapses, the switch 10b of an electric power source 10 becomes off, and the radiation of X rays is stopped. When the object to be measured moves and the next base part is opposed to the detector 1, the signal is outputted again.

Description

【発明の詳細な説明】 (技術分野) 本発明は、繰り返しパターンを持った微小な部材に施さ
れたメッキ層の厚さを測定する蛍光X線膜厚測定方法、
及びこれを実施するための装置に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a fluorescent X-ray film thickness measuring method for measuring the thickness of a plating layer applied to a minute member having a repeated pattern;
and an apparatus for carrying out the same.

(従来技術) コネクタビンや半導体のリードフレームは、製造工程の
合理化のため帯状基板をプレスにより所定形状に打抜い
てユニットを連続的に形成し、主要部にメッキを施した
後、ユニットに切断分離することにより製造される。
(Prior technology) To streamline the manufacturing process, connector bins and semiconductor lead frames are manufactured by continuously forming units by punching a band-shaped substrate into a predetermined shape using a press, plating the main parts, and then cutting into units. Produced by separating.

このような電気部品の品質は、メッキ層の厚さや均一性
に大きく左右されるため、メッキ工程を管理する必要が
ある。
The quality of such electrical components is greatly influenced by the thickness and uniformity of the plating layer, so it is necessary to control the plating process.

このため、連続形成された帯状帯から一部分を切断して
一旦、サンプルを採取し、このサンプルのメッキ部位に
励起X線を照射してメッキ層から放射される蛍光X線の
強度に基づいてメー、キ層の厚さを測定することが行な
われている。
For this purpose, a sample is taken by cutting a part of the continuously formed strip, and the plated area of this sample is irradiated with excitation X-rays, and then the plated layer is evaluated based on the intensity of the fluorescent X-rays emitted from the plated layer. , the thickness of the ki layer has been measured.

しかしながら、メッキ丁程と検査工程の間に大きな時間
のずれがあるため検査結果をメッキT稈にフィードバッ
クすることができないという問題があった。
However, there was a problem in that the inspection results could not be fed back to the plating T-culm because there was a large time lag between the plating process and the inspection process.

このような問題を解決するため、被測定物を帯状体のま
ま走行させた状態で励起X線を連続的に照射し、メッキ
層からの蛍光X線を検出してメッキ層の厚さを連続的に
測定する方法も提案されているが、測定領域が極めて大
きくなるため、平均的なデータしか得ることができず、
精密な管理ができないという問題があった。
To solve this problem, we continuously irradiate the object to be measured with excitation X-rays while it is running as a strip, detect the fluorescent X-rays from the plating layer, and measure the thickness of the plating layer continuously. A method of measuring the distance has also been proposed, but since the measurement area is extremely large, only average data can be obtained.
There was a problem that precise management was not possible.

(]1的) 本発明はこのような問題に鑑み、繰り返しパターンを持
つ素地表面に形成されたメッキ部位のメッキ層の厚さを
高い精度でオンラインにより測定する方法を提案するこ
とを目的とする。
(1) In view of these problems, an object of the present invention is to propose a method for online measuring with high accuracy the thickness of a plating layer at a plating site formed on the surface of a substrate having a repeated pattern. .

本発明の他の目的は、上述の方法を実施するだめの装置
を提供することを目的とする。
Another object of the invention is to provide a device for carrying out the method described above.

(構I&) すなわち、本発明の特徴とするところは、被測定対象物
の繰り返しパターンに同期させてX線管球をパルス駆動
し、これにより発生する蛍光X線を検出するようにした
点にある。
(Structure I &) In other words, the feature of the present invention is that the X-ray tube is driven in pulses in synchronization with the repeating pattern of the object to be measured, and the fluorescent X-rays generated thereby are detected. be.

そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
Therefore, details of the present invention will be explained below based on illustrated embodiments.

