JPS6160641B2 - - Google Patents

Info

Publication number
JPS6160641B2
JPS6160641B2 JP56041717A JP4171781A JPS6160641B2 JP S6160641 B2 JPS6160641 B2 JP S6160641B2 JP 56041717 A JP56041717 A JP 56041717A JP 4171781 A JP4171781 A JP 4171781A JP S6160641 B2 JPS6160641 B2 JP S6160641B2
Authority
JP
Japan
Prior art keywords
vehicle
power source
ground power
motor
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56041717A
Other languages
Japanese (ja)
Other versions
JPS57156601A (en
Inventor
Chuzo Mitomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Denki Seizo KK
Komatsu Ltd
Original Assignee
Toyo Denki Seizo KK
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Denki Seizo KK, Komatsu Ltd filed Critical Toyo Denki Seizo KK
Priority to JP56041717A priority Critical patent/JPS57156601A/en
Publication of JPS57156601A publication Critical patent/JPS57156601A/en
Publication of JPS6160641B2 publication Critical patent/JPS6160641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/02Electric propulsion with power supply external to the vehicle using dc motors
    • B60L9/14Electric propulsion with power supply external to the vehicle using dc motors fed from different kinds of power-supply lines

Description

【発明の詳細な説明】 本発明は電気駆動車両において牽引電動機用電
力を車両搭載の電源設備および地上電源設備より
の架線給電のいずれからも給電走行できるよう構
成したデユアルモード走行車両の制御方式に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for a dual-mode running vehicle configured to be able to supply power for the traction motor in an electric drive vehicle from both the vehicle-mounted power supply equipment and the overhead line power supply from the ground power supply equipment. .

大型建設車両や露天堀鉱山における鉱石や表土
運搬車両においては、車両保守費、運搬コストな
どの低減を目的とし従来の機械的動力伝達機関を
有する機械的走行車両から、ゴムタイヤを有した
電気駆動車両に変化しており、その車両の運搬能
力も120tから320t積程度迄大型化し今後その規模
はますます拡大する方向にある。
For large construction vehicles and vehicles for transporting ore and topsoil in open-pit mines, electrically driven vehicles with rubber tires are being used instead of mechanically driven vehicles with conventional mechanical power transmission engines, with the aim of reducing vehicle maintenance costs and transportation costs. The transportation capacity of these vehicles has also increased from 120 tons to 320 tons, and the scale is expected to further expand in the future.

このような大型走行車両においては従来の機械
式車両では、動力伝達機関の構成が難かしくなる
だけでなく、制動時の吸収すべき運動エネルギー
があまりにも大きくなるため摩擦式の機械的制動
装置が巨大なものとなり、その構成すら難かしく
なるため、車両走行時はエンジンにて発動機を駆
動し変換して得た電力にて、駆動車軸内もしくは
その近傍に分散して配置した複数台の電動機を付
勢して走行せしめ車両制動時は該牽引電動機を発
電機として作用せしめることにより、車両運動エ
ネルギーをブレーキ抵抗器にて熱として発散せし
めるいわゆる発電ブレーキを採用した電気駆動車
が主流をなしている。このような車両を使用する
建設現場や鉱山においては、トロツコや貨車など
による有軌道運搬の概念からオフザロードの概念
を取り入れた大型タイヤを装着した無軌道運搬工
法が主流をなしている。
For such large vehicles, conventional mechanical vehicles are not only difficult to configure the power transmission engine, but also require too much kinetic energy to be absorbed during braking, making it difficult to use friction-type mechanical braking devices. Since it is huge and difficult to configure, when the vehicle is running, the engine drives the motor, and the converted electric power is used to create multiple electric motors distributed within or near the drive axle. The mainstream is electric drive vehicles that employ so-called power-generating brakes, in which the traction motor acts as a generator when the vehicle is braked, and the vehicle's kinetic energy is dissipated as heat by a brake resistor. There is. At construction sites and mines where such vehicles are used, the mainstream is a trackless transportation method using large tires that incorporates the off-the-road concept from tracked transportation using trolleys and freight cars.

これは、従来の有軌道車運搬工法のためのレー
ルや架線敷設の必要もなく、また有軌道車である
がための運搬工法の制約もなく、鉱山におけるマ
イニングプランはその時々の計画により容易に変
更が可能となり、またそのための運搬路建設費用
も安く、かつその時間的制約も少ないなど多くの
特長を有するがためで、近年開発された鉱山では
ほとんど上記の如きオフザロードの概念を取り入
れた運搬工法が採用されている。
This eliminates the need for laying rails and overhead wires for conventional tracked vehicle transportation methods, and there are no restrictions on transportation methods due to tracked vehicles, making mining plans in mines easier depending on the plan at the time. This is because it has many advantages, such as being able to be changed, the cost of constructing a transportation route is low, and there are few time constraints. Most of the mines that have been developed in recent years use the transportation method that incorporates the above-mentioned off-the-road concept. has been adopted.

