JPS6160731B2 - - Google Patents

Info

Publication number
JPS6160731B2
JPS6160731B2 JP9461281A JP9461281A JPS6160731B2 JP S6160731 B2 JPS6160731 B2 JP S6160731B2 JP 9461281 A JP9461281 A JP 9461281A JP 9461281 A JP9461281 A JP 9461281A JP S6160731 B2 JPS6160731 B2 JP S6160731B2
Authority
JP
Japan
Prior art keywords
nickel
forging
glass
heating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9461281A
Other languages
Japanese (ja)
Other versions
JPS57209735A (en
Inventor
Yoshio Harada
Tsuneji Tojo
Sadakazu Oonishi
Kenichi Nagasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9461281A priority Critical patent/JPS57209735A/en
Publication of JPS57209735A publication Critical patent/JPS57209735A/en
Publication of JPS6160731B2 publication Critical patent/JPS6160731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、蒸気タービン、ガスタービン等に用
いられる耐熱鋼又は耐熱合金を熱間で塑性加工す
る方法に係り、とくに加工時の酸化を防止する方
法に関する。 蒸気タービンは、火力プラントや原子力発電プ
ラントで使用されているが、そのタービン翼材料
は次に示すような性質を具備すべきものとされて
いる。 まず動翼は、運転中に大きな遠心応力、蒸気推
力による曲げ応力及び振動応力を受ける。このた
め優れたクリープ破断強さなどの高温強度が、又
比較的低い温度雰囲気で使用される場合には高い
常温降伏強さと靭性が要求され、更に高い疲労強
度、小さい切欠き感受性、良好な耐エロージヨン
性、鍛造性、及び溶接性なども求められている。 一方静翼は、遠心力を受けないかぎり高い曲げ
応力を受ける。このため良好な高温強度が要求さ
れ、又溶接性が必要である。このようなことから
動翼及び静翼に対しその使用温度により第1表の
ような材料が適用されている。
The present invention relates to a method of hot plastic working of heat-resistant steel or heat-resistant alloy used in steam turbines, gas turbines, etc., and particularly relates to a method of preventing oxidation during working. Steam turbines are used in thermal power plants and nuclear power plants, and the materials for the turbine blades are required to have the following properties. First, the rotor blades are subjected to large centrifugal stress, bending stress due to steam thrust, and vibration stress during operation. For this reason, high temperature strength such as excellent creep rupture strength is required, and when used in a relatively low temperature atmosphere, high room temperature yield strength and toughness are required, as well as high fatigue strength, low notch sensitivity, and good durability. Erosion resistance, forgeability, and weldability are also required. On the other hand, stator blades are subjected to high bending stress unless they are subjected to centrifugal force. For this reason, good high-temperature strength is required, and weldability is also required. For this reason, the materials listed in Table 1 are used for moving blades and stationary blades, depending on the operating temperature.

