JPS6160250A - Method for controlling cutting with continuous casting installation - Google Patents

Method for controlling cutting with continuous casting installation

Info

Publication number
JPS6160250A
JPS6160250A JP18059084A JP18059084A JPS6160250A JP S6160250 A JPS6160250 A JP S6160250A JP 18059084 A JP18059084 A JP 18059084A JP 18059084 A JP18059084 A JP 18059084A JP S6160250 A JPS6160250 A JP S6160250A
Authority
JP
Japan
Prior art keywords
length
cutting
strands
strand
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18059084A
Other languages
Japanese (ja)
Inventor
Masakazu Suzuki
雅和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18059084A priority Critical patent/JPS6160250A/en
Publication of JPS6160250A publication Critical patent/JPS6160250A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/126Accessories for subsequent treating or working cast stock in situ for cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/163Controlling or regulating processes or operations for cutting cast stock

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve yield by feeding back not only the actual cutting length of the own strand but also the actual cutting length of the other strands and controlling collectively the determination of the set cutting length of all the strands. CONSTITUTION:The cutting length for each billet determined by a computer 2 for control are set in control devices 5, 6 for cutting of the respective strands and the actual cutting of the billet is executed by cutting machines 7, 8. Length measuring devices 9, 10 take the actual value of the casting length therein and also take the actual cutting length of the cut billets therein. The length measuring devices feedback such values to the computer 2. The actual cutting lengths of not only the own strand but also the other strands are thus taken into the above-mentioned devices and the target intended cutting length of the other strands is also handled as a reference product length and therefore the optimization of combination is made better than in a cutting method in which the strands are independent. The yield is thus improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、連続鋳造設備に係シ、特に、マルチストラン
ドをもつ設備の鋳片の切断に際し、歩留り向上に好適な
切断制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to continuous casting equipment, and particularly to a cutting control method suitable for improving yield when cutting slabs in equipment having multiple strands.

〔発明の背景〕[Background of the invention]

近年の連続鋳造設備は、製鋼工場内での連鋳比率の向上
に伴い、上位工程である転炉(又は電気炉)工場と、下
位工程である圧延工場とのスケジュール調整が複雑化し
、さらに、生産能力の増大傾向もあって、鋳造速度の高
速化及びストランド設備のマルチ等により、鋳造時間を
短縮する方向にある。
In recent years, with continuous casting equipment, as the continuous casting ratio within a steelmaking factory has improved, schedule coordination between the upper process, the converter (or electric furnace) factory, and the lower process, the rolling factory, has become more complicated. Due to the increasing production capacity, there is a trend toward shortening casting time by increasing casting speed and using multi-strand equipment.

このような状況にあってストランドのマルチ化は、一つ
のチャージが各ストランドに分散されて鋳造さ、れるこ
とによp1チャージ当りの製品分配方法が煩雑化し、そ
の結果として鋳片の切断制御方法も、単一ストランドに
比し、非常に複雑化してきている。
Under these circumstances, when strands are multiplied, one charge is distributed over each strand during casting, which makes the product distribution method per p1 charge complicated, and as a result, the cutting control method for slabs becomes complicated. strands have also become much more complex than single strands.

このため、製品の生産計画は上位計算機(ビジネスコン
ピュータ)が受は持ち、製品となるスラブやプルーム等
の最終採尺切断長の決定は、下位計算機又は制御用計算
機(プロセスコンピュータ)が担当するシステムが、近
年の連続鋳造設備における計算機制御の一般的なアーキ
テクチュアになりつつある。
For this reason, the upper-level computer (business computer) is in charge of product production planning, and the lower-level computer or control computer (process computer) is in charge of determining the final measuring and cutting length of the product, such as slabs and plumes. has become a common architecture for computer control in modern continuous casting equipment.

下位計算機では、上位計算機で決定された目標予定切断
長を基準として、実際に鋳造されるチャージの実績鋳造
長に見合う長さに相当する各鋳片の切断長を組み合わせ
て、各鋳片の切断設定長を決定し、尚、かつ、その実績
値をフィードバックして組み合わせの再計算を行なう、
いわゆる、切断制御を行なう。
The lower-level computer calculates the cutting length of each slab by combining the cutting length of each slab corresponding to the actual casting length of the charge to be actually cast, based on the target planned cutting length determined by the upper-level computer. Determine the set length, and also feed back the actual value to recalculate the combination.
So-called cutting control is performed.