かかる運搬工法の採用により、鉱山における生
産の効率向上および運搬コストの低減化が可能と
なつた。
By adopting such a transportation method, it has become possible to improve production efficiency in mines and reduce transportation costs.

しかし近年の石油シヨツクに起因する石油コス
トの上昇は、かかる車両の燃費上昇を招き、特に
非産油国における鉱山計画においてその鉱山計画
変更を余儀なくされている面も発生している。こ
のことは、特に中南米やアフリカ等の大規模な水
力発電や石炭等による火力発電が可能な土地にお
いては、この発電電力を使用した鉱石運搬工法は
見逃すことのできない魅力的な工法として注目さ
れている。
However, the recent rise in petroleum costs caused by oil shocks has led to an increase in the fuel efficiency of such vehicles, which has forced changes in mine plans, especially in non-oil producing countries. This means that especially in areas where large-scale hydroelectric power generation or coal-fired power generation is possible, such as in Central and South America and Africa, ore transportation methods that use generated power are attracting attention as an attractive construction method that cannot be overlooked. There is.

かかる見地から、最近このような鉱山におい
て、採石積載場や捨土場においては車両搭載の内
燃機関により発電機を駆動し得た電力(以下原動
発電機と称す)を使用したオフザロードの概念を
取入れた車両システムとし、積車登坂場などのエ
ネルギー多消費場においては、トロリー等を使用
した架線給電により車両走行させるシステムが試
みはじめられている。
From this point of view, recently such mines have adopted an off-the-road concept that uses electric power generated by internal combustion engines mounted on vehicles to drive generators (hereinafter referred to as power generators) at quarry loading yards and dumping sites. At energy-intensive locations such as loading ramps, attempts are being made to develop a system in which vehicles are run using overhead wire power supply using trolleys and the like.

本発明はかかる点に鑑み、車両搭載の電源設備
および地上発電設備よりの架線給電のいずれから
も給電走行できるよう構成したデユアルモード走
行車両の制御方式を提供せんとするものである。
In view of the above, the present invention provides a control system for a dual-mode vehicle configured to be able to run on power supplied from both the vehicle-mounted power supply equipment and the overhead power supply from the ground power generation equipment.

第1図は従来の原動発電機を駆動源とした走行
車両制御の1例を示す回路構成図で、1はデイゼ
ルエンジン、2はデイゼルエンジン1に直結され
た回転界磁型三相交流発電機で、三相交流発電機
2の固定子には電機子巻線3と、交流励磁機4の
界磁5がある。また三相交流発電機2の回転軸に
は交流励磁機4の電機子6と、その交流出力を整
流する整流器7と、整流器7の直流出力で励磁さ
れる主発電機界磁8がある。従つてエンジン回転
中、交流励磁機界磁5を励磁すると電機子巻線3
に三相交流を発生する。9は三相交流発電機2の
出力を直流に変換する三相全波整流装置で、車両
推進時は牽引電動機10,11に並列給電し、制
動時は牽引電動機10,11を他励発電機として
構成し、牽引電動機10,11の界磁14,15
を付勢せしめるのに使用する。牽引電動機10,
11は直流電動機で、12,13は各々の電機
子、14,15は界磁である。かかる構成におい
て、車両推進時は力行用接触器16,17を閉じ
牽引電動機10,11を2台並列に接続し、三相
交流発電機2の出力で並列駆動する。車両制動時
は制動用接触器18,19,22を閉じ電機子1
2,13に発電制動用抵抗器20,21を並列接
続し、また界磁15,14は接触器22を介して
三相交流発電機2の出力で付勢されるよう構成す
る。かかる構成により牽引電動機10,11にて
発電制動を作用させる。
Figure 1 is a circuit configuration diagram showing an example of a conventional vehicle control system using a power generator as a drive source, in which 1 is a diesel engine, and 2 is a rotating field type three-phase AC generator directly connected to the diesel engine 1. The stator of the three-phase alternating current generator 2 includes an armature winding 3 and a field 5 of an alternating current exciter 4. Further, on the rotating shaft of the three-phase AC generator 2, there are an armature 6 of an AC exciter 4, a rectifier 7 for rectifying the AC output thereof, and a main generator field 8 excited by the DC output of the rectifier 7. Therefore, when the AC exciter field 5 is excited while the engine is rotating, the armature winding 3
generates three-phase alternating current. 9 is a three-phase full-wave rectifier that converts the output of the three-phase alternating current generator 2 into direct current, which supplies power in parallel to the traction motors 10 and 11 during vehicle propulsion, and connects the traction motors 10 and 11 to a separately excited generator during braking. The fields 14 and 15 of the traction motors 10 and 11 are configured as follows.
It is used to energize. Traction motor 10,
11 is a DC motor, 12 and 13 are respective armatures, and 14 and 15 are field magnets. In this configuration, when the vehicle is propelled, the power running contactors 16 and 17 are closed, the two traction motors 10 and 11 are connected in parallel, and the two traction motors 10 and 11 are connected in parallel and driven in parallel by the output of the three-phase alternating current generator 2. When braking the vehicle, the brake contactors 18, 19, and 22 are closed and the armature 1
Resistors 20 and 21 for dynamic braking are connected in parallel to 2 and 13, and the fields 15 and 14 are configured to be energized by the output of the three-phase alternating current generator 2 via a contactor 22. With this configuration, the traction motors 10 and 11 perform dynamic braking.

