JPS6160342B2 - - Google Patents

Info

Publication number
JPS6160342B2
JPS6160342B2 JP55120032A JP12003280A JPS6160342B2 JP S6160342 B2 JPS6160342 B2 JP S6160342B2 JP 55120032 A JP55120032 A JP 55120032A JP 12003280 A JP12003280 A JP 12003280A JP S6160342 B2 JPS6160342 B2 JP S6160342B2
Authority
JP
Japan
Prior art keywords
capacity
refrigerant
compressor
output
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55120032A
Other languages
Japanese (ja)
Other versions
JPS5743168A (en
Inventor
Jiro Yuzuta
Hideo Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12003280A priority Critical patent/JPS5743168A/en
Publication of JPS5743168A publication Critical patent/JPS5743168A/en
Publication of JPS6160342B2 publication Critical patent/JPS6160342B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は容量制御圧縮機、電気式膨脹弁などを
有する冷凍装置の制御に関するもので、その目的
とするところは、容量制御圧縮機の容量変化時に
冷凍装置を安定して運転させようとするものであ
る。
Detailed Description of the Invention The present invention relates to the control of a refrigeration system having a capacity control compressor, an electric expansion valve, etc., and its purpose is to stabilize the refrigeration system when the capacity of the capacity control compressor changes. It is intended to force the driver to drive.

最近、冷凍装置の冷媒絞り用の膨脹弁に制御性
の良好な電気式膨脹弁が使用されている。例えば
第3図の従来の冷凍装置は圧縮機1、凝縮器2、
電気式膨脹弁3、蒸発器4からなる冷媒回路5に
より構成され、前記電気式膨脹弁3はヒータ6、
バイメタル7、ニードル8、及び弁9より構成さ
れている。上記ヒータ6で加熱されたバイメタル
7はニードル8を軸方向に移動させ弁9の開口面
積を変化させる。上記ヒータ6は蒸発器の冷媒温
度および圧縮機1の吸入冷媒の温度をそれぞれ負
特性感温抵抗素子(以後サーミスタという)1
0,11により検知し、その温度差が所定の値と
なる様に出力電圧を変化させる制御器12により
制御される。すなわちサーミスタ10,11によ
り圧縮機1の吸入冷媒の疑似的な過熱度を所定の
値とするように制御する。この従来の冷凍装置は
圧縮機1の容量が変化しない場合は前記電気式膨
脹弁3により安定した運転が可能であつたが、圧
縮機1が容量制御可能でその容量制御範囲の広い
場合圧縮機1の容量変化割合に対し電気式膨脹弁
の応答が遅く、冷凍装置が不安定となり、極端な
場合、電気式膨脹弁3が制御不能の状態におちい
る場合がある。すなわち、電気式膨脹弁3の制御
信号は前記サーミスタ10及び11による抵抗値
であり、このサーミスタ10及び11の熱容量に
より冷媒温度の値を検出するのに遅れを有し、又
電気式膨脹弁3にはヒータ6によるバイメタル7
を加熱する構造により生じるニードル8の変位遅
れがあり、圧縮機1の容量が増加した場合、それ
に相応した電気式膨脹弁3の弁9の開口面積の増
大に大幅に遅れが生じ冷媒の絞り抵抗が増大し、
冷媒循環が疎外されると共に蒸発器4内の冷媒圧
力は低下する結果、蒸発器4のサーミスタ10に
て温度計測している点での冷媒の状態が過熱蒸気
となる。この結果、圧縮機の吸入冷媒の疑似的な
過熱度の検出が不可能となると共に、サーミスタ
10及び11により検出される温度の差が小さく
なり、この結果、前記制御器12は電気式膨脹弁
3の絞り抵抗を増大する方向に制御し、その結
果、さらに冷媒循環が疎外され冷凍装置の運転継
続が不能の状態に陥る恐れがあつた。
Recently, electric expansion valves with good controllability have been used as expansion valves for throttling refrigerant in refrigeration equipment. For example, the conventional refrigeration system shown in Fig. 3 has a compressor 1, a condenser 2,
It is composed of a refrigerant circuit 5 consisting of an electric expansion valve 3 and an evaporator 4, and the electric expansion valve 3 is equipped with a heater 6,
It is composed of a bimetal 7, a needle 8, and a valve 9. The bimetal 7 heated by the heater 6 moves the needle 8 in the axial direction and changes the opening area of the valve 9. The heater 6 controls the temperature of the refrigerant in the evaporator and the temperature of the refrigerant sucked into the compressor 1 using a negative temperature sensitive resistance element (hereinafter referred to as a thermistor) 1.
0 and 11, and is controlled by a controller 12 that changes the output voltage so that the temperature difference becomes a predetermined value. That is, the thermistors 10 and 11 control the pseudo degree of superheat of the refrigerant sucked into the compressor 1 to a predetermined value. In this conventional refrigeration system, when the capacity of the compressor 1 does not change, stable operation is possible using the electric expansion valve 3, but when the compressor 1 is capacity controllable and its capacity control range is wide, the compressor The response of the electric expansion valve to a capacity change rate of 1 is slow, making the refrigeration system unstable, and in extreme cases, the electric expansion valve 3 may fall into an uncontrollable state. That is, the control signal for the electric expansion valve 3 is the resistance value of the thermistors 10 and 11, and there is a delay in detecting the refrigerant temperature value due to the heat capacity of the thermistors 10 and 11. Bimetal 7 with heater 6
There is a displacement delay of the needle 8 caused by the heating structure, and when the capacity of the compressor 1 increases, there is a significant delay in the corresponding increase in the opening area of the valve 9 of the electric expansion valve 3, which increases the throttling resistance of the refrigerant. increases,
As the refrigerant circulation is interrupted and the refrigerant pressure in the evaporator 4 decreases, the state of the refrigerant at the point where the temperature is measured by the thermistor 10 of the evaporator 4 becomes superheated steam. As a result, it becomes impossible to detect a pseudo degree of superheating of the refrigerant sucked into the compressor, and the difference in temperature detected by the thermistors 10 and 11 becomes small. As a result, the refrigerant circulation would be further restricted and the refrigeration system would be unable to continue operating.

