JPS6160344B2 - - Google Patents

Info

Publication number
JPS6160344B2
JPS6160344B2 JP56139512A JP13951281A JPS6160344B2 JP S6160344 B2 JPS6160344 B2 JP S6160344B2 JP 56139512 A JP56139512 A JP 56139512A JP 13951281 A JP13951281 A JP 13951281A JP S6160344 B2 JPS6160344 B2 JP S6160344B2
Authority
JP
Japan
Prior art keywords
working fluid
condensing section
vapor
heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56139512A
Other languages
Japanese (ja)
Other versions
JPS5840453A (en
Inventor
Hiroyuki Sumitomo
Akira Horiguchi
Kenichi Yamada
Kenzo Masutani
Tsugio Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP56139512A priority Critical patent/JPS5840453A/en
Publication of JPS5840453A publication Critical patent/JPS5840453A/en
Publication of JPS6160344B2 publication Critical patent/JPS6160344B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Description

【発明の詳細な説明】 この発明はヒートポンプの改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in heat pumps.

ヒートポンプは、熱の有効利用という面から、
とりわけ省エネルギー対策として、近時種々の分
野において活用されるに至つている。この発明
は、この省エネルギーという観点から、所要動力
を低減させるべく工夫したヒートポンプを提供せ
んとするものである。
From the standpoint of effective use of heat, heat pumps
In recent years, it has come to be utilized in various fields, especially as an energy saving measure. The present invention aims to provide a heat pump devised to reduce the required power from the viewpoint of energy saving.

一般にヒートポンプのサイクルは第1図に示す
通りである。即ち、作動流体を蒸発部1で蒸発さ
せることによつて熱を外部から吸収し、蒸発した
蒸気を圧縮器2で圧縮して温度と圧力とを高め、
凝縮部3で外部へ熱を捨てて作動流体は液体とな
る。この液体を膨脹弁4で絞り膨脹させて蒸発部
1にもどし、サイクルをおえる。
Generally, the cycle of a heat pump is as shown in FIG. That is, heat is absorbed from the outside by evaporating the working fluid in the evaporator 1, and the evaporated vapor is compressed in the compressor 2 to increase the temperature and pressure.
Heat is dissipated to the outside in the condensing section 3, and the working fluid becomes a liquid. This liquid is throttled and expanded by an expansion valve 4 and returned to the evaporator 1, and the cycle ends.

上述のサイクルを第2図に示す作動流体のPi線
図に従つて説明すると、蒸発部1の出口で作動
流体は飽和蒸気であり、この蒸気は圧縮器2に吸
入されて→と高温高圧の蒸気に圧縮される。
このときの圧縮仕事量は△i2=i2−i1で求められ
る。圧縮器2からの蒸気は→と凝縮部3で冷
却されて凝縮し、で飽和液体となる。この高圧
の液体は膨脹弁4を通過する間に→とエンタ
ルピー定で絞り膨脹する。膨脹弁4から出た低温
低圧の作動流体は、蒸発部1で周囲から熱を奪つ
て→と蒸発する。このときの熱量は△i1=i1
−i4で求められ、作動流体の単位重量当たり冷凍
効果を表わす。
To explain the above cycle according to the Pi diagram of the working fluid shown in Fig. 2, the working fluid at the outlet of the evaporator 1 is saturated vapor, and this vapor is sucked into the compressor 2 and is converted to high temperature and high pressure. compressed into steam.
The amount of compression work at this time is determined by △i 2 =i 2 −i 1 . The vapor from the compressor 2 is cooled and condensed in the condensing section 3 and becomes a saturated liquid. While passing through the expansion valve 4, this high-pressure liquid is throttled and expanded at an enthalpy constant of →. The low-temperature, low-pressure working fluid that comes out of the expansion valve 4 absorbs heat from the surroundings in the evaporator 1 and evaporates. The amount of heat at this time is △i 1 = i 1
−i 4 and represents the refrigeration effect per unit weight of working fluid.

この発明は冒頭に述べたように、ヒートポンプ
の改良に関するものであつて、とりわけ上記圧縮
器の所要動力低減を図るものである。圧縮器の動
力pは圧縮仕事量△i2と作動流体の循環量Wとの
積で与えられる。また作動流体の循環量は作動流
体が蒸発する際に周囲から奪う全熱量qを、作動
流体の冷凍効果△i1で除した商で与えられる。従
つて、圧縮器の動力は冷凍効果に反比例すること
が判る。この発明はこれらの事実に鑑み、第3図
に示すように作動流体の凝縮部を多段(図示例で
は二段)となすことにより冷凍効果を増大せし
め、(△i1>△i1)、以て所要動力Pの低減を図る
ようにしたものである。
As stated at the beginning, the present invention relates to improvements in heat pumps, and in particular to reducing the power required for the compressor. The power p of the compressor is given by the product of the compression work Δi 2 and the circulating amount W of the working fluid. Further, the amount of circulation of the working fluid is given by the quotient of the total amount of heat q taken from the surroundings when the working fluid evaporates, divided by the refrigeration effect Δi 1 of the working fluid. Therefore, it can be seen that the power of the compressor is inversely proportional to the refrigeration effect. In view of these facts, the present invention increases the refrigeration effect by forming the working fluid condensation section in multiple stages (two stages in the illustrated example) as shown in FIG . This is intended to reduce the required power P.