かかる構成の走行車両において、例えば電動ダ
ンプ車の如き走行車両においては、その車両運転
制御方法は従来の機械式駆動車と同様、アクセル
ペダル踏込により上記車両推進回路を構成すると
同時に、デイゼルエンジン燃料噴射量を制御し、
エンジン回転数をアイドル回転数から定格回転数
まで増速させ、そのエンジン回転数はアクセルペ
ダル踏込量に応じアイドル回転数から定格回転数
まで任意に制御できるよう構成されている。
In a traveling vehicle with such a configuration, for example, an electric dump truck, the vehicle operation control method is the same as in conventional mechanically driven vehicles, in which the vehicle propulsion circuit is configured by pressing the accelerator pedal, and at the same time, the diesel engine fuel injection control the amount,
The engine speed is increased from the idle speed to the rated speed, and the engine speed can be arbitrarily controlled from the idle speed to the rated speed according to the amount of depression of the accelerator pedal.

このようにアクセルペダル踏込量に応じエンジ
ン回転数を加減しているのは、運転室の居住性向
上や燃費向上、エンジン等の機械的摩耗量の低減
などの理由によつている。
The reason why the engine speed is adjusted in accordance with the amount of depression of the accelerator pedal is to improve the comfort of the driver's cabin, improve fuel efficiency, and reduce mechanical wear on the engine and the like.

上記構成の走行車両によつて車両が円滑に走行
できるようにするためには、デイゼルエンジンに
直結しデイゼルエンジンで得た動力を電気エネル
ギに変換する発電機の制御をデイゼルエンジンの
出力に協調させエンストなど生じさせないよう運
転しなければならない。このため原動発電機の制
御においては、下記に示すように制御を行なつて
いる。
In order to enable the vehicle to run smoothly with the above configuration, the control of the generator, which is directly connected to the diesel engine and converts the power obtained by the diesel engine into electrical energy, must be coordinated with the output of the diesel engine. Vehicles must be operated in a manner that does not cause the engine to stall. For this reason, the power generator is controlled as shown below.

第2図はデイゼルエンジンの出力特性を示す図
で、横軸にエンジン回転数、縦軸にエンジン正味
軸出力を示している。この第2図に示す通り、エ
ンジン出力は定格回転数A近傍において安定した
最大のエンジン正味軸出力が得られる反面、低回
転数領域においてその出力特性は不安定になる。
また定格回転数Aを超えると得られる出力は急速
に低下する。上記出力特性を有するデイゼルエン
ジンを使用し、安定した原動発電機とするために
は、エンジン回転数に応じ発電機出力がその回転
数でのエンジン正味軸出力を上回わることのない
よう制御しなければならない。
FIG. 2 is a diagram showing the output characteristics of a diesel engine, with the horizontal axis showing the engine rotational speed and the vertical axis showing the engine net shaft output. As shown in FIG. 2, while a stable maximum engine net shaft output is obtained near the rated rotation speed A, the output characteristics become unstable in the low rotation speed region.
Moreover, when the rated rotational speed A is exceeded, the output obtained rapidly decreases. In order to use a diesel engine with the above output characteristics and create a stable power generator, the generator output must be controlled according to the engine speed so that it does not exceed the engine net shaft output at that speed. There must be.