しかるに従来の切断制御では、各ストランド毎の切断方
法をストランド独立で決定しているため、実績の鋳造長
が大巾に変更されたり、あるいは、異鋼種連続鋳造や巾
替制御等で、製品分配が大巾に変更された場合等に、組
合わせの基準となる基準製品長に不足を生じ、しばしば
最適化が得られなくなることが起きていた。
However, in conventional cutting control, the cutting method for each strand is determined independently, so the actual casting length may be changed to a large width, or the product distribution may be changed due to continuous casting of different steel types, width change control, etc. When the length of the product is changed to a larger width, the standard product length that serves as the basis for the combination becomes insufficient, and optimization often cannot be achieved.

発明者は、自ストランドの切断長の設定時に、他ストラ
ンドの目標予定切断長(基準製品長)をも考慮した組合
せを考え、自ストランドの実績切断長のフィードバック
のみでなく、他ストランドの実績切断長をもフィードバ
ックして全てのストランドの切断設定長の決定を一括し
て制御することにより、歩留ね向上を図った。
When setting the cutting length of one's own strand, the inventor considered a combination that also took into consideration the target planned cutting length (standard product length) of other strands, and not only feedback of the actual cutting length of one's own strand, but also the actual cutting length of other strands. The yield was improved by controlling the cutting length of all strands at once by feeding back the length.

なお、関連公知技術には特開昭58−86652号公報
などがある。
Incidentally, related known techniques include Japanese Patent Laid-Open No. 58-86652.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、マルチストランド型連続鋳造設備にお
いて、他ストランドをも含めた一括切断制御を行なうこ
とにより、歩留シを向上できる切断制御方法を提供する
にある。
An object of the present invention is to provide a cutting control method that can improve yield by performing batch cutting control including other strands in multi-strand continuous casting equipment.

〔発明の概要〕[Summary of the invention]

本発明の要点は、マルチストランド型連続鋳造設備にお
いて、他ストランドをも含めた、一括切断長設定法にあ
らためることによシ、よシ高い歩留り向上を実現するこ
とにある。
The gist of the present invention is to realize a much higher yield improvement in multi-strand continuous casting equipment by changing the method to set cutting length at once, including other strands.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を用いて説明する。第1
図は、連続鋳造設備の概要を示す。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows an overview of continuous casting equipment.

上位計算機で立案された生産計画情報は、その製品に該
当するチャージが転炉から出鋼される時点で目標予定切
断長1目として、下位計算機へ送信される。いま、簡単
のため、単一ストランド(この場合は、第一ストランド
)について考察しが成立する。
The production plan information drawn up by the higher-level computer is transmitted to the lower-level computer as the first target planned cutting length at the time when the charge corresponding to the product is tapped from the converter. Now, for simplicity, we will consider a single strand (in this case, the first strand).

L+ =to +tts +・・・・・・+t1+・・
・・・・十t1m・・・(1) ここで、Ll :第一ストランドの予定鋳造長i目:各
製品の目標予定切断長 n :ストランド当〕製品個数 (1)式は、種々雑多な製品がある場合の一般式である
が、実際にマルチストランド型連続鋳造設備で鋳造され
る製品は、大量生産、少品種でアシ、この特色からiI
Iに代わってM種類の製品長t1゜を選ぶと(2)式の
ように書き直すことができる。
L+ =to +tts +・・・・・・+t1+・・
...10t1m...(1) Here, Ll: Planned casting length of the first strand i: Target planned cutting length of each product n: Number of products per strand Formula (1) can be calculated using various miscellaneous This is a general formula when there is a product, but the products that are actually cast using multi-strand continuous casting equipment are mass produced and have a small number of products.
If M types of product lengths t1° are selected instead of I, the equation can be rewritten as shown in equation (2).