本発明は以上のような問題を解決し、安定した
運転が可能な冷凍装置を提供しようとするもので
ある。
The present invention aims to solve the above problems and provide a refrigeration system that can operate stably.

第1図は本発明の冷凍装置の一実施例であり室
外ユニツト13と室内ユニツト14を1台ずつ接
続した分離型冷凍装置である。室外ユニツト13
は圧縮機15、圧縮機15を駆動するモータ1
6、凝縮器17、この凝縮器17に通風する室外
フアン18、及びこのフアン18を駆動するモー
タ19、電気的に冷媒絞り抵抗を変化可能な膨脹
弁20、圧縮機15の吸入冷媒温度を検出する負
特性感温抵抗素子(以後サーミスタという)21
を有し室内ユニツト14には蒸発器22、この蒸
発器22に室内空気を通風する室内フアン23及
びこのフアン23を駆動するモータ24、室温検
知器25、室温設定器26、及び蒸発器22の蒸
発冷媒温度を検出するサーミスタ27が設けられ
ている。これらの圧縮機15、凝縮器17、電気
式膨脹弁20、蒸発器22を冷媒配管28により
順次接続し冷媒回路29を構成している。前記蒸
発器22で室内空気の冷媒作用を行ない冷却運転
する。
FIG. 1 shows an embodiment of the refrigeration system of the present invention, which is a separate type refrigeration system in which one outdoor unit 13 and one indoor unit 14 are connected. Outdoor unit 13
is the compressor 15 and the motor 1 that drives the compressor 15
6. A condenser 17, an outdoor fan 18 that ventilates the condenser 17, a motor 19 that drives the fan 18, an expansion valve 20 that can electrically change the refrigerant throttling resistance, and detects the temperature of the refrigerant sucked into the compressor 15. Negative temperature sensitive resistance element (hereinafter referred to as thermistor) 21
The indoor unit 14 includes an evaporator 22, an indoor fan 23 for ventilating indoor air to the evaporator 22, a motor 24 for driving the fan 23, a room temperature detector 25, a room temperature setting device 26, and a room temperature setting device 26 for the evaporator 22. A thermistor 27 is provided to detect the temperature of the evaporative refrigerant. These compressor 15, condenser 17, electric expansion valve 20, and evaporator 22 are sequentially connected by refrigerant piping 28 to form a refrigerant circuit 29. The evaporator 22 acts as a refrigerant for indoor air to perform a cooling operation.