第2図は、本発明の実施例を示す装置の外観を示すもの
であって、図中符号19は、X線管球11、比例計数管
等のX線検出器12、ツールスコープ18、及びシャッ
タブロック等を収容した測定ヘッドで、基台20に立設
したヘッド昇降用ガイド21と、基台20に収容したパ
ルスモータ22によって回転駆動する測定ヘッドA降用
ボールスクリュー23とに上下方向に移動可能に取付け
られている。24は、測定ヘッド19のX線照射口の前
方側に位置するように基台20にケ設した被測定物支持
棒で、上部からサンプルガイド25、標準サンプルホル
ダー26、及びメッキ液サンプルホルダー27が取付け
られている。サンプルガイド25は、]−下に間隔を持
つ一対のガイドロール25a、25aを枠体25bに配
設し、被測定物の両側に形成されたスプロケットと噛合
って水平方向に案内するように構成されている。
FIG. 2 shows the external appearance of an apparatus showing an embodiment of the present invention, and the reference numeral 19 in the figure indicates an X-ray tube 11, an X-ray detector 12 such as a proportional counter, a tool scope 18, and The measuring head houses a shutter block, etc., and is connected vertically to a head lifting guide 21 set upright on a base 20 and a ball screw 23 for lowering the measuring head A, which is rotationally driven by a pulse motor 22 housed in the base 20. movably mounted. Reference numeral 24 denotes an object support rod installed on the base 20 so as to be located in front of the X-ray irradiation port of the measurement head 19, and includes, from the top, a sample guide 25, a standard sample holder 26, and a plating solution sample holder 27. is installed. The sample guide 25 is configured such that a pair of guide rolls 25a and 25a are disposed on a frame 25b and are spaced apart below, and are engaged with sprockets formed on both sides of the object to be measured to guide it in the horizontal direction. has been done.

これらヘッド昇降用ガイド21、ボールスクリュー23
及び被測定物支持棒24の」二部には天板28を取付け
、後述するシャッタブロックの開閉状態を示すシャッタ
開閉表示ランプ29a、29bが取付けられている。
These head elevation guides 21 and ball screws 23
A top plate 28 is attached to the second part of the object support rod 24, and shutter open/close indicator lamps 29a and 29b, which will be described later, are attached to indicate the open/closed state of the shutter block.

第3図は、測定ヘッドの一実施例を示すものであって、
図中符号11は、パルス駆動可能な前述の3模型X線管
球で、Xl!放射口11aを測定ヘッドに穿設した測定
窓19bに対向させて配設されている。12は、比例計
数管等のX線検出器で、被測定物のメッキ部位から放出
された蛍光X線が検出口に入射するように配設されてい
る。
FIG. 3 shows an embodiment of the measuring head,
The reference numeral 11 in the figure is the aforementioned three-model X-ray tube that can be driven by pulses, and Xl! The radiation port 11a is arranged to face a measurement window 19b formed in the measurement head. Reference numeral 12 denotes an X-ray detector such as a proportional counter tube, which is arranged so that fluorescent X-rays emitted from the plating portion of the object to be measured enter the detection port.