L  +   =  a  +  +  ttt  +
a+s  ・tts  + ……+a IJe  11
3・・団・+aIM@tIM ・・・(2) ここでtll:NoJの基準製品長 alJ:zllの個数 (2)式を一般化して行列形式で記述すると、Ls =
A+  ’ LIM              ・・
・(3)ここで、AI=(an =atM:l:組合せ
行列L IM= (t+t  ・・・tIM)t:基準
製品長行列 (tは転置行列を意味する) 次に、実績の鋳造長L;を考えると、これは(2)及び
(3)式で得られる鋳造長に対しである偏差ΔL1を持
ち、その結果、このストランドで製品化できないクロッ
プ(長さt、1のものがC,個で構成されている)が出
来てしまう。それを数式化するとLτ=a■・4t +
”=+a1m@tsM+Ct ・tal ”(4)==
 A O,・L九            ・・・(5
)ここで−A? =(att ”。aIMcl  )L
τ=〔t1ビ・・Lsw L、1:1 tと、表わすこ
とができる。
L + = a + + ttt +
a+s ・tts + ...+a IJe 11
3..group.+aIM@tIM...(2) Here, tll: Standard product length of NoJ alJ: Number of zll When formula (2) is generalized and written in matrix form, Ls =
A+' LIM...
・(3) Here, AI=(an=atM:l: Combination matrix L IM= (t+t...tIM) t: Standard product length matrix (t means transposed matrix) Next, the actual casting length L;, this has a certain deviation ΔL1 with respect to the casting length obtained by equations (2) and (3), and as a result, the crop that cannot be manufactured with this strand (length t, 1 is C , consists of , pieces).If you convert it into a mathematical formula, Lτ=a■・4t +
”=+a1m@tsM+Ct・tal”(4)==
AO,・L9...(5
) where -A? =(att”.aIMcl)L
It can be expressed as τ=[t1bi...Lsw L, 1:1 t.

この第一ストランドの最適組合せパターンの評価値をJ
lとすれば、 λ J1=L1°−Lt           ・・・(6
)を最小にすることが一最適パターンを求める条件とな
る。評価値Jtは(3)(5)(6)式よシJ 重  
”’CI”  t 、+1             
               ・・・(7)となり、
これは製品化できないクロップを極力少なくするという
歩留シ向上の考えを端的に我わしている。J+の最小値
は、(3)、 (5)式でのL行列の組合せを繰返し計
算すれば容易に求められる。この時の最適組合せパター
ンをOP T A lとすれば、第一ストランドのみを
考えだ場合、これが最終的に得るべき解となる。
The evaluation value of the optimal combination pattern of this first strand is J
l, then λ J1=L1°−Lt...(6
) is a condition for finding an optimal pattern. The evaluation value Jt is calculated by formulas (3), (5), and (6).
"'CI" t, +1
...(7) becomes,
This clearly contradicts the idea of improving yield, which is to minimize the number of crops that cannot be commercialized. The minimum value of J+ can be easily obtained by repeatedly calculating the combination of L matrices in equations (3) and (5). If the optimal combination pattern at this time is OP T A l, this is the solution that should be finally obtained when only the first strand is considered.

一方、実績切断長の取扱いは、 (新たな実績鋳造長)=(切断前の実績鋳造長)−(鋳
片の実績切断長) ・・・(8)とすることによってL
loに反映させ、同様の手法で最適組合せパターンを鋳
片切断毎に計算することができるので、第2図に本発明
の切断方法を、その相違を明確にするために従来の方法
と比較して示す。
On the other hand, the actual cutting length can be handled as follows: (new actual casting length) = (actual casting length before cutting) - (actual cutting length of slab) (8)
Since the optimum combination pattern can be calculated for each slab cut using the same method, Figure 2 compares the cutting method of the present invention with the conventional method to clarify the differences. Shown.

他の第にストランドについても、(2)〜(7)式を用
いて同様にOP T Akを得ることができるが、この
ように従来方式では、各ストランドに割シ当てられた基
準切断長及び実績切断長のみを用いて、そのストランド
内のみでの最適化をめざしているに過ぎない。
For other strands, OP T Ak can be similarly obtained using equations (2) to (7), but in this way, in the conventional method, the reference cutting length and It merely aims at optimization within that strand by using only the actual cutting length.

本方式は、自ストランドの切断長設定時に、他ストラン
ドの目標予定切断長をも考慮した最適組合せパターンの
選定及び実績切断長のフィードバックによる鋳片切断毎
の最適組合せパターンの計算を意図するものである。
This method is intended to select the optimal combination pattern by taking into consideration the target planned cutting length of other strands when setting the cutting length of the own strand, and to calculate the optimal combination pattern for each slab cutting by feedback of the actual cutting length. be.

