JPS6160649B2 - - Google Patents

Info

Publication number
JPS6160649B2
JPS6160649B2 JP52063012A JP6301277A JPS6160649B2 JP S6160649 B2 JPS6160649 B2 JP S6160649B2 JP 52063012 A JP52063012 A JP 52063012A JP 6301277 A JP6301277 A JP 6301277A JP S6160649 B2 JPS6160649 B2 JP S6160649B2
Authority
JP
Japan
Prior art keywords
power transmission
value
transmission line
traveling wave
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52063012A
Other languages
Japanese (ja)
Other versions
JPS53147948A (en
Inventor
Yoshiji Nii
Shizuka Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP6301277A priority Critical patent/JPS53147948A/en
Publication of JPS53147948A publication Critical patent/JPS53147948A/en
Publication of JPS6160649B2 publication Critical patent/JPS6160649B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は、送電線の進行波の伝搬に着目して
送電線を保護する保護継電装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a protective relay device that protects power transmission lines by focusing on the propagation of traveling waves in power transmission lines.

電力系統において、同一時刻にサンプリングし
た電圧・電流をマイクロ波回線などによりお互い
にこれらデイジタルデータを伝送し合い、二端子
区間については電流差動あるいは位相比較を行な
うデイジタル保護継電装置がすでに提案されてい
る。従来この種の装置では系統電圧・電流をアナ
ログフイルタを介して基本波成分を取り出して導
入し、アナログデジタル変換の後上記電流差動演
算や位相比較演算を実行し保護判定を行なつてい
る。
In power systems, digital protective relay devices have already been proposed that transmit digital data of voltages and currents sampled at the same time to each other via microwave lines, and perform current differential or phase comparison between two terminals. ing. Conventionally, in this type of device, the fundamental wave component of the system voltage and current is extracted and introduced through an analog filter, and after analog-to-digital conversion, the above-mentioned current differential calculation and phase comparison calculation are performed to make a protection determination.

さて、従来のデイジタル保護方式は次のような
欠点があつた。上記したように従来方式は基本波
成分に関する理論と、送電線は集中定数回路で表
現されるという前提に基づいているため、系統事
故時あるいは開閉器の操作などに伴なう過渡現象
が発生した時、過渡状態から定常状態に移行する
過程で保護装置が誤動作したり、誤不動作するこ
とが少なくなく、またこのために設けた時間遅れ
特性により動作時間が長くなるという欠点を有し
ていた。
Now, conventional digital protection methods have the following drawbacks. As mentioned above, the conventional method is based on the theory of fundamental wave components and the premise that power transmission lines are represented by lumped constant circuits, so transient phenomena occur during system faults or switch operation. During the transition from a transient state to a steady state, the protective device often malfunctions or malfunctions, and the time delay characteristic provided for this purpose has the disadvantage of prolonging the operating time. .

最近、従来型装置の上記2つの前提のいずれを
もすて去り、進行波の伝搬に着目して常に系統電
圧・電流の原波形の計測値を導入し、また送電線
を分布定数回路で考慮することにより、送電線保
護における従来の欠点をすべて克服する保護継電
装置が提案されるようになつて来た。
Recently, we have abandoned both of the above two assumptions of conventional equipment, focused on the propagation of traveling waves, and always introduced measured values of the original waveforms of grid voltage and current, and also considered power transmission lines using distributed constant circuits. As a result, protective relay devices have been proposed that overcome all of the conventional drawbacks in power transmission line protection.

第1図はこの発明の基本となる進行波の伝搬原
理を導くための2端子送電線をあらわしている。
第1図において送電線は単位長当りl、cのイン
ダクタンス、キヤパシタンスをもつ分布定数回路
で示されており、e1(t),i1(t),ex(t),ix
(t),e2(t),i2(t)はそれぞれ時刻tにお
ける端子1の電圧・電流、端子1から距離xの地
点の電圧・電流及び端子2の電圧・電流であり、
dは両端間の距離である。分布系の理論によれ
ば、ex(t),ix(t)は −∂ex(t)/∂x=l∂ix(t)/∂t (1) −∂ix(t)/∂x=c∂ex(t)/∂t (2) で結合される。(1)、(2)の方程式の解はすでに知ら
れており、 ex(t)=F(t−x/v)+f(t+x/v) (3) ix(t)=1/z{F(t−x/v)−f(t+x/v
)} (4) v=1/〓lc、サーージ伝搬速度 z=√、サージインピーダンス で与えられる。F(t−x/v)は端子1から端子2 へ進む進行波であり、前進波と称される。一方、
f(t+x/v)は端子2から端子1へ進む進行波で あり後進波と称される。
FIG. 1 shows a two-terminal power transmission line for introducing the traveling wave propagation principle that is the basis of this invention.
In Figure 1, the power transmission line is shown as a distributed constant circuit with inductance and capacitance of l and c per unit length, e 1 (t), i 1 (t), ex (t), ix
(t), e 2 (t), i 2 (t) are the voltage and current at terminal 1 at time t, the voltage and current at a distance x from terminal 1, and the voltage and current at terminal 2, respectively,
d is the distance between the two ends. According to the theory of distribution systems, ex(t), ix(t) are −∂ex(t)/∂x=l∂ix(t)/∂t (1) −∂ix(t)/∂x= They are combined by c∂ex(t)/∂t (2). The solutions of equations (1) and (2) are already known, ex(t)=F(t-x/v)+f(t+x/v) (3) ix(t)=1/z{F (t-x/v)-f(t+x/v
)} (4) v=1/〓lc, surge propagation speed z=√, given by surge impedance. F(t-x/v) is a traveling wave traveling from terminal 1 to terminal 2, and is called a forward wave. on the other hand,
f(t+x/v) is a traveling wave traveling from terminal 2 to terminal 1, and is called a backward wave.