18は、テレビジョンカメラ等からなるツールスコープ
で、後述するシャッタブロック30の光路を介して被測
定物を撮影するように配設されている。30は、前述の
シャッタブロックで、−側に設けた突起30aとヘッド
内に配設した2本の位置決めピン19a、19aの間を
被測定物移送経路X−xに対して垂直方向に摺動して1
−下2つの位置を取るように設けられている。シャッタ
ブロック30の上部−側のX線管球11の放射[111
aと被測定物照射領域を結ぶ軸線にX線コリメータ17
を交換可能に取付けられ、このコリメータ軸と直交する
軸方向にはツールスコープ18と測定ヘッド19に穿設
した観測窓19cを結ぶように2枚のミラー30b、3
0cを配設し、観測窓19cからツールスコープに至る
第1の光路が形成されている同図(Ib)、また、第1
の光路に平行にシャッタブロック30のコリメータ17
側下部とツールスコープ18を結ぶように2枚のミラー
30d、30eを配設し、測定へラド19に穿設した測
定窓19bからツールスコープ18に至る第2の光路が
形成されている(同図IIb)、測定窓19b、及び観
測窓19cにはストロボランプ8.7が配設されている
Reference numeral 18 denotes a tool scope consisting of a television camera or the like, which is arranged so as to photograph the object to be measured through the optical path of a shutter block 30, which will be described later. Reference numeral 30 denotes the aforementioned shutter block, which slides between the protrusion 30a provided on the negative side and the two positioning pins 19a, 19a provided in the head in the direction perpendicular to the object transfer path X-x. then 1
- Provided to take the bottom two positions. The radiation of the X-ray tube 11 on the upper side of the shutter block 30 [111
An X-ray collimator 17 is placed on the axis connecting a and the irradiation area of the object to be measured.
In the axial direction perpendicular to the collimator axis, two mirrors 30b and 3 are attached so as to connect the tool scope 18 and the observation window 19c formed in the measurement head 19.
0c is arranged, and the first optical path from the observation window 19c to the tool scope is formed (Ib).
collimator 17 of shutter block 30 parallel to the optical path of
Two mirrors 30d and 30e are arranged to connect the lower side and the tool scope 18, and a second optical path is formed from the measurement window 19b drilled in the measurement radar 19 to the tool scope 18. In FIG. IIb), a strobe lamp 8.7 is provided in the measurement window 19b and the observation window 19c.

第1図は、本発明装置を駆動する電気回路の実施例を示
すものであって、図中符号lは、被測定物Tの搬送経路
x−xを挟んで勾向配設した発光素子1aと受光素子1
bからなる被測定部位検出器で、被測定物の各パターン
の端部が検出器lの光軸を横切ることにより信号を出力
するように構成されている。2.3.4は、それぞれ可
変抵抗器2a、3a、4aにより遅延時間が調整可能な
遅延回路からなる観測点ランプ発光タイミング信号発生
器、測定点ランプ発光タイミング信号発生器、及びX線
管球駆動タイミング信号発生器である。5.6は、それ
ぞれ、ストロボランプ駆動回路で、ランプ発光タイミン
グ信号発生器2.3からの信号をトリガとしてストロボ
ランプ7.8を点瀘駆動するパルス電力を出力するもの
である。
FIG. 1 shows an embodiment of an electric circuit for driving the apparatus of the present invention, and reference numeral l in the figure indicates a light emitting element 1a arranged in an oblique manner across the conveyance path x-x of the object to be measured T. and light receiving element 1
1 is a part-to-be-measured detector consisting of a part to be measured detector 1, which is configured to output a signal when the end of each pattern of the object to be measured crosses the optical axis of the detector 1. 2.3.4 is an observation point lamp light emission timing signal generator, a measurement point lamp light emission timing signal generator, and an X-ray tube, which are each composed of a delay circuit whose delay time can be adjusted by variable resistors 2a, 3a, and 4a. This is a drive timing signal generator. Reference numerals 5.6 and 5.6 each designate a strobe lamp drive circuit which outputs pulsed power to drive the strobe lamp 7.8 in a controlled manner using the signal from the lamp emission timing signal generator 2.3 as a trigger.