前記圧縮機15の容量制御は前記モータ16の
回転数を制御することにより可能であり、このモ
ータ16の回転数はその電源の電圧及び周波数を
制御する制御装置30により制御される。Aは商
用電源(ここでは3相)でこれを一次電源とし
て、前記制御装置30は6つのダイオードD1
D2,D3,D4,D5,D6とチヨークコイルCH1、コ
ンデンサC1よりなる整流回路Bにより整流し直
流電源に変換し、速度信号回路Eにおいて発生し
た速度信号によりチヨツパ制御回路Fを作動させ
てチヨツパ回路CのトランジスタTr2をON−
OFFし、前記直流電源の電圧を制御し、その制
御された電源をチヨークコイルCH2とコンデンサ
C2で平滑にし、この調整平滑化された直流電源
をブリツジインバータ制御回路Gに入力し、この
直流電圧に相当する周波数をブリツジインバータ
制御回路Gで発生させ、前記チヨツパ回路Cに接
続されたブリツジインバータ回路Dのトランジス
タTr2,Tr3,Tr4,Tr5,Tr6,Tr7をON−OFF
し、三相矩形波電源を発生させモータ16に供給
する。なおトランジスタTr2,Tr3,Tr4,Tr5
Tr6,Tr7にそれぞれ並列に接続されたダイオー
ドD7,D8,D9,D10,D11,D12は各トランジスタ
がOFFとなつた時のモータ16からの逆起動力
を通過させるものであり、各トランジスタの保護
を行なう。Hは負荷信号発生器であり、前記室温
検知器25と室温の設定温度を指令する可変抵抗
器よりなる前記室温設定器26との差信号を発生
させ、速度信号回路Eに入力し、速度信号を発生
させる。
The capacity of the compressor 15 can be controlled by controlling the rotation speed of the motor 16, and the rotation speed of the motor 16 is controlled by a control device 30 that controls the voltage and frequency of its power source. A is a commercial power supply (three-phase here), which is used as the primary power supply, and the control device 30 has six diodes D 1 ,
It is rectified by a rectifier circuit B consisting of D 2 , D 3 , D 4 , D 5 , D 6 , a chopper coil CH 1 , and a capacitor C 1 and converted into a DC power supply, and the chopper control circuit F is supplied by the speed signal generated in the speed signal circuit E. is activated to turn on the transistor Tr 2 of the chopper circuit C.
OFF, control the voltage of the DC power supply, and connect the controlled power supply to the CH 2 coil and the capacitor.
The adjusted and smoothed DC power is input to the bridge inverter control circuit G, and the bridge inverter control circuit G generates a frequency corresponding to this DC voltage, which is connected to the chopper circuit C. The transistors Tr 2 , Tr 3 , Tr 4 , Tr 5 , Tr 6 , and Tr 7 of the bridge inverter circuit D are turned on and off.
Then, three-phase rectangular wave power is generated and supplied to the motor 16. Note that the transistors Tr 2 , Tr 3 , Tr 4 , Tr 5 ,
Diodes D 7 , D 8 , D 9 , D 10 , D 11 , and D 12 connected in parallel with Tr 6 and Tr 7 pass the reverse starting force from the motor 16 when each transistor is turned off. It protects each transistor. H is a load signal generator, which generates a difference signal between the room temperature detector 25 and the room temperature setter 26, which is a variable resistor that commands the set temperature of the room temperature, and inputs it to the speed signal circuit E to generate a speed signal. to occur.