【表】 しかしてこれらの材料を使用して翼を製造する
場合、通常表材を加熱して鍛造を繰返し、次第に
翼型としている。すなわち材質によつて異なるが
翼素材を加熱炉中で900〜1200℃に加熱した後炉
外に取出し翼金型に当てて鍛造する。この場合一
回の型鍛造では目的が達せられないため、再び加
熱炉中で加熱して鍛造を行い、このような操作を
数回繰返して最終の翼型とする。 しかしこの鍛造方法は次のような欠点がある。 素材の加熱を繰返すため、燃料を多く消費し、
製造コストがかかる。また加熱後の素材表面には
酸化スケールが生成するため型鍛造時に酸化スケ
ールが素材中にめり込む。また加熱した素材に金
型を当てて鍛造すると素材は金型に沿うように変
形していくが、素材表面に酸化スケールが生成し
ていると、これが変形時の摩擦抵抗となり、鍛造
効率が低下する。従つて加熱−鍛造のプロセスを
繰返さざるを得なくなり、コストがかかる。この
ため再加熱前に予めシヨツトブラスト、酸洗など
により酸化スケールを除去することも考えられる
が、この場合も加熱時に再び生成するので、同様
の問題が生じる。とくにタービン翼材として用い
られる特殊鋼では、その表面に生成する酸化スケ
ールがクロム、アルミニウムなどの酸化物を含
み、緻密で表材との密着性がよいものであるの
で、その除去が困難である。 このようなことから加熱する素材表面に予めガ
ラス粉を塗布しあるいは素材を溶融したガラス中
に浸漬し、もしくは素材表面に電気ニツケルメツ
キを施して鍛造時の酸化を防止するようにしてい
る。しかしガラスによる方法のみでは、その効果
が乏しい。また電気メツキ法では、加熱前の処理
は可能であるが、加熱−鍛造を繰返しているうち
に塑性変形量の大きいところではメツキ層の一部
が消失して酸化スケールが生成されやすい。この
ため電気メツキ法では、これを防ぐため電気メツ
キ厚さを大きくする必要があり、処理コストが高
くなる欠点がある。 本発明は、上記事情に鑑みてなされたもので、
その目的とするところは、鍛造時の熱間塑性加工
時において、安価なコストで素材の酸化を防止
し、加工回数を低減できるとともに素材表面に密
着性のよい耐食性皮膜を形成することができる金
属材料の熱間塑性加工方法を得んとするものであ
る。 すなわち本発明は、予め金属材料素材の表面に
ニツケル又はニツケル合金をコーデイングした後
その上にガラスコーテイングをおこない、次いで
熱間塑性加工することを特徴とする方法である。 以下本発明方法を詳細に説明する。 まず本発明方法に適用される金属材料素材とし
ては耐熱鋼又は耐熱合金等熱間で塑性加工するも
ので、例えば蒸気タービン、ガスタービン、コン
プレツサ、ブロワ等の主要部品(動、静翼)及び
付属機器類に使用される熱間型鍛造品、圧延品、
押出品、引抜品などがあげられる。 本発明は、まずこの金属材料の表面を常法に従
つて浄化した後ニツケル又はニツケル合金をコー
テイングする。ニツケル合金としては、硼素含有
ニツケルが好適である。またコーテイング方法と
しては、最初にメツキし、後に溶射する方法又は
メツキ単独あるいは溶射単独でコーテイングする
方法などいずれでもよい。 このコーテイング後ガラスコーテイングをおこ
なう。ガラスコーテイング法としては、表面にガ
ラス粉を吹付けて加熱する方法、あるいは溶融し
たガラス中に浸漬する方法などによりおこなう。 次いで本発明では、このようにしてコーテイン
グを施した後、所定の熱間塑性加工例えば加熱及
び鍛造の繰返し処理をおこなう。この処理により
所定の加工物が得られる。 しかして本発明によれば、素材表面にニツケル
又はニツケル合金のコーテイング層とガラスコー
テイング層とを形成しているので、加熱した際素
材と空気との接触が断たれ、素材の酸化に伴うス
ケールの生成がない。すなわちニツケル又はニツ
ケル合金のコーテイング層だけでは、加熱時にあ
る程度の酸化スケールの生成は避けられないが、
最上層部にガラス層をコーテイングしているの
で、その酸化反応が抑制される。 とくに溶射法によつて得られるニツケル又はニ
ツケル合金のコーテイング層は、一般に多孔質で
あるため、この層だけで加熱した場合には、素材
の酸化が起るが、ガラスコーテイングを施すこと
によつて溶射層の空孔を埋め、これを防止するこ
とができる。したがつてニツケル又はニツケル合
金のコーテイングに作業性の優れた溶射法を十分
使用することができ、必要に応じて各種の成分組
成を有する合金のコーテイング層を形成すること
ができる。 更にまた加熱−鍛造時にニツケル又はニツケル
合金と素材との相互拡散作用が円滑に行なわれる
結果、密着性に優れた金属コーテイング層が得ら
れる。またガラスは溶融状となつているため、非
常に潤滑性がよく、鍛造時の衝撃力を効率よく素
材に伝え、高い加工率が得られる。また潤滑性が
優れているため、鍛造金型の損耗が少なく、長期
間にわたつて使用することができる。また溶融状
態のガラスは、鍛造加工による素材の変形にもよ
く追従して、常に素材表面をコーテイングしてい
るので、上述した効果を有効に持続できる。更に
またガラスは、加熱−鍛造を繰返す際適宜追加す
ることができるとともに鍛造終了後素材を冷却さ
せた際、加工面(素材面)から容易に除去するこ
とが可能である。 次に本発明の実施例につき説明する。 実施例 1 金属素材として、直径60mm、長さ500mmの17%
Cr−4%Ni鋼を用い、この素材表面の酸化スケ
ール、さび、油などの異物を酸洗、アルカリ脱脂
および水洗などの通常の表面浄化方法によつて除
去した後、塩化ニツケル240g/、塩酸120g/
を含むメツキ液中にて2〜5分間メツキした後
さらに硫酸ニツケル240g/、塩化ニツケル45
g/、硼酸35g/のメツキ液中にて通電し、
ニツケルメツキ厚が10μmになるように処理し
た。なお前者のメツキは、通常ストライクメツキ
と呼ばれるもので、特殊鋼上にニツケルメツキを
施す際、特殊鋼との密着性と後者のニツケルメツ
キとの密着性を向上させるために実施するもので
ある。 次いでメツキ終了後の素材を軽くシヨツトブラ
ストした後純ニツケル又は4.5%硼素含有ニツケ
ルと溶射材としてこれをプラズマ溶射機によつて
150〜200μ溶射した。その後ガラス粉をその上に
吹付け、電気炉中で1200℃×30分加熱し、タービ
ン翼形状の金型上で鍛造した。鍛造素材が約900
℃に冷却されると再び電気炉中で1200℃に加熱
し、再び型鍛造を加える操作を繰返した。なお加
熱鍛造を繰返す都度ガラス粉末をコーテイングし
た。その結果を第2表に示す。 またこれと比較するために素材をシヨツトブラ
ストした後加熱−鍛造を繰返した従来方法の結果
を第2表に併記する。
[Table] However, when manufacturing airfoils using these materials, the surface material is usually heated and forged repeatedly to gradually form the airfoil shape. That is, the blade material is heated in a heating furnace to 900 to 1200°C, depending on the material, and then taken out of the furnace and placed against a blade mold for forging. In this case, the purpose cannot be achieved with one die forging, so the forging is performed again by heating in a heating furnace, and this operation is repeated several times to form the final airfoil. However, this forging method has the following drawbacks. As the material is heated repeatedly, it consumes a lot of fuel.