次に第4図に示すこの発明の一実施態様につい
て説明する。同図においてヒートポンプは圧縮器
11と、凝縮部12,13と、膨脹弁14,15
と、蒸発部16を包含している。作動流体の凝縮
部12,13は各々蒸発器17,18を構成し、
作動流体の蒸発部16は凝縮器19を構成し、供
給口20から導びかれた例えば工場等の排蒸気或
いは温排水が、蒸発器17,18及び凝縮器19
の双方へ至る。
Next, one embodiment of the present invention shown in FIG. 4 will be described. In the figure, the heat pump includes a compressor 11, condensing sections 12 and 13, and expansion valves 14 and 15.
and an evaporation section 16. The working fluid condensing sections 12 and 13 constitute evaporators 17 and 18, respectively;
The working fluid evaporator 16 constitutes a condenser 19, and exhaust steam or heated wastewater from, for example, a factory, led from the supply port 20 is transferred to the evaporators 17, 18 and the condenser 19.
leading to both.

この実施態様における作動流体のサイクルを第
3図を参照しつつ説明すると、圧縮器で→
と、高温高圧の蒸気に圧縮された作動流体は、先
ず第1の凝縮部12で凝縮熱を外部へ捨てて→
と凝縮する。第1の凝縮部12を出ると作動流
体は第1の膨脹弁14により→′と膨脹し、
フラツシユタンタ21にて蒸気と液体とに分離す
る。蒸気の方は第2の凝縮部13にて′→″と
凝縮して液化し、フラツシユタンク21からの液
体と合流して第2の膨脹弁15へ至る。この第2
の膨脹弁15を通過して作動流体は″→と
絞り膨脹し、蒸発部16にて周囲より熱を奪つて
→と蒸発する。
The working fluid cycle in this embodiment will be explained with reference to FIG. 3. In the compressor, →
The working fluid compressed into high-temperature, high-pressure steam first discards the heat of condensation to the outside in the first condensing section 12 →
It condenses. Upon exiting the first condensing section 12, the working fluid is expanded as →' by the first expansion valve 14,
It is separated into vapor and liquid in a flash converter 21. The vapor is condensed in the second condensing section 13 in the direction '→'' and becomes liquefied, joins with the liquid from the flash tank 21 and reaches the second expansion valve 15.
The working fluid passes through the expansion valve 15, expands and expands as follows, and then takes heat from the surroundings in the evaporator section 16 and evaporates as follows.

次に、供給口20から系内に入つた温排水等を
みてみると、先ず蒸発器18を通過する際、第2
の凝縮部13にて凝縮する作動流体から凝縮潜熱
を受け取り、次に蒸発器17において、第1の凝
縮部12にて作動流体が捨てる熱により更に加熱
される。一方、凝縮部19へ進んだ温排水等の一
部は、蒸発部16で蒸発する作動流体に熱を与え
る。
Next, if we look at the heated wastewater etc. that entered the system from the supply port 20, first, when passing through the evaporator 18,
It receives condensation latent heat from the working fluid condensed in the first condensing section 13, and then in the evaporator 17, the working fluid is further heated by the heat discarded in the first condensing section 12. On the other hand, a portion of the heated wastewater and the like that has proceeded to the condensing section 19 gives heat to the working fluid that evaporates in the evaporating section 16 .

尚、ここに述べ且つ図示した実施態様では二段
の凝縮部12,13としてあるが、三段以上とす
ることもできる。要するに凝縮部を多段とするこ
とにより、この発明の課題を達成することができ
るのである。また、この発明の技術思想と範囲を
逸脱することなく、広範な異なる実施態様を構成
することができるのは明白なので、この発明は特
許請求の範囲の記載において限定した以外は、上
述の特定の実施態様に制約されるものではない旨
諒解されねばならない。
Although the embodiment described and illustrated here has two stages of condensing sections 12 and 13, it is also possible to have three or more stages. In short, the objects of the present invention can be achieved by providing a multi-stage condensing section. Furthermore, it is clear that a wide range of different embodiments can be constructed without departing from the technical idea and scope of this invention. It is to be understood that there is no limitation to the embodiments.