式(3)、(4)から明らかなように、各地点での前進
波F後進波fは各地点での電圧及び電流の計測値
から求められる。
As is clear from equations (3) and (4), the forward wave F and backward wave f at each point are determined from the measured values of voltage and current at each point.

ここで(3)+z×(4)、(3)−z×(4)を求めると、 ex(t)+zix(t)=2F(t−x/v) (5) ex(t)−zix(t)=2f(t+x/v) (6) が得られる。 Here, if we calculate (3)+z×(4) and (3)−z×(4), e x (t)+zi x (t)=2F(t-x/v) (5) e x (t )−zi x (t)=2f(t+x/v) (6) is obtained.

式(5)から次式が求められる。 The following equation can be obtained from equation (5).

e1=(t−τ)+zi1(t−τ) =2F(t−τ) (7) e2(t)−zi2(t)=2F(t−τ) (8) τ=d/v サージ伝搬時間 i1,i2は端子1,2から流入する方向を正とす
る。式(6)からは次式が求められる。
e 1 = (t - τ) + zi 1 (t - τ) = 2F (t - τ) (7) e 2 (t) - zi 2 (t) = 2F (t - τ) (8) τ = d/ v For the surge propagation times i 1 and i 2 , the direction flowing from terminals 1 and 2 is positive. The following equation can be obtained from equation (6).

e1(t)−zi1(t)=2f(t) (9) e2(t−τ)+zi2(t−τ)=2f(t) (10) i1,i2は端子1,2から流入する方向を正とす
る。
e 1 (t)−zi 1 (t)=2f(t) (9) e 2 (t−τ)+zi 2 (t−τ)=2f(t) (10) i 1 and i 2 are terminal 1, The direction flowing from 2 is positive.

従つて、式(7)、(8)、(9)、(10)から端子1,2の電
圧電流に関して e1(t−τ)+zi1(t−τ)=e2(t) −zi2(t) (11) e1(t)−zi1(t)=e2(t−τ) +zi2(t−τ) (12) の関係式が成立する。式(11)は端子1の前進波Fが
サージ伝搬時間τ後には端子2に達することを意
味する。式(12)は端子2の後進波fがサージ伝搬時
間τ後には端子1に達することを意味する。
Therefore, from equations (7), (8), (9), and (10), regarding the voltage and current of terminals 1 and 2, e 1 (t-τ) + zi 1 (t-τ) = e 2 (t) - zi 2 (t) (11) e 1 (t)−zi 1 (t)=e 2 (t−τ) +zi 2 (t−τ) (12) The following relational expression holds true. Equation (11) means that the forward wave F at terminal 1 reaches terminal 2 after the surge propagation time τ. Equation (12) means that the backward wave f at terminal 2 reaches terminal 1 after the surge propagation time τ.

(11)、(12)の関係式は送電線内部に事故などの異常
が発生しない限り常に成立し、内部に事故が発生
したときのみ不成立となるから、保護を目的とす
る内部事故判定に有効なものである。
The relational expressions (11) and (12) always hold true unless an abnormality such as an accident occurs inside the power transmission line, and only fail when an accident occurs inside the transmission line, so they are effective for determining internal accidents for the purpose of protection. It is something.

しかも(11)、(12)の関係式は過渡現象時にも成立す
るから、過渡現象時にも系統の保護がおこなえる
ことになり、従来の保護継電装置の問題点を克服
できる。
Furthermore, since the relational expressions (11) and (12) hold true even during transient phenomena, the system can be protected even during transient phenomena, and the problems of conventional protective relay devices can be overcome.

ところで、上記の原理に基づく保護継電装置
は、送電線の一端から進入した進行波はサージ伝
搬時間後に他端へ達する事を利用するものである
から、必ず送電線の両端において、電圧及び電流
の計測値から前進波Fあるいは後進波fを求めな
ければならない。そのため、複数の送電線からな
る送電線網を保護対象とする場合は、各送電線の
端子のすべてにおいて電圧及び電流を測定する事
を要する。
By the way, the protective relay device based on the above principle utilizes the fact that a traveling wave entering from one end of a power transmission line reaches the other end after a surge propagation time, so the voltage and current must be maintained at both ends of the power transmission line. The forward wave F or the backward wave f must be determined from the measured value of . Therefore, when a power transmission line network consisting of multiple power lines is to be protected, it is necessary to measure the voltage and current at all terminals of each power line.

もし、被保護送電線網の内部の端子で電圧及び
電流を計測しなくて済ますことができれば、その
端子の計測装置および情報伝送装置を省略できる
から経済的である。
If it were possible to eliminate the need to measure voltage and current at terminals inside the protected power transmission line network, it would be economical because the measurement device and information transmission device for that terminal could be omitted.

この発明は、上記の観点に基づいてなされたも
ので、送電線網に含まれる端子のうち、進行波が
外部から送電線網内に流入する端子および進行波
が送電線網内から外部へ流出する端子(以下外部
端子と称する)とにおいてだけ進行波を計測する
ことによつて送電線網の内部の端子(以下内部端
子と称する)における進行波の計測を省略して保
護継電装置の構成を簡単化することを目的として
いる。
The present invention has been made based on the above-mentioned viewpoints, and among the terminals included in the power transmission line network, traveling waves flow into the power transmission line network from outside, and traveling waves flow out from the power transmission line network to the outside. By measuring the traveling waves only at the terminals (hereinafter referred to as external terminals) that are connected to the transmission line, the measurement of traveling waves at the terminals inside the power transmission line network (hereinafter referred to as internal terminals) is omitted, and the protective relay device is configured. The purpose is to simplify.