このため、例えば第3図の特性イに示すように
エンジン回転数に比例して発電機出力を制御する
ならば、エンジン低回転数領域において確実に発
電機出力をエンジン出力より下回らせ、かつ効率
の良い、定格回転数A近傍において安定した最大
出力を得ることができる。
For this reason, for example, if the generator output is controlled in proportion to the engine speed as shown in characteristic A in Figure 3, the generator output can be reliably lower than the engine output in the low engine speed region, and the efficiency can be increased. It is possible to obtain stable maximum output near the rated rotation speed A with good speed.

上記の如き理由により原動発電機の発電機制御
は第3図に示す特性イの如き制御を行うのが一般
的である。
For the reasons mentioned above, the generator control of the prime mover is generally performed as shown in characteristic A shown in FIG.

かかる制御を行なわせるため、第1図に示す三
相交流発電機2の出力からエンジン回転数を検出
する周波数−電圧変換器23と、三相全波整流器
9の出力電圧を検出するPT24と、同出力電流
を検出するCT25と、該PT24とCT25の信
号を受けその積、即ち電力を検出する掛算器26
とにより、エンジン回転数と三相交流発電機2の
出力電力を求める。
In order to carry out such control, a frequency-voltage converter 23 that detects the engine rotation speed from the output of the three-phase alternator 2 shown in FIG. 1, a PT 24 that detects the output voltage of the three-phase full-wave rectifier 9, A CT25 that detects the same output current, and a multiplier 26 that receives the signals of the PT24 and CT25 and detects their product, that is, the power.
Accordingly, the engine rotation speed and the output power of the three-phase alternator 2 are determined.

このようにして求めた両信号を交流励磁機4の
界磁5を制御する制御器27に与え、エンジン回
転数(周波数−電圧変換器23)と三相交流発電
機2の出力電力とが、前記特性になるよう制御器
27で制御する。上記制御によりデイゼルエンジ
ン1と三相交流発電機2の協調がとれて運転され
るので、三相交流発電機2の出力特性は第4図の
通りとなる。
Both signals obtained in this way are given to the controller 27 that controls the field 5 of the AC exciter 4, and the engine rotation speed (frequency-voltage converter 23) and the output power of the three-phase alternator 2 are The controller 27 controls the above characteristics. Since the diesel engine 1 and the three-phase alternator 2 are operated in coordination with each other by the above control, the output characteristics of the three-phase alternator 2 are as shown in FIG. 4.

第4図は三相交流発電機の出力特性を示す図
で、横軸に出力電流、縦軸には出力電圧をとつて
表してある。図において曲線aが界磁8の励磁一
定にした場合に得られる出力特性であり、曲線b
は電力一定の特性である。従つてエンジン正味軸
出力が曲線bの特性を有する時、三相交流発電機
2の出力特性曲線aは図に示す領域の部分が、
エンジン正味軸出力より過大となる。このため三
相交流発電機2の出力が、あらかじめ定めておく
電力になるよう前述の通り制御することにより、
その出力特性は第4図の斜線で示す出力特性とな
る。
FIG. 4 is a diagram showing the output characteristics of a three-phase alternating current generator, with the horizontal axis representing the output current and the vertical axis representing the output voltage. In the figure, curve a is the output characteristic obtained when the excitation of field 8 is constant, and curve b
is a characteristic of constant power. Therefore, when the engine net shaft output has the characteristic of curve b, the output characteristic curve a of the three-phase alternating current generator 2 has the region shown in the figure as follows.
Excessive than engine net shaft output. Therefore, by controlling the output of the three-phase alternator 2 to the predetermined power as described above,
The output characteristics are those shown by diagonal lines in FIG.

かかる制御により原動発電機は協調がとれた運
転となるため、走行車両はアクセルペダルの踏込
量に応じ、その牽引力は任意に加減することがで
き、滑らかな安定した車両運転が可能となる。
This control allows the motor generators to operate in a coordinated manner, allowing the vehicle to arbitrarily adjust its traction force according to the amount of depression of the accelerator pedal, allowing smooth and stable vehicle operation.

なおかかる走行車両の制御においては、上記に
述べた以外に、車両牽引時は電機子電流制限(第
4図−p)を設け、牽引電動機を保護するのが
一般で、この制御は制御器27で行う。
In addition to the above-mentioned control, when the vehicle is being towed, armature current limitation (Fig. 4- p ) is generally provided to protect the traction motor, and this control is carried out by the controller 27. Do it with

本発明の目的はかかる原理にて走行する走行車
両を、その駆動源を原動発電機からここに図示す
る以外の方法により例えばトロリー架線等を使用
し地上電源設備より受電する方式に、任意に切替
走行できる走行車両を最も安価に提供することに
ある。
The object of the present invention is to arbitrarily switch the driving source of a vehicle that runs on this principle to a method other than the one shown here, such as using a trolley overhead wire or the like, to receive power from a ground power supply facility. The objective is to provide a running vehicle at the lowest possible price.