9は、外部抵抗9aによりパルス幅が調整可能な単安定
マルチバイブレータからなるX線管球駆動回路で、X線
管球駆動タイミング信号発生器4からの信号に同期して
一定幅のパルス信号を出力して後述する第1. Wg2
のスイッチ10a、14を0N−OFFするように構成
されている。10は、X線管球用電源回路で、X線管球
11の陽極−陰極間に抵抗10dを介して接続する高圧
電源10a、及び第1のスイー2チ10bを介して抵抗
10dの両端に接続して高圧電源10aに重畳され、X
線管球11を瞬時定格で駆動するバイアス電源10cか
ら構成されている。12は、被測定物からの蛍光X線を
検出する比例計数管等のX線検出器で、これからの検出
信号は、前置増幅器13により所定レベルに増幅され、
X線管球11の断続作動に同期する第2スイツチ14を
介して後述するマルチチャンネルアナライザー15に入
力される。15は、前述のマルチチャンネルアナライザ
ーで、検出信号からメッキ層等、目的とする元素からの
蛍光X線を弁別してこれの強度を測定するもの、16は
、CPUで、マルチチャンネルアナライザーからの信号
を基にメッキ層の厚さを算出したり、装置全体の動作を
制御するものである。
Reference numeral 9 denotes an X-ray tube drive circuit consisting of a monostable multivibrator whose pulse width can be adjusted by an external resistor 9a, which generates a pulse signal of a constant width in synchronization with the signal from the X-ray tube drive timing signal generator 4. The first output will be output and will be described later. Wg2
The switches 10a and 14 are turned ON-OFF. 10 is a power supply circuit for an X-ray tube, which includes a high-voltage power supply 10a connected between the anode and cathode of the X-ray tube 11 via a resistor 10d, and a first switch 10b connected to both ends of the resistor 10d. connected and superimposed on the high voltage power supply 10a,
It consists of a bias power supply 10c that drives the wire tube 11 at instantaneous rating. 12 is an X-ray detector such as a proportional counter that detects fluorescent X-rays from the object to be measured; the detection signal from this is amplified to a predetermined level by a preamplifier 13;
The signal is input to a multi-channel analyzer 15, which will be described later, via a second switch 14 that is synchronized with the intermittent operation of the X-ray tube 11. 15 is the multi-channel analyzer mentioned above, which distinguishes fluorescent X-rays from the target element such as the plating layer from the detection signal and measures the intensity thereof; 16 is the CPU, which measures the signal from the multi-channel analyzer. Based on this, the thickness of the plating layer is calculated and the operation of the entire device is controlled.

なお、図中符号17は、X線管球の前面に配設したコリ
メータを、18は観測点M、及び測定点Aにおける被測
定物の光学像を検出するツールスコープをそれぞれ示し
ている。
In the figure, reference numeral 17 indicates a collimator disposed in front of the X-ray tube, and 18 indicates a tool scope for detecting an optical image of the object to be measured at observation point M and measurement point A, respectively.

この実施例において、標準試料をサンプルホルダー26
にセットして測定ヘッド19の測定窓19bを標準試料
に対向させ、装置を作動して検昂線を求める。
In this example, the standard sample is placed in the sample holder 26.
The measurement window 19b of the measurement head 19 is set to face the standard sample, and the device is operated to obtain the detection line.

次に、長尺状に形成されたリードフレーム等の被測定物
をサンプルホルダー25にセットして被測定物の移送を
開始する。
Next, an object to be measured such as an elongated lead frame is set on the sample holder 25, and transfer of the object to be measured is started.

(i)観測点ランプの発光タイミングの調整測定へラド
19に収容されているシャッタブロック30を第1の位
置に移動させ、観測窓19Cからツールスコープ18に
至る第1の光路を形成しく第3図Ia、Ib)、ツール
スコープ18を見ながら被測定物が静止した状態に見え
るように観測点ランプ発光タイミング信号発生器2の遅
延時間を調整する。これによりストロボランプ7は、被
測定物のパターン基部Tが測定窓19bに到達するたび
に発光し、被測定物はツールスコープ18により撮影さ
れて図示しないモニタブラウン管に静止画像として写し
出される。
(i) Adjusting the emission timing of the observation point lamp To measure, move the shutter block 30 housed in the radar 19 to the first position to form a first optical path from the observation window 19C to the tool scope 18. In FIGS. Ia and Ib), while looking at the tool scope 18, the delay time of the observation point lamp light emission timing signal generator 2 is adjusted so that the object to be measured appears stationary. As a result, the strobe lamp 7 emits light every time the pattern base T of the object to be measured reaches the measurement window 19b, and the object to be measured is photographed by the tool scope 18 and displayed as a still image on a monitor cathode ray tube (not shown).