この発明では、進行波を計測する外部端子にお
いて、計測値と推定値とを比較し、両者の差が所
定値以上であるときは、送電線網の内部で事故が
発生したものと判断する。
In this invention, the measured value and the estimated value are compared at the external terminal that measures the traveling wave, and if the difference between the two is greater than or equal to a predetermined value, it is determined that an accident has occurred within the power transmission network.

送電線網に含まれるすべての送電線のサージイ
ンピーダンスが既知であれば、送電線網内部の送
電線同志の接続点(内部端子)における進行波の
透過係数と反射係数は予め求められる。外部端子
から送電線網内へ進入した進行波は、内部端子に
て反射、透過を繰り返しながら送電線網のすべて
の外部端子に達して送電線網から流出する。
If the surge impedance of all the power transmission lines included in the power transmission line network is known, the transmission coefficient and reflection coefficient of traveling waves at the connection points (internal terminals) between the power transmission lines inside the power transmission line network can be determined in advance. The traveling wave that enters the power transmission network from the external terminal reaches all the external terminals of the power transmission network while repeating reflection and transmission at the internal terminals, and flows out from the power transmission network.

従つて、ある外部端子から流出する進行波の値
は、内部端子における透過係数、反射係数と各外
部端子における所定時間前(この所定時間は各外
部端子毎に異なる)の進行波の計測値から、計算
によつて推定できる。そして送電線網内に故障が
なければ推定値は実測値と一致するはずである。
Therefore, the value of the traveling wave flowing out from a certain external terminal is calculated from the transmission coefficient and reflection coefficient at the internal terminal and the measured value of the traveling wave at each external terminal a predetermined time ago (this predetermined time is different for each external terminal). , can be estimated by calculation. If there is no fault in the power transmission network, the estimated value should match the actual value.

第2図に4端子送電線を示して上記原理を説明
する。
The above principle will be explained by showing a four-terminal power transmission line in FIG.

第2図において、Lは進行波の計測点のない送
電線、L1,L2,L3,L4は進行波の計測点のある
送電線、1,2,3,4は上記送電線L1,L2
L3,L4の外部端子であるとともに進行波の計測
点、X,Yは送電線Lの両端子である内部端子、
τ,τ,τ,τ,τはそれぞれ上記送電
線L1,L2,L3,L4,Lのサージ伝搬時間、F1
F2,F3,F4は端子1,2,3,4から流入する
前進波である。ここで端子1,2,3,4内の送
電線全体を保護対象と考え、送電線L1,L2
L3,L4,Lで形成される送電線網のいづれかに
発生した内部故障を検出する方法について説明す
る。
In Figure 2, L is a transmission line without a traveling wave measurement point, L 1 , L 2 , L 3 , and L 4 are transmission lines with a traveling wave measurement point, and 1, 2, 3, and 4 are the above transmission lines. L 1 , L 2 ,
L 3 and L 4 are external terminals as well as traveling wave measurement points, X and Y are internal terminals that are both terminals of power transmission line L,
τ 1 , τ 2 , τ 3 , τ 4 , τ are the surge propagation times of the above power transmission lines L 1 , L 2 , L 3 , L 4 , L, respectively, F 1 ,
F 2 , F 3 , and F 4 are forward waves flowing from terminals 1, 2, 3, and 4. Here, the entire power transmission line inside terminals 1, 2, 3, and 4 is considered to be protected, and the power transmission lines L 1 , L 2 ,
A method for detecting an internal failure occurring in any one of the power transmission line networks formed by L 3 , L 4 , and L will be described.

図示のように送電線Lの各端から流出する向き
の進行波を後進波fx,fy、流入する向きの進行波
を前進波Fx,Fyとすればfx,fyは次式から求め
られる。
As shown in the figure, if the traveling waves flowing out from each end of the power transmission line L are backward waves fx, fy, and the traveling waves flowing in the direction are forward waves Fx, Fy, then fx, fy can be obtained from the following equations.

X(t)=αYY(t−τ)+β3F3(t−τ−τ)+β4F4(t−τ−τ) ……(13) fY(t)=αXX(t−τ)+β1F1(t−τ−τ)+β2F2(t−τ−τ) ……(14) ここでαX,αYは内部端子X,Yにおけるf
X,fYの反射係数であり、αXは送電線L1,L2
Lのサージインピーダンスから、αYは送電線
L3,L4,Lのサージインピーダンスから求めら
れる。β,β,β,βはそれぞれ前進波
F1,F2,F3,F4について送電線L1,L2,L3,L4
から送電線Lへの透過係数である。式(13)は送
電線L,L3,L4が健全であるとき成立し、式
(14)は送電線L,L1,L2が健全であるとき成立
する。
f _ _ _ _ _ _ _ _ _ α X f _ _ _ _ _ _ _ f in Y
is the reflection coefficient of X , f Y , and α X is the reflection coefficient of transmission lines L 1 , L 2 ,
From the surge impedance of L, α Y is the transmission line
It is determined from the surge impedance of L 3 , L 4 , and L. β 1 , β 2 , β 3 , β 4 are forward waves, respectively.
Transmission lines L 1 , L 2 , L 3 , L 4 for F 1 , F 2 , F 3 , F 4
It is the transmission coefficient from to the power transmission line L. Equation (13) is established when the power transmission lines L, L 3 and L 4 are healthy, and expression (14) is established when the power transmission lines L, L 1 and L 2 are healthy.

式(13)、(14)において、F1,F2,F3,F4
計測可能であるからfX,fYの初期値が求まれば
その後のfXYが演算によつて求められる。
In equations (13) and (14 ) , F 1 , F 2 , F 3 , and F 4 are measurable, so if the initial values of f Desired.