以上説明したように、この発明のヒートポンプ
は、蒸気化された作動流体を圧縮して高温高圧の
蒸気とする圧縮器と、該圧縮器で高温高圧の蒸気
とされた作動流体をその熱を外部へ放出させて凝
縮液化させる凝縮部と、該凝縮部で液化された作
動流体を絞り膨張させる膨張弁と、該膨張弁で絞
り膨張された作動流体を外部から熱を奪つて飽和
蒸気に蒸発させる蒸発部と、該蒸発部で蒸発され
た作動流体を蒸気圧縮器へ送り、上記サイクルを
反復するヒートポンプにおいて、前記凝縮部を多
段とし、各凝縮部間の作動流体経路に膨張弁とフ
ラツシユタンクとを設けると共に、該フラツシユ
タンクで蒸気と液体とに分離させ、該分離蒸気の
みを次段の凝縮部に送り、分離液体の方は、次段
の凝縮部の出口へ合流供給させるようになしたか
ら、圧縮器の所要動力を低減させることができ、
経済的で消エネルギー対策に適合する。
As explained above, the heat pump of the present invention includes a compressor that compresses a vaporized working fluid into high-temperature, high-pressure steam, and a heat pump for externally transmitting the heat of the working fluid that has been converted into high-temperature, high-pressure steam by the compressor. a condensing section that condenses and liquefies the fluid, an expansion valve that throttles and expands the working fluid liquefied in the condensing section, and a working fluid that is throttled and expanded by the expansion valve and evaporates it into saturated steam by taking heat from the outside. In a heat pump that includes an evaporation section and a working fluid evaporated in the evaporation section, which sends the working fluid to a vapor compressor and repeats the above cycle, the condensation section is multi-staged, and an expansion valve and a flash tank are provided in the working fluid path between each condensation section. At the same time, the flash tank separates vapor and liquid, and only the separated vapor is sent to the condensing section of the next stage, and the separated liquid is fed to the outlet of the condensing section of the next stage. Because of this, the required power of the compressor can be reduced,
Economical and suitable for energy consumption measures.

即ち、圧縮器の所要動力Pは、圧縮仕事量△i2
と作動流体の循環量Wとの積で与えられ、また、
作動流体の循環量Wは、作動流体が蒸発する際に
周囲から奪う全熱量qを、作動流体の冷凍効果△
i1で除した商W=q/△i1で与えられ、従つて、
圧縮器の所要動力Pは冷凍効果△i1に反比例し、
この冷凍効果△i1を大きくすれば、圧縮器の所要
動力Pを低減させ得る点に着目したものであつ
て、そのために、凝縮部を多段にするが、この場
合、前段凝縮部で凝縮液化させた作動流体を膨張
弁とフラツシユタンクに通し、該フラツシユタン
クで蒸気と液体とに分離させ、蒸気分のみを次段
の凝縮部へ送つて凝縮させ、液体分は次段の凝縮
部出口へ合流させるようにして各段の凝縮部での
冷凍効果を向上させたものである。
That is, the required power P of the compressor is the compression work △i 2
is given by the product of the working fluid circulation amount W, and
The circulating amount W of the working fluid is the total amount of heat q taken from the surroundings when the working fluid evaporates, and the refrigeration effect of the working fluid △
The quotient divided by i 1 is given by W = q/△i 1 , and therefore,
The required power P of the compressor is inversely proportional to the refrigeration effect △i 1 ,
This method focuses on the fact that the required power P of the compressor can be reduced by increasing this refrigeration effect △i 1. For this purpose, the condensing section is made in multiple stages. The working fluid is passed through an expansion valve and a flash tank, where it is separated into vapor and liquid. Only the vapor component is sent to the next stage condensing section to be condensed, and the liquid component is sent to the next stage condensing section. This improves the refrigeration effect in the condensing section of each stage by merging it with the outlet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートポンプのフローシート、
第2図は第1図のヒートポンプのサイクルを示す
Pi線図、第3図はこの発明のヒートポンプの実施
態様を示す第1図と同様のフローシート、第4図
は第3図のヒートポンプのサイクルを示すPi線図
である。 11……圧縮器、12,13……凝縮部、1
4,15……膨脹弁、16……蒸発部。
Figure 1 is a flow sheet for a conventional heat pump.
Figure 2 shows the cycle of the heat pump in Figure 1.
Pi diagram, FIG. 3 is a flow sheet similar to FIG. 1 showing an embodiment of the heat pump of the present invention, and FIG. 4 is a Pi diagram showing the cycle of the heat pump of FIG. 3. 11... Compressor, 12, 13... Condensing section, 1
4, 15...expansion valve, 16...evaporation section.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気化された作動流体を圧縮して高温高圧の
蒸気とする圧縮器と、該圧縮器で高温高圧の蒸気
とされた作動流体をその熱を外部へ放出させて凝
縮液化させる凝縮部と、該凝縮部で液化された作
動流体を絞り膨張させる膨張弁と、該膨張弁で絞
り膨張された作動流体を外部から熱を奪つて飽和
蒸気に蒸発させる蒸発部と、該蒸発部で蒸発され
た作動流体を蒸気圧縮器へ送り、上記サイクルを
反復するヒートポンプにおいて、前記凝縮部を多
段とし、各凝縮部間の作動流体経路に膨張弁とフ
ラツシユタンクとを設けると共に、該フラツシユ
タンクで蒸気と液体とに分離させ、該分離蒸気の
みを次段の凝縮部に送り、分離液体の方は、次段
の凝縮部の出口へ合流供給させるようになしたこ
とを特徴とするヒートポンプ。
1. A compressor that compresses a vaporized working fluid into high-temperature, high-pressure vapor, and a condensing section that condenses and liquefies the working fluid that has been converted into high-temperature, high-pressure vapor by releasing the heat to the outside. an expansion valve that throttles and expands the working fluid liquefied in the condensing section; an evaporation section that removes heat from the outside of the working fluid that has been throttled and expanded in the expansion valve and evaporates it into saturated steam; In a heat pump that sends working fluid to a vapor compressor and repeats the above cycle, the condensing section is multi-staged, an expansion valve and a flash tank are provided in the working fluid path between each condensing section, and the flash tank is used to collect steam. A heat pump characterized in that the separated vapor is separated into a liquid and a liquid, and only the separated vapor is sent to a condensing section at the next stage, and the separated liquid is fed together to an outlet of the condensing section at the next stage.
JP56139512A 1981-09-03 1981-09-03 Heat pump Granted JPS5840453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139512A JPS5840453A (en) 1981-09-03 1981-09-03 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139512A JPS5840453A (en) 1981-09-03 1981-09-03 Heat pump