Manufacturing costs are high. Furthermore, since oxide scale is formed on the surface of the material after heating, the oxide scale sinks into the material during die forging. In addition, when a heated material is forged by applying a die to it, the material deforms along the die, but if oxide scale forms on the surface of the material, this creates frictional resistance during deformation, reducing forging efficiency. do. Therefore, the heating-forging process has to be repeated, which increases costs. For this reason, it is conceivable to remove the oxidized scale by shot blasting, pickling, etc. before reheating, but in this case as well, the same problem occurs because it is generated again during heating. In particular, the oxide scale that forms on the surface of special steel used as turbine blade material contains oxides such as chromium and aluminum, and is dense and has good adhesion to the surface material, making it difficult to remove. . For this reason, the surface of the material to be heated is coated with glass powder in advance, the material is immersed in molten glass, or the surface of the material is electrically plated with nickel to prevent oxidation during forging. However, the method using glass alone is insufficiently effective. Further, in the electroplating method, it is possible to perform the treatment before heating, but as heating and forging are repeated, a part of the plating layer tends to disappear in areas where the amount of plastic deformation is large, and oxide scale is likely to be generated. For this reason, in the electroplating method, it is necessary to increase the electroplating thickness to prevent this, which has the disadvantage of increasing processing cost. The present invention was made in view of the above circumstances, and
The objective is to prevent the oxidation of the material at a low cost during hot plastic processing during forging, reduce the number of processing times, and form a corrosion-resistant film with good adhesion on the surface of the material. The purpose is to obtain a method for hot plastic working of materials. That is, the present invention is a method characterized in that nickel or nickel alloy is coated on the surface of a metal material in advance, glass coating is applied thereon, and then hot plastic working is carried out. The method of the present invention will be explained in detail below. First, the metal materials that can be applied to the method of the present invention include heat-resistant steels, heat-resistant alloys, and other materials that undergo hot plastic working, such as main parts (moving and stationary blades) and accessories of steam turbines, gas turbines, compressors, blowers, etc. Hot die forged products, rolled products used in equipment,
Examples include extruded products and drawn products. In the present invention, the surface of this metal material is first cleaned according to a conventional method and then coated with nickel or a nickel alloy. As the nickel alloy, boron-containing nickel is preferred. Further, the coating method may be a method of first plating and then thermal spraying, or a method of coating only by plating or thermal spraying alone. After this coating, glass coating is performed. Glass coating methods include spraying glass powder onto the surface and heating it, or immersing it in molten glass. Next, in the present invention, after the coating is applied in this manner, predetermined hot plastic working, such as repeated heating and forging, is performed. A predetermined workpiece is obtained by this treatment. However, according to the present invention, since a coating layer of nickel or nickel alloy and a glass coating layer are formed on the surface of the material, the contact between the material and air is cut off when heated, and the scale caused by oxidation of the material is reduced. There is no generation. In other words, a coating layer of nickel or nickel alloy alone cannot avoid the formation of a certain amount of oxide scale during heating;