いま、上記各送電線L1,L2,L3,L4,Lは最
初は無充電であり、時刻t=0で充電が開始され
るものと考える。時刻t=τのfX,fYを求める
と、 fX(τ)=αYY(0)+β3F3(−τ)+β4F4(−τ) (15) fY(τ)=αXX(0)+β1F1(−τ)+β2F2(−τ) (16) が得られるが、右辺の各項はすべて零であるか
ら、fX(τ),fY(τ)も零である。
Now, it is assumed that the power transmission lines L 1 , L 2 , L 3 , L 4 , and L are initially uncharged, and charging starts at time t=0. Calculating f X and f Y at time t = τ , f ( τ ) = α X f _ _ (τ) and f Y (τ) are also zero.

次に時刻t=2τのfX,fYを求めると次式を
得る。
Next, when f X and f Y at time t=2τ are determined, the following equation is obtained.

X(2τ)=αYY(τ)+β3F3(τ−τ)+β4F4(τ−τ) (17) fY(2τ)=αXX(τ)+β1F1(τ−τ)+β2F2(τ−τ) (18) 右辺第1項のfX(τ),fY(τ)は上記のよ
うに零である。しかし、τ>τ,τ,τ
τと仮定すれば右辺第2、第3項は零でない値
をとる。ここでfX(2τ),fY(2τ)を便宜
的に初期値とする。右辺第2、第3項のF1(τ
−τ),F2(τ−τ),F3(τ−τ),F4
(τ−τ)は外部端子1,2,3,4で計測さ
れる。
f _ _ _ _ _ _ _ _ _ _ _ 1 F 1 (τ−τ 1 )+β 2 F 2 (τ−τ 2 ) (18) The first term on the right side, f X (τ) and f Y (τ), are zero as described above. However, τ>τ 1 , τ 2 , τ 3 ,
Assuming that τ 4 , the second and third terms on the right side take non-zero values. Here, f X (2τ) and f Y (2τ) are set as initial values for convenience. F 1
−τ 1 ), F 2 (τ−τ 2 ), F 3 (τ−τ 3 ), F 4
(τ−τ 4 ) is measured at external terminals 1, 2, 3, and 4.

次に時刻t=3τでのfX,fYを求めると次式
を得る。
Next, when f X and f Y at time t=3τ are determined, the following equations are obtained.

X(3τ)=αYY(2τ)+β3F3(2τ−τ)+β4F4(2τ−τ) (19) fY(3τ)=αXX(2τ)+β1F1(2τ−τ)+β2F2(2τ−τ) (20) 右辺第1項のfX(2τ),fY(2τ)は式
(17)(18)から求められ、一方、右辺第2、第3
項は各外部端子1,2,3,4で計測される。
f _ _ _ _ _ _ _ _ _ _ _ 1 F 1 (2τ−τ 1 )+β 2 F 2 (2τ−τ 2 ) (20) The first term on the right side, f X (2τ) and f Y (2τ), are obtained from equations (17) and (18), On the other hand, the second and third
The term is measured at each external terminal 1, 2, 3, 4.

以上のようにして、計測点ではない内部端子
X,Yの後進波fX(nτ),fY(nτ)が求め
られる。すなわち、 fX(nτ)=αYY{(n−1)τ}+β3F3{(n−1)τ−τ}+β4F4{(n −1)τ−τ} (21) fY(nτ)=αXX{(n−1)τ}+β1F1{(n−1)τ−τ}+β2F2{(n −1)τ−τ} (22) からfX(nτ),fY(nτ)が演算される。式
(21)は送電線L,L3,L4が所定期間健全であれ
ば成立する。もし、時刻(n−1)τからnτま
での間に送電線Lに故障が発生するか、時刻(n
−1)τ−τから(n−1)τまでの間に送電
線L3に故障が発生するか、または時刻(n−
1)τ−τから(n−1)τまでの間に送電線
L4に故障が発生すると式(21)は成立しなくな
る。式(21)の演算は、右辺の各項が求まれば行
うことができる。右辺第2、3項は外部端子3,
4での実測値から直接に求めることができるが、
右辺第1項については式(22)による前回の演算
値fy{(n−1)τ}を使用しなくてはならず、
y{(n−1)τ}の演算には外部端子1,2で
の実測値が必要である。
In the above manner, the backward waves f X (nτ) and f Y (nτ) of the internal terminals X and Y, which are not measurement points, are obtained. That is , f _ _ _ _ _ (21) f Y ( ) = α X f } (22) f X (nτ) and f Y (nτ) are calculated. Equation (21) holds true if the power transmission lines L, L 3 , and L 4 are healthy for a predetermined period of time. If a failure occurs in the power transmission line L between time (n-1)τ and nτ, or time (n
−1) A failure occurs in the transmission line L 3 between τ−τ 3 and (n−1)τ, or a failure occurs at time (n−1) τ
1) Power transmission line between τ-τ 4 and (n-1)τ
If a failure occurs in L 4 , equation (21) no longer holds true. The calculation of equation (21) can be performed if each term on the right side is found. The second and third terms on the right side are external terminals 3,
It can be determined directly from the measured value in 4, but
For the first term on the right side, the previous calculated value f y {(n-1)τ} according to equation (22) must be used,
The calculation of f y {(n-1)τ} requires actual measured values at external terminals 1 and 2.

従つて式(21)を演算するためには、外部端子
1,2,3,4の過去のすべての実測値が必要で
ある。式(22)の演算についても同様である。
Therefore, in order to calculate equation (21), all past measured values of external terminals 1, 2, 3, and 4 are required. The same applies to the calculation of equation (22).

上記説明ではτ>τ,τ,τ,τと仮
定したがこの関係が成立しないときでもKτ>τ
,τ,τ,τとなる整数Kが存在するは
ずであるから、fX{(K+1)τ}、fY{(K+
1)τ}を初期値と考えればよい。
In the above explanation, it was assumed that τ>τ 1 , τ 2 , τ 3 , τ 4 , but even when this relationship does not hold, Kτ>τ
1 , τ 2 , τ 3 , τ 4 must exist, so f X {(K+1)τ}, f Y {(K+
1) τ} may be considered as the initial value.