Publications (2)

Publication Number Publication Date
JPS5840453A JPS5840453A (en) 1983-03-09
JPS6160344B2 true JPS6160344B2 (en) 1986-12-20

Family

ID=15247023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139512A Granted JPS5840453A (en) 1981-09-03 1981-09-03 Heat pump

Country Status (1)

Country Link
JP (1) JPS5840453A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151692U (en) * 1979-04-17 1980-11-01
JPS55144827A (en) * 1979-04-25 1980-11-12 Fuji Robin Kk Branch cutter
JPS57118743A (en) * 1981-05-29 1982-07-23 Fuji Robin Kk Pruning machine
JPS57118744A (en) * 1981-05-29 1982-07-23 Fuji Robin Kk Pruning machine
JPS57195691U (en) * 1981-06-02 1982-12-11
JPS57195693U (en) * 1981-06-02 1982-12-11
JPS61190249A (en) * 1985-02-18 1986-08-23 株式会社荏原製作所 Heat pump device
JP6007455B1 (en) * 2015-03-30 2016-10-12 中村物産有限会社 Cold heat supply apparatus and cold heat supply method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053264A (en) * 1983-08-31 1985-03-26 Mitsubishi Electric Corp Planetary frictional transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053264A (en) * 1983-08-31 1985-03-26 Mitsubishi Electric Corp Planetary frictional transmission

Also Published As

Publication number Publication date
JPS5840453A (en) 1983-03-09

Similar Documents

Publication Publication Date Title
US5329782A (en) Process for dehumidifying air in an air-conditioned environment
US5600967A (en) Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller
AU669488B2 (en) Triple-effect absorption refrigeration system with double-condenser coupling
US4028079A (en) Cascade refrigeration system
JPS6160344B2 (en)
JPS5575780A (en) Heat pump type water making equipment
US20020069665A1 (en) Absorption cycle with integrated heating system
US5467614A (en) Dual-circuit, multiple-effect refrigeration system and method
CN109869944A (en) Absorption supercooling refrigeration system
CN210951965U (en) Heat pump system for drying and dehumidifying
JP2772868B2 (en) Absorption refrigerator
JPH0641820B2 (en) heat pump
JPS6222059B2 (en)
SU813094A1 (en) Refrigerating plant
JPS6151228B2 (en)
JPS5840451A (en) Heat pump type boiler
JPH0113969Y2 (en)
SU1474401A1 (en) Absorption heat-pump unit
SU1021888A1 (en) Heat pump
JPH04116346A (en) Condenser
JPH0349018B2 (en)
JPH0339233B2 (en)
RU2152568C1 (en) Heat pump
JPH0410522Y2 (en)
JPS6210348B2 (en)