便宜的に、実績鋳造長の変更として問題をとらえること
によシ、実績切断長を加味した最適組合わせの解を得る
ことができる。
For convenience, by viewing the problem as a change in the actual casting length, it is possible to obtain an optimal combination solution that takes into account the actual cutting length.

いま、第二ストランドについても第一ストランドと同様
に考察してみると、予定鋳造長L2は、Ls = ax
 1”L2I十a*a’4a +−+aaj@kj+−
a2M″t2M ・・・(9) ””A2  ”L4M            ”’α
0ここで、A2=(a鵞1・・・a2M〕:組合せ行列
L* M= (Ax t ・・・42m:]t:基準製
品行列と表わすことができ、又、実績鋳造長Lrは、L
ff=as+ et*+ +”・+a2Mm12M+c
2 mム、 ・(11)= A o ・L;麗    
        ・・・(I渇ここで、Am=Cast
 °−a2yc2〕L九=〔tII  ・・・L2wl
−3〕1となる。以下同様に第Nストランドまでこの考
えを拡張して、マトリクス形式にまとめると、L’=A
 −LM              ・・・0ここで
、L ’= (LY L!’・・・L’M)’LM=C
L九 tl−、−t・・・・・・1:Mt  )tであ
り、LoはN行−列の実績鋳造長行列、LMは(M+1
)・N行−列の基準切断長行列、そしてAは、基準切断
長を選択するためのN行、(M+1)・N列の選択行列
である。
Now, considering the second strand in the same way as the first strand, the planned casting length L2 is Ls = ax
1”L2I tena*a'4a +-+aaj@kj+-
a2M"t2M...(9) ""A2 "L4M"'α
0 Here, it can be expressed as A2=(a鵞1...a2M): Combination matrix L* M= (Ax t...42m:]t: Standard product matrix, and the actual casting length Lr is L
ff=as+ et*+ +”・+a2Mm12M+c
2 mm, ・(11) = A o ・L; Rei
...(I thirst here, Am=Cast
°−a2yc2]L9=[tII...L2wl
-3] becomes 1. Similarly, if we extend this idea to the Nth strand and summarize it in matrix form, L'=A
-LM...0Here, L'= (LY L!'...L'M)'LM=C
L9 tl-, -t...1:Mt)t, Lo is the actual casting length matrix with N rows and columns, and LM is (M+1
)·N rows and columns of reference cutting length matrix, and A is a selection matrix of N rows and (M+1)·N columns for selecting the reference cutting length.

0式を基準として本方式を適用すると、鋳造長行列の各
項目は、各ストランドに対応する基準行列が任意に選択
可能となるので、次式のように表わすことができる。
When this method is applied using the formula 0 as a reference, each item of the casting length matrix can be expressed as the following formula, since the reference matrix corresponding to each strand can be arbitrarily selected.

L0=A/ ・LM           ・・・aa
ここでL’=l”LYL冒・旧・・La)’LM=[L
んtl−:、t・・・・・化ムt]tBt 1=Cb+
  鳳 j    b !+J  ・・・・・・ b 
旧1  〕ここで、A′は、本方式の選択マトリクスで
あり、その中の行列BIJはiストランドの鋳造長を満
たす基準切断長をjストランドから選択する組ここで(
6)式と同様最適組合せパターンの評価を求めると、N
機のストランド全てを加味した評価値JTは、 JT−ΣJk =Σ(L’に−Lk) =Σc ’b−L’ak・・・f161(ここでc ’
 、 l−a ’は従来方式のc、L。と区別するため
に表わしたクロップ個数及びクロップ長である。)とな
り、これを最小とする選択マトリクスが最適組合せとな
りうる。
L0=A/ ・LM ・・・aa
Here, L'=l"LYLexpansion/old...La)'LM=[L
tl-:, t... t]tBt 1=Cb+
Otori j b! +J ・・・・・・ b
[Old 1] Here, A' is the selection matrix of this method, and the matrix BIJ therein is a matrix for selecting a reference cutting length from j strands that satisfies the casting length of i strand.Here, (
Similarly to equation 6), when evaluating the optimal combination pattern, N
The evaluation value JT that takes into account all the strands of the machine is JT - ΣJk = Σ (-Lk to L') = Σc 'b - L'ak...f161 (here c'
, l-a' are c and L of the conventional method. These are the number of crops and the crop length expressed to distinguish between the two. ), and the selection matrix that minimizes this can be the optimal combination.