上記のようにして計測点のない送電線Lの内部
端子X,Yの後進波fX,fYが求められるから、
これから各外部端子1,2,3,4から流出する
後進波が演算される。
Since the backward waves f X and f Y of the internal terminals X and Y of the power transmission line L without measurement points are obtained as described above,
From this, backward waves flowing out from each external terminal 1, 2, 3, 4 are calculated.

例えば、外部端子1から任意の時刻tに流出す
る後進波f1(t)の推定値f^(t)は、 f^(t)=αX1F1(t−2τ)+βX1X(t−τ)+βX2F2(t−τ−τ) ……(23) なる関係式から演算される。これを時刻t=nτ
+τについてみると次のようになる。
For example, the estimated value f^ 1 (t) of the backward wave f 1 (t) flowing out from external terminal 1 at an arbitrary time t is f^ 1 (t) = α X1 F 1 (t-2τ 1 ) + β X1 It is calculated from the relational expression f X (t-τ 1 )+β X2 F 2 (t-τ 1 −τ 2 ) (23). At time t=nτ
Looking at +τ 1 , it is as follows.

f^(nτ+τ)=αX1F1(nτ−τ)+βX1X(nτ)+βX2F2(nτ−τ) ……(24) αX1は前進波F1の内部端子Xで反射係数、βX1
は後進波fXの内部端子Xから送電線L1への透過
係数、βX2は前進波F2の内部端子Xから送電線L1
への透過係数である。αX1,βX1,βX2は送電線
L1,L2,Lのサージインピーダンスから求めら
れる定数である。
f ^ 1 (nτ+τ 1 ) = α X1 F 1 ( nτ − τ 1 ) + β X1 f X is the reflection coefficient, β X1
is the transmission coefficient of the backward wave f X from the internal terminal X to the transmission line L 1 , and β
is the transmission coefficient to α X1 , β X1 , β X2 are power transmission lines
This is a constant determined from the surge impedance of L 1 , L 2 , and L.

式(24)の右辺のF1(nτ−τ)およびF2
(nτ−τ)は外部端子1,2の電圧及び電流
の実測値から求められ、fX(nτ)は式(21)
から求められる。fX(nτ)は前述したよう
に、外部端子1,2,3,4の前進波F1,F2
F3,F4の過去のすべての実測値およびfX,fY
の初期値から式(13)、(14)を繰り返して演算す
ることによつて式(21)から求められる。式
(24)によつて求められる外部端子1の後進波の
推定値f^(nτ+τ)は、外部端子1,2,
3,4内の送電線に内部事故がない限り実測値と
一致するからf^(nτ+τ)を実測値と比較
することによつて外部端子1,2,3,4内の送
電線の内部事故を検出することができる。
F 1 (nτ−τ 1 ) and F 2 on the right side of equation (24)
(nτ−τ 2 ) is obtained from the actual measured values of the voltage and current at external terminals 1 and 2, and f X (nτ) is calculated using equation (21)
required from. As mentioned above, f X (nτ) is the forward wave F 1 , F 2 ,
All past measured values of F 3 , F 4 and f X , f Y
It is obtained from equation (21) by repeatedly calculating equations (13) and (14) from the initial value of . The estimated value f^ 1 (nτ+τ 1 ) of the backward wave of external terminal 1 obtained by equation (24) is
As long as there is no internal fault in the transmission lines in external terminals 3 and 4, it will match the measured value, so by comparing f^ 1 (nτ + τ 1 ) with the measured value, Internal accidents can be detected.

すなわち、外部端子1の後進波の実測値をf1
(t)として、 ε(t)=f^(t)−f1(t) (25) なる量を定義すれば、|ε(t)|>Kが成立す
るときは内部事故、|ε(t)|≦Kが成立する
ときは送電線網は健全であると判定できる。ただ
しKは整定値である。
In other words, the actual measured value of the backward wave at external terminal 1 is f 1
(t), if we define the quantity ε(t)=f^ 1 (t)−f 1 (t) (25), when |ε(t)|>K holds, it is an internal accident, |ε When (t)|≦K holds true, it can be determined that the power transmission network is healthy. However, K is a set value.

上記の説明では、Kτ>τ,τ,τ,τ
となる整数Kが存在するはずであるから、fX
{(K+1)τ},fY{(K+1)τ}を初期値と
した。このようにして求めた初期値に基づいて演
算を行う事が最も厳密であるわけであるが、適当
な値に初期値を設定しても演算を何回も繰り返し
て行く事によつて初期値の影響は次第に小さくな
つて行き、最終的には無視できるようになる。こ
れを説明する。
In the above explanation, Kτ>τ 1 , τ 2 , τ 3 , τ
Since there must be an integer K that is 4 , f
{(K+1)τ}, f Y {(K+1)τ} was set as the initial value. It is most accurate to perform calculations based on the initial values obtained in this way, but even if the initial values are set to appropriate values, the initial values can be calculated by repeating the calculations many times. The effect of this will gradually become smaller and eventually become negligible. Let me explain this.

式(14)からfY(t−τ)を求めて式(13)
に代入すると次式を得る。
Find f Y (t-τ) from equation (14) and use equation (13)
Substituting into , we get the following equation.

X(t)=αXαYX1t−2τ)+αYβ1F1(t−2τ−τ)+αYβ2F2(t −2τ−τ)+β3F3(t−τ−τ)+β4F4(t−τ−τ) ……(26) tに代えてt−2τを代入すれば次式を得る。 f X ( t ) = α X α Y f _ _ _ _ (t−τ−τ 3 )+β 4 F 4 (t−τ−τ 4 ) (26) If t−2τ is substituted for t, the following equation is obtained.