以下、本発明を実施例図面にもとづいて説明す
る。
Hereinafter, the present invention will be explained based on the drawings of the embodiments.

第5図は本発明の一実施例を示す構成回路で、
第1図と同番号品は同一機能品を示している。第
5図において原動発電機で走行する場合は、ここ
に図示する以外の手段によりパンタグラフ28,
29を下げ、前述の如き制御により車両をデイゼ
ルエンジン1にて走行せしめる。
FIG. 5 is a configuration circuit showing one embodiment of the present invention,
Products with the same numbers as those in FIG. 1 indicate products with the same functions. In FIG. 5, when traveling with a motor generator, the pantograph 28,
29 is lowered, and the vehicle is driven by the diesel engine 1 under the control described above.

地上電源走行に際しては、あらかじめ前述の如
き制御により車両を加速せしめた後、ここに図示
する以外の手段によりパンタグラフ28,29を
上昇し、パンタグラフ28を地上に架設した
(+)架線に、パンタグラフ29を(−)架線に
着線し、地上電源から車上に電力を給電せしめ
る。この状態で地上電源電圧をPT30で検出
し、該PT30の出力と三相交流発電機2の出力
電圧即ち略牽引電動機10,11の逆誘起電圧を
PT24で検出し、両PT24,30の出力電圧差
を制御器31に与え、該出力電圧差があらかじめ
定めておく一定値より小なる値であることを検出
し、接触器32の制御コイル32Rを励磁する。
該制御コイル32Rが励磁されるとそれにより接
触器32が閉じ、地上正極電源→パンタグラフ2
8→接触器32→制限抵抗器34〓〓〓〓〓〓〓
〓〓〓〓〓〓パンタグラフ29→地上負極電源の
経過で、牽引電動機10,11に上記両電圧差を
制限抵抗器34の抵抗値で徐した電流値が流れ駆
動する。
When running on ground power, the vehicle is accelerated by the control described above, and then the pantographs 28 and 29 are raised by means other than those shown here, and the pantograph 28 is connected to the (+) overhead wire installed above the ground. is connected to the (-) overhead wire, and power is supplied from the ground power source to the train. In this state, the ground power supply voltage is detected by the PT 30, and the output of the PT 30 and the output voltage of the three-phase alternating current generator 2, that is, approximately the reverse induced voltage of the traction motors 10 and 11, are detected.
The output voltage difference between both PTs 24 and 30 is detected by the PT 24, and the output voltage difference between the two PTs 24 and 30 is detected to be smaller than a predetermined constant value, and the control coil 32R of the contactor 32 is activated. Excite.
When the control coil 32R is excited, the contactor 32 is closed, and the ground positive electrode power supply → pantograph 2
8 → Contactor 32 → Limiting resistor 34〓〓〓〓〓〓〓〓
〓〓〓〓〓〓 In the process of pantograph 29→ground negative electrode power supply, a current value obtained by dividing the above-mentioned voltage difference by the resistance value of the limiting resistor 34 flows to the traction motors 10 and 11 and is driven.

また同時に接触器32に連動して動く接点32
RCにより交流励磁機4の界磁5を切りはなし、
これにより三相交流発電機2の出力を急速に絞り
牽引電動機10,11の駆動源をデイゼルエンジ
ン1から地上電源に切替える。
At the same time, the contact 32 moves in conjunction with the contactor 32.
The field 5 of the AC exciter 4 is cut off by RC,
As a result, the output of the three-phase alternating current generator 2 is rapidly throttled and the drive source of the traction motors 10 and 11 is switched from the diesel engine 1 to the ground power source.

これにより車両は地上電力をパンタグラフ2
8,29にて受電し走行することになる。つい
で、本実施例では地上電源にて走行する場合、前
述のデイゼルエンジン1で走行する場合デイゼル
エンジン1と三相交流発電機2との協調で制約さ
れる電力制限等がないため、本実施例では地上電
源電圧を三相交流発電機2で得られる最大電圧よ
りも高い電圧値に設定し、高速性能が得られる構
成としている。
This allows the vehicle to connect ground power to the pantograph 2.
The vehicle will receive power and start running on August 8, 29. Next, in this embodiment, when running on ground power, when running on the diesel engine 1 described above, there is no power restriction due to cooperation between the diesel engine 1 and the three-phase alternator 2, so this embodiment In this case, the ground power supply voltage is set to a voltage value higher than the maximum voltage obtained by the three-phase alternating current generator 2, and the configuration is such that high-speed performance can be obtained.