31は前記膨脹弁20の制御回路であり、サー
ミスタ27により蒸発器22の冷媒蒸発温度TE
を検出し、サーミスタ21により圧縮機15の吸
入冷媒温度TSを検出し、その温度差ΔT(=TS
−TE)に相当する差信号ΔEと内部に設けられ
た温度差ΔTの基準信号によつてPID動作PI動作
などの制御を行なつて出力を発生させる差信号発
生器Iと、前記速度信号回路Eの出力変化割合を
検出し、この出力変化割合すなわち圧縮機の容量
変化割合に対応した出力を出す容量変化信号回路
Jと、この容量変化信号回路Jからの出力と前記
差信号発生器Iからの出力の値でもつて前記膨脹
弁20の絞り抵抗を制御する弁制御回路Kとから
構成されている。本実施例ではこの弁制御回路K
は前記差信号発生器Iと容量変化信号回路Jの出
力の和でもつて前記膨脹弁20を制御する様な構
成としている。
31 is a control circuit for the expansion valve 20, and the thermistor 27 controls the refrigerant evaporation temperature T E of the evaporator 22.
, the thermistor 21 detects the suction refrigerant temperature T S of the compressor 15, and the temperature difference ΔT (= T S
-T E ) and a reference signal of the temperature difference ΔT provided therein, a difference signal generator I controls the PID operation PI operation, etc., and generates an output, and the speed signal A capacitance change signal circuit J that detects the output change rate of the circuit E and outputs an output corresponding to this output change rate, that is, the capacity change rate of the compressor, and the output from the capacitance change signal circuit J and the difference signal generator I. and a valve control circuit K that controls the throttle resistance of the expansion valve 20 based on the value of the output from the expansion valve 20. In this embodiment, this valve control circuit K
The configuration is such that the expansion valve 20 is controlled by the sum of the outputs of the difference signal generator I and the capacitance change signal circuit J.

次に第2図の動作説明図によつて第1図の冷凍
装置の動作を説明する。この動作説明図は圧縮機
15の回転数に相当する速度信号回路Eの出力
R、この出力RのΔt時間の変化の割合を示す速
度変化割合ΔR/Δt、膨脹弁20の弁開口面積
を制御する弁制御回路Kの出力VEX、及び膨脹弁
20の弁開口面積B、及び前記冷媒温度の温度差
ΔTの時間tに対する変化を示すものである。
Next, the operation of the refrigeration system shown in FIG. 1 will be explained with reference to the operation diagram shown in FIG. This operation explanatory diagram shows the output R of the speed signal circuit E corresponding to the rotational speed of the compressor 15, the speed change rate ΔR/Δt indicating the rate of change in time Δt of this output R, and the valve opening area of the expansion valve 20. 3 shows changes in the output V EX of the valve control circuit K, the valve opening area B of the expansion valve 20, and the temperature difference ΔT in the refrigerant temperature over time t.