(11)測定点ランプの発光タイミングの調整シャッタ
ブロック30を第2の位置に移動させ、測定窓19bか
らツールスコープ18に至る第2の光路を形成しく第3
図II a、l1b)、ツールスコープ18を見ながら
被測定物が静止した状態に見えるように測定点ランプ発
光タイミング信号発生器3の遅延時間を調整する。
(11) Adjusting the light emission timing of the measurement point lamp Move the shutter block 30 to the second position to form a second optical path from the measurement window 19b to the tool scope 18.
2a, 11b), while looking at the tool scope 18, the delay time of the measurement point lamp emission timing signal generator 3 is adjusted so that the object to be measured appears stationary.

(iii)X線照射タイミングの調整 シャッタブロックを第1の位置に移動させてコリメータ
17をX線管球11の照射口11aに対向するように配
設し、被測定物の基部Tに形成したメッキ層上に照準光
が当るようにX線管球駆動タイミング信号発生回路4の
遅延時間とX線管球駆動回路9のパルス幅を調整する。
(iii) Adjustment of X-ray irradiation timing The shutter block was moved to the first position and the collimator 17 was arranged to face the irradiation port 11a of the X-ray tube 11, and was formed at the base T of the object to be measured. The delay time of the X-ray tube drive timing signal generation circuit 4 and the pulse width of the X-ray tube drive circuit 9 are adjusted so that the aiming light hits the plating layer.

このような準備を終えた段階で装置を作動し、被測定物
を移送する。これによって被測定物のパターンを構成す
る基部Tの端が被測定部位検出器1の光軸を横切ると、
測定部位検出器lは、パルス信号をX線管球駆動タイミ
ング信号発生回路4、観測点ランプ発光タイミング信号
発生回路2、及び測定点ランプ発光タイミング信号発生
回路3に出力する(第4図)、これにより、X線管球駆
動回路9は、パルス信号を出力してスイッチ10bをO
FFからONに切り換え、バイアス電源10cからの電
圧をX線管高圧電源10aに重畳してX線管球11に瞬
時定格駆動電圧を印加する。X@管球11から放射した
X線は、コリメータ17により細い径のビームに絞られ
て被測定物の基部Tの一部を照射する。このX線の照射
を受けた部位のメッキ層、及び素地は、それぞれ励起さ
れ、メッキ層の厚さと構成元素に対応した強度の蛍光X
線、及び素地の構成元素に対応した蛍光X線を放出する
。メッキ層及び素地から放出された蛍光X線は、X線検
出器12によって電気信号に変換され、スイッチ14に
より同期整波を受けてマルチチャンネルアナライザー1
5に入力する。マルチチャンネルアナライザー15は、
入力した信号の内からメッキ層に基づく信号成分を弁別
してCPU16に出力する。CPU16は、マルチチャ
ンネルアナライザー15から入力した信号を基にしてメ
ンキ層の厚さを算出して図示しない表示計やプリンタに
出力し、さらに図示しないメッキ処理装置に出力して被
メツキ部材の移送速度及び、メッキ槽の電流密度や、メ
ッキ液の濃度などを調整してメッキ層の厚さが設定値に
なるように制御する。
After completing such preparations, the apparatus is operated and the object to be measured is transferred. As a result, when the end of the base T forming the pattern of the object to be measured crosses the optical axis of the object to be measured detector 1,
The measurement site detector l outputs a pulse signal to the X-ray tube drive timing signal generation circuit 4, the observation point lamp emission timing signal generation circuit 2, and the measurement point lamp emission timing signal generation circuit 3 (FIG. 4). As a result, the X-ray tube drive circuit 9 outputs a pulse signal to turn the switch 10b on.
Switching from FF to ON, the voltage from the bias power supply 10c is superimposed on the X-ray tube high-voltage power supply 10a, and an instantaneous rated drive voltage is applied to the X-ray tube 11. The X-rays emitted from the X@tube 11 are focused into a narrow beam by the collimator 17 and irradiate a part of the base T of the object to be measured. The plating layer and the base material in the area irradiated with this X-ray are excited, and the intensity of the fluorescent X-rays corresponds to the thickness of the plating layer and the constituent elements.
rays and fluorescent X-rays corresponding to the constituent elements of the substrate. Fluorescent X-rays emitted from the plating layer and the base material are converted into electrical signals by the X-ray detector 12, subjected to synchronous rectification by the switch 14, and sent to the multi-channel analyzer 1.
Enter 5. The multi-channel analyzer 15 is
A signal component based on the plating layer is discriminated from among the input signals and outputted to the CPU 16. The CPU 16 calculates the thickness of the coating layer based on the signal input from the multi-channel analyzer 15, outputs it to a display meter or printer (not shown), and further outputs it to a plating processing device (not shown) to determine the transfer speed of the plated member. Then, the current density of the plating bath, the concentration of the plating solution, etc. are adjusted so that the thickness of the plating layer becomes the set value.