このため、原動発電機による走行モードから地
上電源による走行モードに切替える時、制限抵抗
34を駆動回路に挿入しているので、該制限抵抗
34に流れる電流を制御器31で検出し(即ち地
上電源電圧をPT30で牽引電動機電圧をPT24
で検出し両PT24,30の出力差を制御器31
で検出)、あらかじめ定めておく一定値より小な
る値である場合、制御器31の出力で接触器33
の制御コイル33Rを励磁する。
Therefore, when switching from the driving mode using the prime mover generator to the driving mode using the ground power source, since the limiting resistor 34 is inserted into the drive circuit, the current flowing through the limiting resistor 34 is detected by the controller 31 (i.e., the current flowing through the limiting resistor 34 is detected by the controller 31 (i.e., The voltage is PT30 and the traction motor voltage is PT24.
The controller 31 detects the output difference between both PTs 24 and 30.
If the value is smaller than a predetermined constant value, the contactor 33 is detected by the output of the controller 31.
The control coil 33R is excited.

これにより制限抵抗器34は短絡され、牽引電
動機10,11は電動機特性で定まる特性により
地上電源で駆動される。
As a result, the limiting resistor 34 is short-circuited, and the traction motors 10 and 11 are driven by the ground power source according to the characteristics determined by the motor characteristics.

以上述べた制御により、車両は原動発電機によ
る走行モードから地上電源による走行モードへ、
高価で複雑なチヨツパ装置や複数の接触器を組合
わせ制御する抵抗起動装置等使用することなく、
滑らかに移行することができる。
Through the control described above, the vehicle changes from the driving mode using the prime mover to the driving mode using the ground power source.
without using expensive and complicated chopper devices or resistance starting devices that control multiple contactors in combination.
Can be smoothly transitioned.

なお上記説明では、原動発電機による走行モー
ドから地上電源による走行モードへの切替えを該
両電源電圧差により制御していたが、地上電源電
圧は略一定値であるから、車両速度即ち牽引電動
機回転数により制御しても、略同様な制御値が得
られることが判る。
In the above explanation, the switching from the driving mode using the motor generator to the driving mode using the ground power source was controlled by the voltage difference between the two power sources, but since the ground power source voltage is a substantially constant value, the vehicle speed, that is, the rotation of the traction motor It can be seen that substantially similar control values can be obtained even if the control is performed numerically.

第6図はその制御回路の要部構成を示す一例
で、35は牽引電動機軸端に取りつけ車両速度を
検出するタコジエネで、該タコジエネ35の出力
を制御器36で検出し前記第5図と同様、第5図
に示す接触器32,33の制御コイル32R′,
33R′を制御する。これにより前述の電圧差と
略同様な制御が行なえることになる。
FIG. 6 shows an example of the configuration of the main parts of the control circuit, in which numeral 35 is a tachogenerator attached to the end of the traction motor shaft to detect the vehicle speed, and the output of the tachogenerator 35 is detected by a controller 36, similar to that shown in FIG. , control coils 32R' of contactors 32 and 33 shown in FIG.
33R' is controlled. This makes it possible to perform control substantially similar to the voltage difference described above.

また図示を省略するが、第6図に示す制御器3
6に第5図に示すPT30の信号を与え、一般制
御に通例的に用いられている演算手法を用いて、
32R′,33R′の動作設定値を地上電源電圧に
比例させてシフトさせれば、地上電源電圧変動に
よる影響を第6図の場合よりは、より小さくする
ことができる。
Although not shown, the controller 3 shown in FIG.
6 is given the signal of PT30 shown in Fig. 5, and using the arithmetic method commonly used for general control,
By shifting the operational setting values of 32R' and 33R' in proportion to the ground power supply voltage, the influence of ground power supply voltage fluctuations can be made smaller than in the case of FIG.

以上述べた説明では、車上電源をデイゼルエン
ジン1と三相交流発電機2の組合せの駆動方式で
のみ説明しているが、これを車上に積載したバツ
テリー等で構成してもできることは去うまでもな
い。
In the above explanation, the on-vehicle power supply is explained only as a drive system that combines the diesel engine 1 and the three-phase alternator 2, but there is nothing that can be done even if this is configured with a battery or the like mounted on the vehicle. It's no good.