X(t−2τ)=αXαYX(t−4τ)+αYβ1F1(t−4τ−τ)+αYβ2F2(t −4τ−τ)+β3F3(t−3τ−τ)+β4F4(t−3τ−τ) ……(27) 式(27)を式(26)に代入すれば次式を得る。 f X ( t - ) = α X α Y f 3 (t-3τ-τ 3 )+β 4 F 4 (t-3τ-τ 4 ) (27) By substituting equation (27) into equation (26), the following equation is obtained.

X(t)=(αXαY2fX(t−4τ)+αYβ1F1(t−2τ−τ) +αXα β1F1(t−4τ−τ)+αYβ2F2(t−2τ−τ) +αXα β2F2(t−4τ−τ)+β3F3(t−τ−τ)+αXαYβ3F3(t −3τ−τ)+β4F4(t−τ−τ)+αXαYβ4F4(t−3τ−τ) ……(28) このような計算を何回も繰り返して行けば右辺
のfXに関する項は(αXαYnX(t−2nτ)と
なる事がわかる。αX,αYは透過係数であるから
いづれも1より小である。nを十分大きくすれば
(αXαYnはほとんど零となり無視できる程度に
なる。従つて、fXの初期値を適当に設定して
も、計算を何回も繰り返せば式(21)のfX(n
τ)の値は初期値に影響される事なく正確に求め
ることができる。式(22)のfY(nτ)につい
ても同様である。このようにして求めたfX(n
τ)を使用して式(24)の演算を行い式(25)の
判定式に基づいて送電線網が健全であるかどうか
判定できる。
f X ( t ) = ( α X α Y ) 2 f _ )+α Y β 2 F 2 (t-2τ-τ 2 ) +α X α 2 Y β 2 F 2 (t-4τ-τ 2 )+β 3 F 3 (t-τ-τ 3 )+α X α Y β 3 F 3 ( t −3τ − τ 3 ) + β 4 F 4 (t τ − τ 4 ) + α If we repeat , we can see that the term related to f X on the right side becomes (α X α Y ) n f X (t−2nτ). Since α X and α Y are transmission coefficients, both are smaller than 1. If n is made large enough, (α X α Y ) n becomes almost zero and can be ignored. Therefore, even if the initial value of f X is set appropriately, f X (n
The value of τ) can be determined accurately without being influenced by the initial value. The same holds true for f Y (nτ) in equation (22). f X (n
τ) to calculate Equation (24) and determine whether the power transmission network is healthy or not based on Equation (25).

式(26)を行列式で表現すると次式となる。 Expressing equation (26) as a determinant gives the following equation.

式(29)は第2図の送電線網について導かれる
関係であるが、一般の送電線網では次のように考
えることができる。
Equation (29) is a relationship derived for the power transmission line network shown in Figure 2, but for a general power transmission line network, it can be considered as follows.

計測点のない送電線の進行波の時々刻々の値を
ならべた進行波ベクトルを〔GX(t)〕計測点の
ある送電線から計測点のない送電線へ向い進む進
行波ベクトルを〔U(t)〕、計測点のない送電線
の両端間のサージ伝搬時間をτとすれば次式の関
係が成立することが知られている。
The traveling wave vector, which is a list of the momentary values of the traveling waves on a transmission line with no measurement points, is [ G (t)], and it is known that the following relationship holds true if the surge propagation time between both ends of a power transmission line without a measurement point is τ.

〔GX(t)〕=〔A〕〔GX(t−τ)〕 +〔B〕〔U(t−τ)〕 (30) 式(30)において、〔A〕、〔B〕は〔GX(t−
τ)〕および〔U(t−τ)〕の〔GX(t)〕に及
ぼす影響を表わす行列である。式(30)の右辺第
1項は〔GX(t))の初期値の影響を表わす項で
あるが、行列〔A〕の固有値の絶対値の最大値は
1より小であるため、この項は時間の経過に従つ
て式(30)を計算して行くとともに小さくなつて
ゆく。〔GX〕の初期値を適当に設定したとしても
計算を何回も繰り返すと〔GX〕の値は正確に求
まつてゆく。
[G X (t)] = [A] [ G G X (t-
τ)] and [U(t-τ)] on [G x (t)]. The first term on the right side of equation (30) is a term that represents the influence of the initial value of [ G The term becomes smaller as equation (30) is calculated over time. Even if the initial value of [G x ] is set appropriately, if the calculation is repeated many times, the value of [G x ] will be found accurately.

式(29)は式(30)と次のように対応してい
る。
Equation (29) corresponds to equation (30) as follows.

第3図はこの発明に係る保護継電装置の4端子
送電線における一実施例を示すブロツク図であ
る。
FIG. 3 is a block diagram showing an embodiment of the protective relay device according to the present invention in a four-terminal power transmission line.

第3図において、B1,B2,B3,B4はそれぞれ
外部端子1,2,3,4の母線、CTは系統電流
を計測する計器用変流器、PTは系統電圧を計測
する計器用変圧器、11,12,13,14は外
部端子1,2,3,4から流入する前進波を検出
する前進波検出装置、21は外部端子1から流出
する後進波を検出する後進波検出装置、32,3
3,34は送信装置、31は受信装置、5は演算
装置である。他の部分は第2図と同一であるので
説明を省略する。
In Figure 3, B 1 , B 2 , B 3 , and B 4 are the busbars of external terminals 1, 2, 3, and 4, respectively, CT is the instrument current transformer that measures the grid current, and PT is the voltage transformer that measures the grid voltage. An instrument transformer, 11, 12, 13, and 14 are forward wave detection devices for detecting forward waves flowing in from external terminals 1, 2, 3, and 4, and 21 is a backward wave detecting device for detecting backward waves flowing out from external terminal 1. Detection device, 32,3
3 and 34 are transmitting devices, 31 is a receiving device, and 5 is an arithmetic device. Since the other parts are the same as those in FIG. 2, their explanation will be omitted.