このようにしてX線管駆動パルス幅に相当する時間1.
が経過すると、X線管球用電源10のスイッチtabが
OFFとなってX線の放射が停止する。被測定物が移動
して次の基部が検出器lに対向すると、再び信号が出力
し、前述の過程を経てメッキ層の厚さを測定する。
In this way, the time corresponding to the X-ray tube driving pulse width is 1.
When , the switch tab of the X-ray tube power supply 10 is turned OFF, and the emission of X-rays is stopped. When the object to be measured moves and the next base faces the detector 1, a signal is output again, and the thickness of the plating layer is measured through the process described above.

以後、このような過程を繰り返しながら基部に対して選
択的に励起用X線を照射してメッキ層の厚さを測定する
Thereafter, while repeating such a process, the base portion is selectively irradiated with excitation X-rays to measure the thickness of the plating layer.

なお、測定領域における被測定物の挙動を見るべく、シ
ャッタブロック30を第2位置に移動すると、図示しな
いシャッタ切り換え検出スイッチによりX線管法用電源
lOがOFFとなり、同時にシャツタ閉表示ランプ29
bが点灯する。
When the shutter block 30 is moved to the second position in order to observe the behavior of the object to be measured in the measurement area, the X-ray tube method power supply lO is turned off by a shutter changeover detection switch (not shown), and at the same time the shutter closed indicator lamp 29 is turned off.
b lights up.

なお、この実施例においては測定対象部位を検出するこ
とにより被測定物の移動を検出しているが、搬送用に形
成されたスプロケットを検出する等、測定対象部位の移
動に同期する運動を検出し、この信号に基づいて制御し
ても同様の作用を奏する。
In this example, the movement of the object to be measured is detected by detecting the part to be measured, but it is also possible to detect movement that is synchronized with the movement of the part to be measured, such as by detecting a sprocket formed for transportation. However, the same effect can be obtained even if the control is performed based on this signal.