上述したように本発明によれば、車上電源、地
上電源いずれでも走行できるよう構成したデユア
ルモード走行車両においてその制御装置をできる
だけ小型簡略化できると同時に、最適な制御シス
テムを提供できる。
As described above, according to the present invention, in a dual mode vehicle configured to run on either on-board power source or ground power source, the control device can be made as small and simple as possible, and at the same time, an optimal control system can be provided.

上記説明では地上電源を直流で説明したが、交
流架線とし車上で整流しても同様であるし、原動
発電機を直流発電機で構成し、地上電源から直流
発電機に電流が流れないよう整流器を接続しても
同様にできることは言うまでもない。
In the above explanation, the ground power supply was explained as DC, but the same effect can be achieved even if the AC overhead power line is used and rectified on the vehicle.The motor generator is configured with a DC generator, so that the current does not flow from the ground power supply to the DC generator. It goes without saying that the same thing can be done by connecting a rectifier.

以上説明した通り本発明によれば、最も安価
で、確実なデユアルモード走行車両制御方式を提
供できその効果は大である。
As explained above, according to the present invention, it is possible to provide the most inexpensive and reliable dual mode vehicle control system, and its effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原動発電機を駆動源とした走行
車両制御の1例を示す回路構成図、第2、第3図
および第4図はそのデイゼルエンジンおよび三相
交流発電機の出力特性を説明するための特性図、
第5図は車両駆動源を原動発電機、地上電源いず
れでも走行できるよう構成した本発明の一実施例
を示す回路構成図、第6図は本発明の他の実施例
制御回路の要部構成を示す図である。 1……デイゼルエンジン、2……回転界磁型三
相交流発電機、3……電機子巻線、4……交流励
磁機、9……三相全波整流器、10,11……牽
引電動機、16〜19,22,32,33……接
触器、23……周波数−電圧変換器、24,30
……PT、25……CT、26……掛算器、27,
31,36……制御器、28,29……パンタグ
ラフ、32R,33R……制御コイイル、32
RC……接点、35……タコゼネ。
Figure 1 is a circuit diagram showing an example of a conventional vehicle control system using a power generator as a drive source, and Figures 2, 3, and 4 show the output characteristics of the diesel engine and three-phase alternator. Characteristic diagram for explanation,
Fig. 5 is a circuit configuration diagram showing an embodiment of the present invention in which the vehicle drive source is configured to run using either a prime mover or a ground power source, and Fig. 6 is a main part configuration of a control circuit of another embodiment of the present invention. FIG. 1... Diesel engine, 2... Rotating field type three-phase AC generator, 3... Armature winding, 4... AC exciter, 9... Three-phase full-wave rectifier, 10, 11... Traction motor , 16-19, 22, 32, 33... Contactor, 23... Frequency-voltage converter, 24, 30
...PT, 25...CT, 26...multiplier, 27,
31, 36... Controller, 28, 29... Pantograph, 32R, 33R... Control coil, 32
RC...Contact point, 35...Tachogen.

Claims (1)