時間t0までは冷凍装置の負荷が一定で速度信号
回路Eの出力RはR0の一定値で圧縮機15は定
速回転している。この時速度変化割合に相当する
ΔR/Δtは零であり、弁制御回路Kの出力VEX
は差信号発生器Iの出力によつて制御されその値
はV0となり、膨脹弁20の弁開口面積BはB0
定の値となり、サーミスタ21と27により検出
される冷媒の温度差ΔTは一定となり安定した運
転を継続している。この時時間t0で冷凍装置の負
荷が増大した場合、例えば室温が急激に上昇し室
温検知器25によりそれを検出したり、あるいは
室温の設定温度を室温設定器26により低下させ
た場合に、負荷信号発生器Hにより速度信号回路
Eの出力Rはある適当な時定数Tでもつて増大
し、この結果、チヨツパ制御回路Fによつてモー
タ16の電源電圧及び周波数が前記出力Rに対応
して増大し圧縮機15が増速し、負荷に見合つた
容量で運転する様に制御する。この出力Rの変化
割合ΔR/Δtは時間T0で急激に増大しその後
漸時減少し再び零となる。この変化割合ΔR/Δ
tに相当した出力が容量変化信号回路Jから弁制
御回路Kへ出力される。この出力の弁制御回路K
の出力に対応した値を出力VEXにおける一点鎖線
aで示し、一方、破線bは前記差信号発生器Iの
出力に相当する弁制御回路Kの出力VEXであり、
総合の出力VEXはこれらを加算させた実線cで示
す出力となり、この値でもつて膨脹弁20の弁開
口面積BをB0より増大させる方向に制御する。
この時間t0以後の所定の時間、弁制御回路Kの出
力VEXは容量変化信号回路Jからの大きな入力信
号が入るため急激に増大し、膨脹弁20の弁開口
面積の圧縮機容量増加に対応した遅れを少なくす
る事ができる。この結果、第2図に示すように速
度信号回路Eの出力RがRHに変化しても、前記
冷媒温度の温度差ΔTの変動は少なく、圧縮機1
5に未蒸発の冷媒液が多量にもどつたり、蒸発器
22内の冷媒が極端に過熱状態になつたりせず冷
凍装置の安定した運転が可能となる。
Until time t0 , the load on the refrigeration system is constant, the output R of the speed signal circuit E is a constant value of R0 , and the compressor 15 is rotating at a constant speed. At this time, ΔR/Δt corresponding to the speed change rate is zero, and the output V EX of the valve control circuit K
is controlled by the output of the difference signal generator I and its value becomes V 0 , the valve opening area B of the expansion valve 20 becomes a constant value B 0 , and the temperature difference ΔT of the refrigerant detected by thermistors 21 and 27 is It remains constant and stable operation continues. If the load on the refrigeration equipment increases at time t 0 at this time, for example, if the room temperature rises rapidly and is detected by the room temperature detector 25, or if the set temperature of the room temperature is lowered by the room temperature setting device 26, The load signal generator H increases the output R of the speed signal circuit E with a certain appropriate time constant T, and as a result, the chopper control circuit F causes the power supply voltage and frequency of the motor 16 to correspond to the output R. As the load increases, the compressor 15 speeds up and is controlled to operate at a capacity commensurate with the load. The rate of change ΔR/Δt of the output R increases rapidly at time T 0 , then gradually decreases and becomes zero again. This rate of change ΔR/Δ
An output corresponding to t is output from the capacitance change signal circuit J to the valve control circuit K. Valve control circuit K of this output
The value corresponding to the output of V EX is shown by the dashed-dotted line a, while the dashed line b is the output V EX of the valve control circuit K corresponding to the output of the difference signal generator I,
The total output V EX is the output shown by the solid line c, which is the sum of these values, and even with this value, the valve opening area B of the expansion valve 20 is controlled in a direction to be larger than B 0 .
During a predetermined period of time after this time t0 , the output V EX of the valve control circuit K increases rapidly due to the input of a large input signal from the capacity change signal circuit J, and the compressor capacity increases due to the valve opening area of the expansion valve 20. The corresponding delay can be reduced. As a result, even if the output R of the speed signal circuit E changes to R H as shown in FIG.
5, a large amount of unevaporated refrigerant liquid does not return, and the refrigerant in the evaporator 22 does not become extremely overheated, allowing stable operation of the refrigeration system.

次に時間t1により冷凍装置の負荷が低下し、速
度信号回路Eの出力RがRHよりRLまで時定数T
でもつて変化した場合、出力Rの変化割合ΔR/
Δtは負の値を持つ。この結果、弁制御回路Kの
出力VEXは差信号発生器Iの出力による膨脹弁2
0への出力VEXから容量変化信号回路Jの出力分
を差引いた値となり、膨脹弁20は急速にその開
口面積を閉じるようになり、その結果、膨脹弁2
0の圧縮機容量変化に対する応答性は良好とな
り、圧縮機15へ未蒸発の冷媒液がもどる事はな
く安定した運転が可能となる。この圧縮機15の
容量減少割合が一定になれば、容量変化信号回路
Jからの出力はなくなり、差信号発生器Iからの
出力に対応した膨脹弁20の制御が行なわれる。
この結果、圧縮機の定容量運転時には冷媒温度に
よつて膨脹弁20は制御される事となり疑似過熱
度一定の制御が可能となり効率のよい運転が可能
となる。第2図において速度信号回路Eの出力R
が大幅な変化を行なつた場合を示したが、前記冷
凍装置を運転中は常時、小さな前記出力Rすなわ
ち圧縮機容量の変化はあるが、この時の変化割合
ΔR/Δtは小さく、弁制御回路Kの出力VEX
影響は少なく、ほとんどが冷媒温度検出による膨
脹弁20の制御となる。
Next, at time t 1 , the load on the refrigeration system decreases, and the output R of the speed signal circuit E changes from R H to R L with a time constant T.
If the output R changes due to the change rate ΔR/
Δt has a negative value. As a result, the output V EX of the valve control circuit K is the output of the expansion valve 2 due to the output of the difference signal generator I.
0 minus the output of the capacitance change signal circuit J, the expansion valve 20 rapidly closes its opening area, and as a result, the expansion valve 2
The responsiveness to changes in the compressor capacity becomes good, and unevaporated refrigerant liquid does not return to the compressor 15, making stable operation possible. When the capacity reduction rate of the compressor 15 becomes constant, the output from the capacity change signal circuit J disappears, and the expansion valve 20 is controlled in accordance with the output from the difference signal generator I.
As a result, during constant capacity operation of the compressor, the expansion valve 20 is controlled according to the refrigerant temperature, making it possible to control the degree of pseudo superheat to be constant, thereby enabling efficient operation. In Fig. 2, the output R of the speed signal circuit E
We have shown a case in which there is a large change in the output R, that is, the compressor capacity, while the refrigeration system is in operation, but the rate of change ΔR/Δt is small at this time, and the valve control There is little influence on the output V EX of the circuit K, and the expansion valve 20 is mostly controlled by refrigerant temperature detection.