(効果) 以l−1説明したように本発明によれば、長尺状被測定
物に形成された繰り返しパターンに対応させてX線管球
に印加する駆動電圧を断続してパルス駆動するようにし
たので、小型のX線管球をピーク出力の高い瞬時定格で
作動させて高いX線出力を得ることができて統計精度の
向上と装置の軽量化が実現できるばかりでなく、測定領
域に被測定物が存在するときだけ選択的にX線を照射す
るため、被測定物によりX線が遮へいされ外部環境への
X線の漏洩を可及的に少なくすることができる。
(Effects) As explained in 1-1 below, according to the present invention, the driving voltage applied to the X-ray tube is intermittently pulse-driven in correspondence with the repetitive pattern formed on the long object to be measured. This not only makes it possible to obtain high X-ray output by operating a small X-ray tube at a high instantaneous rating with a high peak output, improving statistical accuracy and reducing the weight of the device, but also allows for more space in the measurement area. Since X-rays are selectively irradiated only when the object to be measured is present, the X-rays are blocked by the object to be measured, and leakage of X-rays to the external environment can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の一実施例を示す装置の構成図、第2
図は、本発明の一実施例を示す装置の斜視図、第3図は
、同上装置に使用する測定ヘッドの一実施例を示す装置
の平面図、第4図は、同に装置の動作を説明する波形図
である。 l・・・・被測定部位検出器 7.8・・・・ストロボランプ lO・・・・X線管駆動電源 11・・・・X線管球1
2・・・・X線検出器   17・・・・コリメータ1
8・・・・ツールスコープ 19・・・・測定ヘッド2
5・・・・サンプルホルダー T・・・・基部出願人 
セイコー電子工業株式会社 代理人 弁理士 西 川 慶 治 回   木  村  勝  彦 Oつ                )q) w&   Φ 〜  81 rつ 句      る  1    。 ′(IC> η  1    \ 1      ト 1     −m−ミさ    。 /−ゝ 8   へ /   s IX。
Fig. 1 is a configuration diagram of an apparatus showing an embodiment of the present invention;
FIG. 3 is a perspective view of the device showing an embodiment of the present invention, FIG. 3 is a plan view of the device showing an embodiment of the measuring head used in the same device, and FIG. 4 is a diagram showing the operation of the device. FIG. 3 is a waveform diagram for explanation. l...Measurement area detector 7.8...Strobe lamp lO...X-ray tube drive power supply 11...X-ray tube 1
2...X-ray detector 17...Collimator 1
8...Tool scope 19...Measuring head 2
5...Sample holder T...Base applicant
Seiko Electronic Industries Co., Ltd. Representative Patent Attorney Kei Nishikawa Katsuhiko Kimura) q) w&Φ ~ 81 rtsuru 1. ′(IC> η 1 \ 1 t1 -m-mi sa. /-ゝ8 to / s IX.

Claims (2)

【特許請求の範囲】[Claims] (1)繰り返しパターンを持って連続的に形成された帯
状の被測定物を搬送しながら前記パターンに対応させて
X線管球を断続的に作動させ、メッキ層から発生する蛍
光X線を検出するメッキ層の厚さ測定方法。
(1) While conveying a strip-shaped object to be measured that is continuously formed with a repeating pattern, an X-ray tube is operated intermittently in accordance with the pattern to detect fluorescent X-rays generated from the plating layer. How to measure the thickness of the plating layer.
(2)繰り返しパターンを持って連続的に形成された帯
状被測定物の移動状態を検出する手段、該手段からの信
号に同期して断続的に作動するX線管球、被測定物から
の蛍光X線を検出するX線検出手段、及び該X線検出手
段の信号からメッキ層に基づく蛍光X線信号を弁別して
メッキ層の厚さを演算する手段からなるX線によるメッ
キ層の厚さ測定装置。
(2) A means for detecting the moving state of a strip-shaped object to be measured that is continuously formed with a repeating pattern, an X-ray tube that operates intermittently in synchronization with a signal from the means, and Thickness of a plating layer by X-rays, comprising an X-ray detection means for detecting fluorescent X-rays, and a means for calculating the thickness of the plating layer by discriminating a fluorescent X-ray signal based on the plating layer from the signal of the X-ray detection means. measuring device.
JP18423584A 1984-09-03 1984-09-03 Method and instrument for measuring thickness of plating layer by x rays Granted JPS6161003A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18423584A JPS6161003A (en) 1984-09-03 1984-09-03 Method and instrument for measuring thickness of plating layer by x rays
DE19853531460 DE3531460A1 (en) 1984-09-03 1985-09-03 Method and device for measuring the thickness of a plated coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18423584A JPS6161003A (en) 1984-09-03 1984-09-03 Method and instrument for measuring thickness of plating layer by x rays