【特許請求の範囲】 1 走行車両用牽引電動機である直流電動機を任
意の速度で運転できる電力発生手段と、電力制御
手段とを車上に備えた走行車両に、略一定電圧の
地上電源を集電できる集電装置を併備し、前記直
流電動機を前記地上電源より駆動するに際し、あ
らかじめ車上に備えてある前記電力発生手段と前
記電力制御手段にて車両を走行せしめ、該車両を
停止させることなく走行したまま車両駆動電源を
車上に備えてある前記電力発生手段から前記地上
電源に切替え、車上の前記電力制御手段を介さず
直接前記直流電動機を前記地上電源により駆動
し、前記車両を走行させるよう構成したことを特
徴とするデユアルモード走行車両制御方式。 2 特許請求の範囲第1項記載のデユアルモード
走行車両制御方式において、走行車両用牽引電動
機の駆動電源を車上に備えた電力発生手段から地
上電源に切替える制御手段として、あらかじめ定
めておく車両速度により切替えるよう構成したこ
とを特徴とするデユアルモード走行車両制御方
式。 3 特許請求の範囲第1項記載のデユアルモード
走行車両制御方式において、走行車両用牽引電動
機の駆動電源を車上に備えた電力発生手段から地
上電源に切替える制御手段として、前記地上電源
電圧と直流電動機誘起電圧との差が、あらかじめ
定めておく差電圧より小なることを確認し切替え
るよう構成したことを特徴とするデユアルモード
走行車両制御方式。 4 特許請求の範囲第2項記載のデユアルモード
走行車両制御方式において、あらかじめ定めてお
く車両速度を地上電源電圧に比例させて変化させ
るよう構成したことを特徴とするデユアルモード
走行車両制御方式。
[Scope of Claims] 1. A ground power source with a substantially constant voltage is collected in a traveling vehicle equipped with a power generation means capable of operating a DC motor, which is a traction motor for a traveling vehicle, at an arbitrary speed, and a power control means on the vehicle. It is also equipped with a current collector capable of generating electricity, and when the DC motor is driven from the ground power source, the electric power generation means and the electric power control means provided on the vehicle in advance are used to make the vehicle run and stop the vehicle. The vehicle drive power source is switched from the electric power generating means provided on the vehicle to the ground power source while the vehicle is running without any movement, and the direct current motor is directly driven by the ground power source without going through the electric power control means on the vehicle. A dual mode vehicle control system characterized by being configured to run a vehicle. 2. In the dual-mode traveling vehicle control system described in claim 1, a predetermined vehicle speed is used as a control means for switching the drive power source of the traction motor for the traveling vehicle from the electric power generation means provided on the vehicle to the ground power source. A dual mode vehicle control system characterized by being configured to switch between the two modes. 3. In the dual mode running vehicle control system as set forth in claim 1, the control means for switching the drive power source of the traction motor for the running vehicle from the electric power generating means provided on the vehicle to the ground power source is configured to control the ground power supply voltage and the direct current. A dual mode vehicle control system characterized by being configured to switch after confirming that the difference between the voltage and the motor induced voltage is smaller than a predetermined differential voltage. 4. A dual mode vehicle control method according to claim 2, characterized in that the vehicle speed determined in advance is changed in proportion to the ground power supply voltage.
JP56041717A 1981-03-24 1981-03-24 Controlling system for vehicle running on dual mode Granted JPS57156601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56041717A JPS57156601A (en) 1981-03-24 1981-03-24 Controlling system for vehicle running on dual mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56041717A JPS57156601A (en) 1981-03-24 1981-03-24 Controlling system for vehicle running on dual mode

Publications (2)

Publication Number Publication Date
JPS57156601A JPS57156601A (en) 1982-09-28
JPS6160641B2 true JPS6160641B2 (en) 1986-12-22

Family

ID=12616168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56041717A Granted JPS57156601A (en) 1981-03-24 1981-03-24 Controlling system for vehicle running on dual mode

Country Status (1)

Country Link
JP (1) JPS57156601A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680064B2 (en) * 1988-09-21 1997-11-19 株式会社日立製作所 Railcar
JP6113509B2 (en) * 2013-01-15 2017-04-12 株式会社日立製作所 Electric drive vehicle, generator control device and generator control method
JP6257931B2 (en) * 2013-06-19 2018-01-10 株式会社日立製作所 Electric drive vehicle, control device for electric drive vehicle, and control method for electric drive vehicle

Also Published As

Publication number Publication date
JPS57156601A (en) 1982-09-28

Similar Documents

Publication Publication Date Title
JP3403725B2 (en) Electric vehicle with uncoupled drive electric motor
CN101516701B (en) Driver of rolling stock
JP3698411B2 (en) VEHICLE POWER GENERATION DEVICE AND ITS CONTROL METHOD
US6573675B2 (en) Method and apparatus for adaptive energy control of hybrid electric vehicle propulsion
US7122979B2 (en) Method and apparatus for selective operation of a hybrid electric vehicle in various driving modes
US4900944A (en) Booster unit for diesel electric locomotive
US4809803A (en) Drive system and vehicle for use therewith
US7309929B2 (en) Locomotive engine start method
US5698905A (en) Hybrid propulsion system for a motor vehicle and a method of operating the hybrid propulsion system
CN103124651B (en) Hybrid power system
JP3331218B2 (en) Unconstrained type vehicle with electric motor
US8113310B2 (en) Linear motor charged electric vehicle
US9227515B2 (en) System and method for controlling a vehicle
US20050206331A1 (en) Hybrid locomotive configuration
US20150032301A1 (en) Two tiered energy storage for a mobile vehicle
AU2017221831B2 (en) Systems and methods for generating power in a vehicle
NO180436B (en) Electric drive and distribution system for a vehicle, as well as a method for operating such a system
US8800701B1 (en) Electric vehicle with onboard electricity production
Liudvinavičius et al. Electrodynamic braking in high‐speed rail transport
US3356041A (en) Traction systems
Hillmansen Sustainable traction drives
CN202480860U (en) Automobile potential energy recovering system
JPS6160641B2 (en)
CN102616126A (en) Potential energy recovery system for vehicles
JPS6112442B2 (en)