本方式による有効性を示すには Σ (Ck争t、b  C’に@l’。k)−≧0  
・・・αηを示せばよい。前述の最適パターン0PTA
kを用いると、 Loに:0PTAk@LkM            
・・・(1槌(ここでに:第にストランド) −(akl m l* + 十・”・+ aku”4M
)+CN tsk・・・01 となり、これは04)式より =(ak+ °tk1+゛−佳akM”ム1)+c/に
・t/。、+ΣBk、@L’、。
To demonstrate the effectiveness of this method, Σ (Ck conflict t, b @l' in C'.k) - ≧ 0
...All you have to do is show αη. The aforementioned optimal pattern 0PTA
Using k, Lo: 0PTAk@LkM
...(1 mallet (here: the second strand) -(akl m l* + ten・"・+aku"4M
)+CN tsk...01, which is from equation 04) = (ak+ °tk1+゛-kakM''mu1)+c/ni・t/., +ΣBk, @L',.

(tキj) ・・・(イ) と記述できるので、(17)、α1.翰式よシk   
                         
    kl(i4k) ・・・li2]) となり、本方式の方がよシ最適であることが確認された
。(B klが全て0の場合には、従来方式と本方式と
の評価が等しくなる) 第1図には、この方法を実現する装置の概略を示してい
るが、制御用計算機2で決定された各鋳片毎の切断長が
、各ストランドの切断制御装置5゜6に設定され、切断
機7.8によって実際の鋳片の切断が行なわれるつ測長
器9.10は鋳造長の実績値を取込むと同時に、これら
の切断された鋳片の実績切断長をも取込み、制御用計算
機2へその値をフィードバックしている。
(t key j) ... (a) Since it can be written as (17), α1. Kanshiki Yoshik

kl(i4k)...li2]), and it was confirmed that this method is more optimal. (If B kl is all 0, the evaluation of the conventional method and this method will be the same.) Figure 1 shows an outline of a device that implements this method. The cutting length for each slab is set in the cutting control device 5.6 for each strand, and while the cutting machine 7.8 actually cuts the slab, the length measuring device 9.10 measures the actual casting length. At the same time as taking in the values, the actual cutting lengths of these cut slabs are also taken in, and the values are fed back to the control computer 2.

このように、本方式によれは自スト→ンドのみならず、
他ストランドの実績切断長も取込み又、他ストランドの
目標予定切断長をも基準製品長として取扱うことができ
るので、組合わせの最適化が、ストランド独立の切断方
法よりも向上し、その結果、歩留りのより切断制御方法
を提供することができる。
In this way, with this method, the error is not limited to the own string →
Since the actual cutting length of other strands can also be taken in, and the target planned cutting length of other strands can also be treated as the standard product length, optimization of combinations is improved compared to the cutting method of independent strands, and as a result, yield is improved. A more cutting control method can be provided.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各ストランド独立の切断方法に比して
、全てのストランドを一括して制御することができるの
で、歩留り向上の効果がある。
According to the present invention, compared to a method of cutting each strand independently, all the strands can be controlled at once, so there is an effect of improving the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の設備及び装置を説明する図、第2図
は、本発明による切断制御方法を説明する図である。 2・・・制御用計算機、3,4・・・鋳造長兼切断長測
定器、5,6・・・切断制御装置、11・・・従来方法
によるクロップ、12・・・今回の方法によるクロップ
FIG. 1 is a diagram for explaining the equipment and device of the present invention, and FIG. 2 is a diagram for explaining the cutting control method according to the present invention. 2... Control computer, 3, 4... Casting length and cutting length measuring device, 5, 6... Cutting control device, 11... Cropping by conventional method, 12... Cropping by this method .