以上の実施例では圧縮機の容量を連続的に変化
させる場合を説明したが多段階に容量を制御する
場合にも応用する事は出来る。また圧縮機の容量
制御は回転数を変化させる以外の方法にも応用で
きることは明白である。また膨脹弁はその冷媒絞
り抵抗をヒータとバイメタルにより制御する以外
に電磁コイルなどにより磁気的(この場合、ヒー
タとバイメタル方式により応答の遅れは少ない
が)に又は他の方法で電気的に制御する方法でも
よい事は明らかである。但しこの場合には圧縮機
容量変化割合の膨脹弁制御に対する割合を少なく
する必要があり、この場合にはサーミスタ等で検
出する時に生じる冷媒温度検出遅れを減少させる
効果がある。
In the above embodiment, the case where the capacity of the compressor is continuously changed has been explained, but it can also be applied to the case where the capacity is controlled in multiple stages. It is also clear that compressor capacity control can be applied to methods other than changing the rotational speed. In addition to controlling the refrigerant throttling resistance with a heater and bimetal, the expansion valve can also be controlled magnetically with an electromagnetic coil (although in this case, the delay in response is small due to the heater and bimetal system) or electrically with other methods. It is clear that the method is fine. However, in this case, it is necessary to reduce the ratio of the compressor capacity change rate to the expansion valve control, and in this case, there is an effect of reducing the delay in refrigerant temperature detection that occurs when detecting with a thermistor or the like.

以上の実施例から明らかなように、本発明の冷
凍装置は、容量制御圧縮機、凝縮器、電気的に冷
媒絞り抵抗を変化する膨脹弁、蒸発器により構成
した冷媒回路、冷媒温度を検知する温度検知手
段、前記容量制御圧縮機の容量増加の時間的変化
割合を検知する容量変化検知手段、および前記膨
脹弁を前記温度検知手段からの信号と前記容量変
化検知手段からの信号の合成値により制御する弁
制御手段を有する制御装置を備えたもので、圧縮
機の容量変化時に膨脹弁の応答速度を速めること
ができ、冷凍装置の安定した運転連続が可能とな
り、圧縮機の容量変化の大きな時は膨脹弁の応答
性を良好にし、容量変化に追従した冷媒絞り抵抗
を変化させ、圧縮機の容量変化が少ない場合には
主に冷媒温度を検出して膨脹弁を制御することが
できるため効率のよい冷凍装置の運転が可能とな
る。
As is clear from the above embodiments, the refrigeration system of the present invention includes a capacity control compressor, a condenser, an expansion valve that electrically changes the refrigerant throttling resistance, an evaporator, and a refrigerant circuit that detects the refrigerant temperature. temperature detection means, capacity change detection means for detecting a temporal change rate of capacity increase of said capacity control compressor, and said expansion valve based on a composite value of a signal from said temperature detection means and a signal from said capacity change detection means. Equipped with a control device that has valve control means to control the expansion valve, it can speed up the response speed of the expansion valve when the compressor capacity changes, enabling stable continuous operation of the refrigeration system, and preventing large changes in the compressor capacity. When the compressor capacity changes, the expansion valve can be controlled by mainly detecting the refrigerant temperature. It becomes possible to operate the refrigeration equipment efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷凍装置の一実施例を示す回
路図、第2図は同冷凍装置の動作説明図、第3図
は従来の冷凍装置の冷媒回路図である。 15……容量制御圧縮機、17……凝縮器、2
0……膨脹弁、22……蒸発器、29……冷媒回
路、31……制御回路、I……差信号発生器(温
度検知手段)、J……容量変化信号回路(容量変
化検知手段)、K……弁制御回路(弁制御手段)。
FIG. 1 is a circuit diagram showing an embodiment of the refrigeration system of the present invention, FIG. 2 is an explanatory diagram of the operation of the refrigeration system, and FIG. 3 is a refrigerant circuit diagram of a conventional refrigeration system. 15...capacity control compressor, 17...condenser, 2
0... Expansion valve, 22... Evaporator, 29... Refrigerant circuit, 31... Control circuit, I... Difference signal generator (temperature detection means), J... Capacity change signal circuit (capacity change detection means) , K...Valve control circuit (valve control means).