Since the top layer is coated with a glass layer, the oxidation reaction is suppressed. In particular, the coating layer of nickel or nickel alloy obtained by thermal spraying is generally porous, so if this layer alone is heated, oxidation of the material will occur, but this can be prevented by applying a glass coating. This can be prevented by filling the pores in the sprayed layer. Therefore, thermal spraying with excellent workability can be fully used for coating nickel or nickel alloys, and coating layers of alloys having various component compositions can be formed as required. Furthermore, as a result of smooth mutual diffusion between nickel or nickel alloy and the material during heating and forging, a metal coating layer with excellent adhesion can be obtained. In addition, since glass is in a molten state, it has very good lubricity and efficiently transmits the impact force during forging to the material, resulting in a high processing rate. In addition, due to its excellent lubricity, there is little wear and tear on the forging die, allowing it to be used for a long period of time. Further, the glass in the molten state closely follows the deformation of the material due to forging and always coats the surface of the material, so that the above-mentioned effects can be maintained effectively. Furthermore, glass can be added as appropriate when repeating heating and forging, and can be easily removed from the processed surface (material surface) when the material is cooled after forging. Next, examples of the present invention will be described. Example 1 As a metal material, 17% of diameter 60mm and length 500mm
Using Cr-4%Ni steel, foreign substances such as oxide scale, rust, and oil on the surface of this material are removed by ordinary surface purification methods such as pickling, alkaline degreasing, and water washing, and then 240 g of nickel chloride and hydrochloric acid are used. 120g/
After plating for 2 to 5 minutes in a plating solution containing nickel sulfate 240 g/nickel chloride 45
g/, energized in a plating solution of 35 g/boric acid,
It was processed so that the nickel coating thickness was 10 μm. The above type of plating is usually called strike plating, and when nickel plating is applied to special steel, it is carried out to improve the adhesion with the special steel and the latter nickel plating. Next, the material after plating is lightly shot blasted, and then pure nickel or 4.5% boron-containing nickel is used as a spraying material using a plasma spraying machine.
150~200μ sprayed. Glass powder was then sprayed onto it, heated in an electric furnace at 1200°C for 30 minutes, and then forged in a turbine blade-shaped mold. Approximately 900 forged materials
Once cooled to 1200°C, the process was repeated by heating it again to 1200°C in an electric furnace and applying die forging again. The glass powder was coated each time the hot forging was repeated. The results are shown in Table 2. For comparison, Table 2 also shows the results of a conventional method in which the material was shot blasted and then heated and forged repeatedly.