Publications (2)

Publication Number Publication Date
JPS6161003A true JPS6161003A (en) 1986-03-28
JPH0253723B2 JPH0253723B2 (en) 1990-11-19

Family

ID=16149738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18423584A Granted JPS6161003A (en) 1984-09-03 1984-09-03 Method and instrument for measuring thickness of plating layer by x rays

Country Status (2)

Country Link
JP (1) JPS6161003A (en)
DE (1) DE3531460A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244346A (en) * 1987-11-03 1989-09-28 Uk Government Monitoring of heat generation process
US5754621A (en) * 1993-03-15 1998-05-19 Hitachi, Ltd. X-ray inspection method and apparatus, prepreg inspecting method, and method for fabricating multi-layer printed circuit board
US6072899A (en) * 1997-01-23 2000-06-06 Hitachi, Ltd. Method and device of inspecting three-dimensional shape defect
JP2015158398A (en) * 2014-02-24 2015-09-03 セイコーエプソン株式会社 Mounting substrate
CN114047213A (en) * 2021-11-17 2022-02-15 马鞍山钢铁股份有限公司 Method for measuring weight of zinc layer by X-ray fluorescence method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244346A (en) * 1987-11-03 1989-09-28 Uk Government Monitoring of heat generation process
US5754621A (en) * 1993-03-15 1998-05-19 Hitachi, Ltd. X-ray inspection method and apparatus, prepreg inspecting method, and method for fabricating multi-layer printed circuit board
US6072899A (en) * 1997-01-23 2000-06-06 Hitachi, Ltd. Method and device of inspecting three-dimensional shape defect
JP2015158398A (en) * 2014-02-24 2015-09-03 セイコーエプソン株式会社 Mounting substrate
CN114047213A (en) * 2021-11-17 2022-02-15 马鞍山钢铁股份有限公司 Method for measuring weight of zinc layer by X-ray fluorescence method

Also Published As

Publication number Publication date
JPH0253723B2 (en) 1990-11-19
DE3531460A1 (en) 1986-03-13

Similar Documents

Publication Publication Date Title
CN104020184B (en) A kind of upper illuminated X fluorescence spectrometer and its control method
CN100508120C (en) Exposure equipment and exposure method
JP2001092414A5 (en)
WO2021062939A1 (en) Method for optical detection of diaphragm
JPS6161003A (en) Method and instrument for measuring thickness of plating layer by x rays
JP2002296021A (en) Thickness measuring instrument
CN1038874C (en) Microarea X-ray fluorescent golden ornaments analytical device
JPH11224624A (en) X-ray tube, x-ray generator and inspection system
CN209992396U (en) Microscopic imaging full-spectrum high-voltage module time-resolved fluorescence measurement system
WO2021077548A1 (en) Quantum dot fluorescence detection device, and quantum dot fluorescence monitor and monitoring method thereof
US20040105096A1 (en) Method and apparatus for forming substrate for semiconductor or the like
JPH02259515A (en) Measuring instrument for fluorescent x-rays film thickness
KR920003041B1 (en) Measuring device of luster
CN215218019U (en) Wide-angle scattered light test instrument
JPS59182341A (en) Apparatus for measuring anisotropy of sample luminescence
CN218723862U (en) Optical detection device and laser processing equipment
JP2509227B2 (en) Laser magnetic immunoassay device
CN220062892U (en) Welding rod solder contour detector and welding rod eccentricity online continuous measuring device
KR20180036527A (en) A tape inspector
KR100736485B1 (en) The apparatus and method for adjusting lamp's situation of the projecting display system
CN216483549U (en) Autocorrelator
CN221198892U (en) Light spot measuring device for picosecond laser
CN214953134U (en) Optical detection system and detection equipment
CN116773450A (en) Low-light microscope system and working method thereof
CN211786136U (en) X-ray beam position measuring detector