Claims (1)

【特許請求の範囲】[Claims] 1 容量制御圧縮機、凝縮器、電気的に冷媒絞り
抵抗を変化する膨脹弁、蒸発器により構成した冷
媒回路、冷媒温度を検知する温度検知手段、前記
容量制御圧縮機の容量増加の時間的変化割合を検
知する容量変化検知手段、および前記膨脹弁を前
記温度検知手段からの信号と前記容量変化検知手
段からの信号の合成値により制御する弁制御手段
を有する制御装置を備えた冷凍装置。
1. A refrigerant circuit composed of a capacity control compressor, a condenser, an expansion valve that electrically changes the refrigerant throttling resistance, and an evaporator, a temperature detection means that detects the refrigerant temperature, and a temporal change in the capacity increase of the capacity control compressor. A refrigeration system comprising a control device having a capacity change detection means for detecting a ratio, and a valve control means for controlling the expansion valve by a composite value of a signal from the temperature detection means and a signal from the capacity change detection means.
JP12003280A 1980-08-29 1980-08-29 Refrigerating plant Granted JPS5743168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12003280A JPS5743168A (en) 1980-08-29 1980-08-29 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12003280A JPS5743168A (en) 1980-08-29 1980-08-29 Refrigerating plant

Publications (2)

Publication Number Publication Date
JPS5743168A JPS5743168A (en) 1982-03-11
JPS6160342B2 true JPS6160342B2 (en) 1986-12-20

Family

ID=14776210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12003280A Granted JPS5743168A (en) 1980-08-29 1980-08-29 Refrigerating plant

Country Status (1)

Country Link
JP (1) JPS5743168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209610A (en) * 1986-03-11 1987-09-14 Mitsubishi Electric Corp Information processor
JPS62226219A (en) * 1986-03-27 1987-10-05 Nec Corp Graphic display terminal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54181359U (en) * 1978-06-14 1979-12-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209610A (en) * 1986-03-11 1987-09-14 Mitsubishi Electric Corp Information processor
JPS62226219A (en) * 1986-03-27 1987-10-05 Nec Corp Graphic display terminal

Also Published As

Publication number Publication date
JPS5743168A (en) 1982-03-11

Similar Documents

Publication Publication Date Title
US5036676A (en) Method of compressor current control for variable speed heat pumps
KR890004396B1 (en) Opersting method and control system for refrigeration system
JP3162827B2 (en) Temperature control device
US4003729A (en) Air conditioning system having improved dehumidification capabilities
JP2723339B2 (en) Heat pump heating equipment
JPS6354567B2 (en)
JPH04257676A (en) Detection and correction of malfunction of reversivle valve in heat pump
JPS60245963A (en) Method of operating refrigeration system and control system of refrigeration system
JPS6150221B2 (en)
JPS60245958A (en) Method of operating refrigeration system and control system of refrigeration system
JPS6325458A (en) Method and device for controlling surge of refrigeration system
JPS6160342B2 (en)
JPS6045336B2 (en) Control device and method of operation for chilled water set point temperature
JPS6160343B2 (en)
JPH0668410B2 (en) Air conditioner
JP3117321B2 (en) Air conditioner
JPS63294461A (en) Air conditioner
JPH0714772Y2 (en) Refrigeration cycle
JPH06194008A (en) Discharge superheat degree control valve
JP2557656B2 (en) Refrigerator capacity control method
JPH0545011A (en) Cooling device of automatic vending machine
JPH0772648B2 (en) Refrigerant flow control method
JPS629127Y2 (en)
JP2870928B2 (en) Air flow control method for air conditioner
JPH0317165Y2 (en)