【表】 上表から上記実施例によれば、素材の酸化スケ
ールの生成が防止されるため加熱−鍛造の回数が
少くなり、これに要する経費が軽減される。また
鍛造後の表面が平滑で翼上げ作業が容易である。
また鍛造後の表面にニツケルと素材との相互拡散
層を含むニツケルコーテイング層を生成している
ので耐食性が向上し、タービン翼としての仕上加
工中はもとより、組立、試運転などの期間中にも
さびるようなことはない。 とくに溶射材として硼素を含むニツケル合金を
用いた場合、この合金は加熱時に半溶融乃至溶融
状態となるので、素材の酸化防止作用及びニツケ
ル層と素材との相互拡散作用が大きく、上述した
効果が著しい。例えば純ニツケルの融点は1453℃
であるが、4%硼素で約1140℃、12%硼素で約
1100℃、13%硼素で約990℃である。 実施例 2 金属素材として直径60mm、長さ500mmの12%Cr
鋼を用い、この表面の酸化スケール、さび、油な
どの異物をワイヤブラシ、アルカリ液で除去した
後シヨツトブラストし、次いで1.5%硼素含有ニ
ツケル合金をプラズマ溶射機によつて約200μm
厚にコーテイングした。その後その上にガラス粉
を吹付け、電気炉中で1200℃×30分加熱し、ター
ビン翼形状の金型上で鍛造した。 この場合、実施例1における含硼素ニツケルを
溶射材とした場合と同様の結果が得られた。 実施例 3 金属素材として直径60mm、長さ500mmの17%Cr
−4%Ni鋼を用い、この表面の酸化スケール、
さび、油などの異物を酸洗、アルカリ脱脂および
水洗などの通常の表面浄化方法によつて除去した
後、実施例1と同じ方法で電気メツキして20μm
厚のコーテイング層を形成した。その後その上に
ガラス粉を吹付け電気炉中で1200℃×30分加熱
し、鍛造加工した。 この場合、実施例1と同様の優れた結果が得ら
れた。 以上説明した如く、本発明によれば、ニツケル
又はニツケル合金のコーテイング層と、ガラスコ
ーテイング層とを形成してから熱間塑性加工をお
こなうので、酸化スケールの生成を防止し、又加
工率を高めて加工コストを低減するとともに、密
着性の優れた金属コーテイング層を得ることがで
きるなど顕著な効果を奏する。 なお本発明は、タービン翼の製造に限定され
ず、圧延品、押出品、引抜品などにも十分適用で
きる。
[Table] From the table above, according to the above examples, the number of heating and forging operations is reduced because the formation of oxide scale on the material is prevented, and the cost required for this is reduced. In addition, the surface after forging is smooth, making it easy to lift the blades.
In addition, a nickel coating layer containing an interdiffusion layer between nickel and the raw material is formed on the surface after forging, which improves corrosion resistance and prevents rusting not only during finishing as a turbine blade, but also during assembly, trial operation, etc. There is no such thing. In particular, when a nickel alloy containing boron is used as a thermal spraying material, this alloy becomes semi-molten or molten when heated, so the oxidation prevention effect of the material and the mutual diffusion effect between the nickel layer and the material are large, and the above-mentioned effects are Significant. For example, the melting point of pure nickel is 1453℃
However, for 4% boron it is about 1140℃, and for 12% boron it is about 1140℃.
1100℃, about 990℃ with 13% boron. Example 2 12% Cr with a diameter of 60 mm and a length of 500 mm as a metal material
Using steel, remove foreign matter such as oxide scale, rust, and oil from the surface using a wire brush and alkaline solution, then shot blasting, and then apply a 1.5% boron-containing nickel alloy to approximately 200 μm using a plasma spray machine.
Thickly coated. Glass powder was then sprayed onto it, heated in an electric furnace at 1200°C for 30 minutes, and then forged in a turbine blade-shaped mold. In this case, the same results as in Example 1 were obtained when boron-containing nickel was used as the thermal spray material. Example 3 17% Cr with a diameter of 60 mm and a length of 500 mm as a metal material
- Using 4% Ni steel, the oxide scale on this surface,
After removing foreign substances such as rust and oil by ordinary surface purification methods such as pickling, alkaline degreasing, and water washing, electroplating was performed in the same manner as in Example 1 to a thickness of 20 μm.
A thick coating layer was formed. After that, glass powder was sprayed on top of it and heated in an electric furnace at 1200°C for 30 minutes to forge it. In this case, excellent results similar to those of Example 1 were obtained. As explained above, according to the present invention, hot plastic working is performed after forming the nickel or nickel alloy coating layer and the glass coating layer, thereby preventing the formation of oxide scale and increasing the processing rate. This method has remarkable effects, such as reducing processing costs and making it possible to obtain a metal coating layer with excellent adhesion. Note that the present invention is not limited to the production of turbine blades, but can be fully applied to rolled products, extruded products, drawn products, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 金属材料の素材表面にニツケル又はニツケル
合金をコーテイングした後その上にガラスコーテ
イングをおこない、次いで熱間塑性加工すること
を特徴とする金属材料の熱間塑性加工方法。
1. A method for hot plastic working of metal materials, which comprises coating the surface of the metal material with nickel or a nickel alloy, then applying glass coating thereon, and then hot plastic working.
JP9461281A 1981-06-19 1981-06-19 Hot plastic working method for metallic material Granted JPS57209735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9461281A JPS57209735A (en) 1981-06-19 1981-06-19 Hot plastic working method for metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9461281A JPS57209735A (en) 1981-06-19 1981-06-19 Hot plastic working method for metallic material