次に第3図の保護継電装置の動作について説明
する。
Next, the operation of the protective relay device shown in FIG. 3 will be explained.

前進波検出装置11,12,13,14は各外
部端子の前進波F1,F2,F3,F4を検出する。こ
の前進波の検出は計器用変流器CTおよび計器用
変圧器PTの出力を導入しておこなわれる。後進
波検出装置21は外部端子1の後進波f1を検出す
る。前進波検出装置11,12,13,14、後
進波検出装置21については、サンプルホールド
回路およびアナログデイジタル変換回路を有する
ものを使用し、デイジタル信号に変換された進行
波の検出値を出力するようにしてもよい。外部端
子1では前進波検出装置11、後進波検出装置2
1の出力は演算装置5に入力される。外部端子
2,3,4での前進波の検出値は送信装置32,
33,34によつて外部端子1の受信装置31に
送信される。受信装置31は受信した信号を演算
装置5に出力する。演算装置5は自端および他端
の進行波の計測値に基づいて式(21)、(22)、
(24)の演算を実行して外部端子1の後進波の推
定値f^(t)を求め、次にこの推定値を実測値
と比較して式(25)のε(t)を演算し演算値が
整定値Kより大なるときは外部端子1,2,3,
4内の送電線網の内部事故であると判定してしや
断器(図示せず)にトリツプ信号を送出する。
Forward wave detection devices 11, 12, 13, and 14 detect forward waves F 1 , F 2 , F 3 , and F 4 at each external terminal. Detection of this forward wave is performed by introducing the outputs of the voltage transformer CT and the voltage transformer PT. The backward wave detection device 21 detects the backward wave f 1 at the external terminal 1 . For the forward wave detection devices 11, 12, 13, 14 and the backward wave detection device 21, devices having a sample-hold circuit and an analog-to-digital conversion circuit are used, and the detection values of the traveling waves converted into digital signals are output. You can also do this. At the external terminal 1, a forward wave detection device 11 and a backward wave detection device 2 are connected.
The output of 1 is input to the arithmetic unit 5. The forward wave detection values at the external terminals 2, 3, and 4 are transmitted to the transmitter 32,
33 and 34 to the receiving device 31 of the external terminal 1. The receiving device 31 outputs the received signal to the arithmetic device 5. The calculation device 5 calculates equations (21), (22), based on the measured values of the traveling waves at the own end and the other end.
Execute the calculation in (24) to obtain the estimated value f^ 1 (t) of the backward wave at external terminal 1, then compare this estimated value with the actual measurement value and calculate ε(t) in equation (25). When the calculated value is greater than the set value K, external terminals 1, 2, 3,
It is determined that there is an internal fault in the power transmission line within the power transmission line 4, and a trip signal is sent to a power disconnector (not shown).

上記のようにこの発明に係る保護継電装置の内
部事故判定の一例として式(25)の関係式を示し
たが、いずれの関係式についてもその基本は、進
行波検出装置が設けられたすべての外部端子の進
行波の計測値と透過係数と反射係数に基づいてあ
る一つの外部端子から流出する進行波の値を演算
して実測値と比較することである。これによつ
て、内部端子X,Yにおいては進行波を検出する
計測装置および計測値を他端に伝送する装置を省
略することができる。
As mentioned above, the relational expression (25) was shown as an example of internal accident determination for the protective relay device according to the present invention, but the basic principle of each relational expression is that The method is to calculate the value of the traveling wave flowing out from one external terminal based on the measured value of the traveling wave of the external terminal, the transmission coefficient, and the reflection coefficient, and compare it with the actual measurement value. This makes it possible to omit a measuring device for detecting a traveling wave and a device for transmitting a measured value to the other end at the internal terminals X and Y.

上記ではこの発明に係る保護継電装置の4端子
送電線網における適用例を説明したが、この発明
は4端子送電線網以外の多端子送電線網について
も同様な効果を発揮することは明らかである。
Although an example of application of the protective relay device according to the present invention to a 4-terminal power transmission line network has been described above, it is clear that the present invention can exert similar effects on multi-terminal power transmission line networks other than 4-terminal power transmission line networks. It is.