Claims (1)

【特許請求の範囲】[Claims] 1、マルチストランド型連続鋳造設備において、自スト
ランドの切断長の設定時に、前記自ストランドの目標予
定切断長及び実績切断長のみならず、他ストランドの実
績切断長をも考慮し、前記他ストランドの目標予定切断
長との交換、及び、取捨選択をし、かつ、切断設定長の
変更操作をすることを特徴とする連続鋳造設備の切断制
御方法。
1. In multi-strand continuous casting equipment, when setting the cutting length of the own strand, consider not only the target planned cutting length and actual cutting length of the own strand, but also the actual cutting length of other strands, and set the cutting length of the other strand. A cutting control method for continuous casting equipment, characterized by exchanging with a target planned cutting length, making a selection, and changing the set cutting length.
JP18059084A 1984-08-31 1984-08-31 Method for controlling cutting with continuous casting installation Pending JPS6160250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18059084A JPS6160250A (en) 1984-08-31 1984-08-31 Method for controlling cutting with continuous casting installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18059084A JPS6160250A (en) 1984-08-31 1984-08-31 Method for controlling cutting with continuous casting installation

Publications (1)

Publication Number Publication Date
JPS6160250A true JPS6160250A (en) 1986-03-27

Family

ID=16085920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18059084A Pending JPS6160250A (en) 1984-08-31 1984-08-31 Method for controlling cutting with continuous casting installation

Country Status (1)

Country Link
JP (1) JPS6160250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578344U (en) * 1992-04-03 1993-10-26 合同製鐵株式会社 Multi-strand continuous casting equipment
CN110976803A (en) * 2019-12-19 2020-04-10 攀枝花钢城集团瑞钢工业有限公司 Continuous casting billet sizing control method
CN115283632A (en) * 2022-08-03 2022-11-04 重庆钢铁股份有限公司 Method for reducing production of non-fixed-size billets during shutdown of billet continuous casting machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578344U (en) * 1992-04-03 1993-10-26 合同製鐵株式会社 Multi-strand continuous casting equipment
CN110976803A (en) * 2019-12-19 2020-04-10 攀枝花钢城集团瑞钢工业有限公司 Continuous casting billet sizing control method
CN115283632A (en) * 2022-08-03 2022-11-04 重庆钢铁股份有限公司 Method for reducing production of non-fixed-size billets during shutdown of billet continuous casting machine
CN115283632B (en) * 2022-08-03 2024-03-12 重庆钢铁股份有限公司 Method for reducing production of non-fixed-length billets during shutdown of small square billet continuous casting machine

Similar Documents

Publication Publication Date Title
Abdel-Magid et al. AGC tuning of interconnected reheat thermal systems with particle swarm optimization
KR20200035550A (en) Estimation method of transmission temperature of molten steel using artificial neural network technique
JPS6160250A (en) Method for controlling cutting with continuous casting installation
CA2006491C (en) Method of controlling plate flatness and device therefor
JP2013145521A (en) Method, device and program for predicting efficiency of manufacturing process
Antonova et al. Development of simulation model of continuous casting machine with dry change of steel ladles
KR930003655B1 (en) Control method for shearing bars in bar steel line
Zhu et al. A genetic programming-based evolutionary approach for flexible job shop scheduling with multiple process plans
JP2004348436A (en) Production plan preparing method and program
Aksyonov et al. Development of a Simulation Model of Cutting Slabs in a Continuous Casting Machine
Rowshannahad et al. Qualification management to reduce workload variability in semiconductor manufacturing
JPH07290125A (en) Method for scheduling physical distribution in rolling mill
Stainton Modelling and reality
Emery An approach to job shop scheduling using a large-scale computer
JP3983988B2 (en) Pass schedule calculation device in reverse mill
JP2000247442A (en) Method of issuing operation plan of material yard
Clitan et al. Automatic determination of optimal length of casting steel blocks in the context of an imprecise manufacturing
JPH07182420A (en) Production planning device
Xie et al. Scheduling of a reversing slab mill
JPH11170144A (en) Semiconductor production system
Aksyonov et al. Application of a models integration module to the cutting slabs problem in a continuous casting machine
Sismanis Energy Savings in EAF Steelmaking by Process Simulation and Data-Science Modeling on the Reproduced Results
Fay et al. Lyons and Wildebeest: A Predator-Prey Model
US5436842A (en) Method of and apparatus for indicating number of blanks to be introduced for products, and manufacturing system using the same
JPS60160404A (en) Automatic tracking system of inertial fluctuation in servo system