Publications (2)

Publication Number Publication Date
JPS57209735A JPS57209735A (en) 1982-12-23
JPS6160731B2 true JPS6160731B2 (en) 1986-12-22

Family

ID=14115063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9461281A Granted JPS57209735A (en) 1981-06-19 1981-06-19 Hot plastic working method for metallic material

Country Status (1)

Country Link
JP (1) JPS57209735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182776A (en) * 2006-01-05 2007-07-19 Hitachi Ltd Turbine blade and method for repairing turbine blade
US10993604B2 (en) 2017-06-16 2021-05-04 avateramedical GmBH Camera objective lens for an endoscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045434B2 (en) * 2013-04-26 2016-12-14 株式会社神戸製鋼所 Hot forging method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182776A (en) * 2006-01-05 2007-07-19 Hitachi Ltd Turbine blade and method for repairing turbine blade
US10993604B2 (en) 2017-06-16 2021-05-04 avateramedical GmBH Camera objective lens for an endoscope

Also Published As

Publication number Publication date
JPS57209735A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
CN104235517B (en) A kind of corrosion-resistant titanium-steel pipe and preparation method thereof
US6863738B2 (en) Method for removing oxides and coatings from a substrate
JP4460252B2 (en) Cobalt-based alloy for coating equipment subject to erosion by liquid, and method of applying and treating the cobalt-based alloy on the surface of equipment
US2970065A (en) Forming an aluminum-containing alloy protective layer on metals
US20030033702A1 (en) Restoration of thickness to load-bearing gas turbine engine components
US5248381A (en) Etch solution and associated process for removal of protective metal layers and reaction deposits on turbine blades
US10081877B2 (en) Method for the electroplating of TiAl alloys
JPS6160731B2 (en)
US5120613A (en) Pocess for increasing the resistance to corrosion and erosion of a vane of a rotating heat engine
CN113333655A (en) Fine wire for high-temperature alloy GH2132 cold heading and preparation method thereof
CN103834896A (en) Continuous casting crystallizer long-side copper plate coating thermal spraying method
JP2008174786A (en) Method for forming thermal spray coating, and device for high speed thermal flame spraying
EP3054095B1 (en) Steam turbine and surface treatment method therefor
CN113732101B (en) Fine wire for high-temperature alloy GH4080A cold heading and preparation method thereof
US10590800B2 (en) Method for selective aluminide diffusion coating removal
CN106282906A (en) A kind of rustless steel resistance and fingerprint resistance surface treatment method
JPH05271996A (en) Surface treatment of magnesium alloy material
EP3404125A1 (en) Coating for a nickel-base superalloy
JPH06256886A (en) Ti alloy member excellent in wear resistance and its production
CN111893417B (en) Preparation method of anti-ablation coating of titanium alloy gun barrel
JP2931384B2 (en) Continuous casting roll with excellent heat crack resistance
CN100430529C (en) Insulating paint for processing deep hole electrode through electrolyzation
JPH01283388A (en) Blast material and highly corrosion-resistant metallic material and their production
RU2200211C2 (en) Method of removal of coats from parts made from heat-resistant alloys
JPS59153506A (en) Manufacture of guide shoe used for manufacturing seamless pipe excellent in wear-and-seizure-resistant properties