上記のようにこの発明に係る保護継電装置は送
電線の進行波の伝搬に着目するとともに、送電線
網の一部の端子において電圧・電流の計測装置お
よび計測情報を伝送する装置を省略できるように
したから、過渡現象時にも系統を確実に保護する
保護継電装置の構成を大巾に簡単化できる。
As described above, the protective relay device according to the present invention focuses on the propagation of traveling waves in power transmission lines, and can omit voltage/current measuring devices and devices for transmitting measurement information at some terminals of the power transmission line network. By doing so, the configuration of the protective relay device that reliably protects the system even during transient phenomena can be greatly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は送電線の進行波の伝搬を示す分布定数
回路図、第2図はこの発明の原理を示す4端子送
電線図、第3図はこの発明に係る保護継電装置の
一実施例を示すブロツク図である。 図において、1,2,3,4,X,Yは送電線
の端子、5は演算装置、11,12,13,14
は前進波検出装置、21は後進波検出装置、31
は受信装置、32,33,34は伝送装置、L,
L1,L2,L3,L4は送電線、CTは計器用変流器、
PTは計器用変圧器、F1,F2,F3,F4,FX,F
Y,fX,fYは進行波である。なお、各図中の同
一符号は同一または相当部分を示す。
Fig. 1 is a distributed constant circuit diagram showing the propagation of traveling waves in a power transmission line, Fig. 2 is a four-terminal power transmission line diagram showing the principle of this invention, and Fig. 3 is an embodiment of a protective relay device according to this invention. FIG. In the figure, 1, 2, 3, 4, X, Y are power transmission line terminals, 5 is an arithmetic unit, 11, 12, 13, 14
21 is a forward wave detection device, 21 is a backward wave detection device, and 31 is a forward wave detection device.
is a receiving device, 32, 33, 34 is a transmitting device, L,
L 1 , L 2 , L 3 , L 4 are power transmission lines, CT is instrument current transformer,
PT is a potential transformer, F 1 , F 2 , F 3 , F 4 , F X , F
Y , fX , and fY are traveling waves. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 複数の送電線から成り各送電線同志を接続す
る内部端子と、各端の送電線を外部電力系統と接
続する外部端子とを有する送電線網を保護するも
のにおいて、上記外部端子のすべてに設けられ当
該端子から送電線に流入する進行波の実測値を検
出する第1の検出装置と、上記外部端子のいづれ
か1つに設けられ当該端子から外部電力系統へ流
出する進行波の実測値を検出する第2の検出装置
と、上記第1の検出装置の各出力と上記内部端子
における進行波の反射係数及び透過係数と各送電
線のサージ伝搬時間に基づき上記内部端子に流入
若しくは内部端子から流出する進行波の推定値を
算出し、この算出値とこの算出値を求めるために
用いた上記諸データとに基づき上記第2の検出装
置を設けた外部端子から流出する進行波の推定値
を演算して、この演算値と上記第2の検出装置の
出力の差が整定値以上であるとき送電線網内部の
事故であることを判定する演算装置とを備えた保
護継電装置。 2 外部端子から送電線に流入する向きの進行波
を、前進波、外部端子から外部電力系統へ流出す
る向きの進行波を後進波とすれば、演算装置のデ
ータである係数は後進波の反射係数と前進波の透
過係数となり、演算装置で算出する内部端子につ
いての推定値は後進波の推定値となることを特徴
とする特許請求の範囲第1項記載の保護継電装
置。
[Scope of Claims] 1. In a system for protecting a power transmission line network consisting of a plurality of power transmission lines and having internal terminals that connect the transmission lines and external terminals that connect the transmission lines at each end to an external power system, A first detection device is provided on all of the external terminals and detects the measured value of the traveling wave flowing into the power transmission line from the terminal, and a first detection device is provided on any one of the external terminals and detects the measured value of the traveling wave flowing from the terminal into the external power system. a second detection device that detects the actual measurement value of the traveling wave; and a second detection device that detects the actual measurement value of the traveling wave; and a second detection device that detects the actual value of the traveling wave; An estimated value of the traveling wave flowing into or flowing out from the internal terminal is calculated, and based on this calculated value and the various data used to obtain the calculated value, the traveling wave flows out from the external terminal provided with the second detection device. Protection comprising a calculation device that calculates an estimated value of a traveling wave and determines that an accident has occurred inside the power transmission line when the difference between this calculation value and the output of the second detection device is equal to or greater than a set value. Relay device. 2 If we assume that the traveling wave flowing in the direction from the external terminal to the power transmission line is the forward wave, and the traveling wave flowing out from the external terminal to the external power system is the backward wave, then the coefficient that is the data of the calculation device is the reflection of the backward wave. 2. The protective relay device according to claim 1, wherein the estimated value for the internal terminal calculated by the arithmetic unit is the estimated value for the backward wave.
JP6301277A 1977-05-30 1977-05-30 Protective relay Granted JPS53147948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6301277A JPS53147948A (en) 1977-05-30 1977-05-30 Protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6301277A JPS53147948A (en) 1977-05-30 1977-05-30 Protective relay

Publications (2)

Publication Number Publication Date
JPS53147948A JPS53147948A (en) 1978-12-23
JPS6160649B2 true JPS6160649B2 (en) 1986-12-22

Family

ID=13216972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6301277A Granted JPS53147948A (en) 1977-05-30 1977-05-30 Protective relay

Country Status (1)

Country Link
JP (1) JPS53147948A (en)

Also Published As

Publication number Publication date
JPS53147948A (en) 1978-12-23

Similar Documents

Publication Publication Date Title
US4731688A (en) Range limitation for a protection device in a power supply network
US4499417A (en) Determining location of faults in power transmission lines
US7283915B2 (en) Method and device of fault location
EP3482472B1 (en) A method and system for locating a fault in a mixed power transmission line
EP1020729B1 (en) Fault detection for power lines
EP0315983B1 (en) Longitudinal differential protection system
WO2000050908A9 (en) Multi-ended fault location system
EP0459522A2 (en) Fault location method for a parallel two-circuit transmission line with N terminals
GB2070869A (en) Detecting faults on transmission lines
CA1056909A (en) Apparatus for localization of a line fault
US6420876B1 (en) Fault location in a medium-voltage network
US4560922A (en) Method for determining the direction of the origin of a disturbance affecting an element of an electrical energy transfer network
EP0464662B1 (en) Method and means for fault location in a multi-terminal network
Javaid et al. High pass filter based traveling wave method for fault location in VSC-Interfaced HVDC system
JPS6327770A (en) Trouble point locating system
JPS6160649B2 (en)
Thomas et al. A novel transmission-line voltage measuring method
JPH0345344B2 (en)
JPH0345343B2 (en)
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JPS58219462A (en) Fault point location system
Jamil et al. Wave propagation in a faulty unbalanced EHV line
JPS6152431B2 (en)
JPH1090341A (en) Method for locating fault point
Baral et al. Directional Comparison Bus Protection Using Partial Operating Current Characteristics