JPS6159840A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS6159840A
JPS6159840A JP18190484A JP18190484A JPS6159840A JP S6159840 A JPS6159840 A JP S6159840A JP 18190484 A JP18190484 A JP 18190484A JP 18190484 A JP18190484 A JP 18190484A JP S6159840 A JPS6159840 A JP S6159840A
Authority
JP
Japan
Prior art keywords
substrate
carbon
susceptor
carbon susceptor
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18190484A
Other languages
Japanese (ja)
Inventor
Atsuhiro Tsukune
築根 敦弘
Kanetake Takasaki
高崎 金剛
Kenji Koyama
小山 堅二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18190484A priority Critical patent/JPS6159840A/en
Publication of JPS6159840A publication Critical patent/JPS6159840A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To equalize a thin-film forming rate extending over the whole surface of a substrate by forming a film or a part consisting of a metal having conductivity close to the quality of material of the substrate and surface secondary- electron radiation characteristics to a carbon susceptor section in the peripheral section of the substrate and coating a carbon surface. CONSTITUTION:Substrates 5 are held or fastened by each two pin 9 fitted to a carbon susceptor 6. Since the pins are set up where close on the center line of the substrate, the substrate is held under the state in which it is fast stuck approximately to the carbon susceptor, and there is no possibility of slip-off. An escape groove 10 for inserting tweezers is formed to the carbon susceptor in order to easily mounting or dismantling the substrate. A substrate peripheral section 8 in the carbon susceptor 6 is coated with aluminum or an aluminum alloy through flame spray coating, application, etc. Accordingly, the secondary- electron radiation characteristics of the substrate and a susceptor section are brought close, thus equalizing a thin-film forming rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板周辺部での薄膜形成が低減されることの
ないプラズマCVD方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a plasma CVD method that does not reduce the formation of a thin film around a substrate.

〔従来の技術〕[Conventional technology]

半導体プロセスにおいて、CV D (Chemica
lVapor Deposition、)技術は不可欠
になっており、この技術は、形成させようとする薄膜材
料を構成する物質より成るガスをウェハー等の基板上に
供給し、化学反応によって所望の薄膜を基板上に形成さ
せる方法であって、CVD法のなかでもプラズマCVD
法は、比較的低温度で反応がすすむので広く用いられて
いる。
In the semiconductor process, CVD (Chemica
1Vapor Deposition (Vapor Deposition) technology has become indispensable, and this technology supplies a gas consisting of the substance that constitutes the thin film material to be formed onto a substrate such as a wafer, and then forms the desired thin film on the substrate through a chemical reaction. Among the CVD methods, plasma CVD is a method for forming
This method is widely used because the reaction proceeds at relatively low temperatures.

第2図に本装置の基本的な構成を示す。円筒状の容器1
はガス導入口2、及び排気口3を備えて全体は電気炉4
に挿入されている。容器1内には基板5を塔載した複数
のカーボンサセプタ6が封入されている。カーボンサセ
プタには基板を保持するためのピンが設けられ、基板は
それぞれ対向して保持される。カーボンサセプタ6には
高周波電圧を印加するので交互に対向電極を構成する如
く接続され、外部高周波電源7と接続される。ガス導入
口2より反応ガスを導入し電気炉4を300〜400℃
に加熱して支持板に高周波電圧を加えることにより、支
持板間隙に発生したプラズマ励起により化学反応が促進
され使用ガスに応じて酸化シリコン、窒化シリコン、P
 S G (Phosph。
Figure 2 shows the basic configuration of this device. Cylindrical container 1
is equipped with a gas inlet 2 and an exhaust port 3, and the whole is an electric furnace 4.
is inserted into. A plurality of carbon susceptors 6 on which substrates 5 are mounted are sealed in the container 1 . The carbon susceptor is provided with pins for holding the substrates, and the substrates are held facing each other. Since a high frequency voltage is applied to the carbon susceptor 6, the carbon susceptors 6 are connected alternately so as to constitute opposing electrodes, and are connected to an external high frequency power source 7. A reaction gas is introduced through the gas inlet 2 and the electric furnace 4 is heated to 300 to 400°C.
By heating the support plate and applying a high-frequency voltage to the support plate, the plasma excitation generated in the gap between the support plates accelerates the chemical reaction, and depending on the gas used, silicon oxide, silicon nitride, P
S G (Phosph.

5ilicate Glass)等の薄膜が形成される
A thin film such as 5ilicate Glass) is formed.

サセプタ6の素材としてはカーボンの他にアルミニュウ
ム材料も使用されるが、容器1の軸方向の寸法が大きく
なってくると、アルミニュウムサセプタの場合変形の恐
れを生ずる。従って一般的には高温強度の大きいカーボ
ンサセプタが多く用いられる。
In addition to carbon, aluminum is also used as a material for the susceptor 6, but as the axial dimension of the container 1 increases, there is a risk of deformation in the case of an aluminum susceptor. Therefore, carbon susceptors with high high temperature strength are generally used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

カーボンサセプタを用いた場合、反応時ウェハー等の基
板の表面と、カーボン表面との電導度、二次電子放射特
性等の差によってプラズマ励起状態に差を生じ、基板周
辺部のH膜形成速度が低下する。その結果を第3図 実
線aにて示す。外周より約1On+内側で約10%、5
龍内側で約20%の形成膜厚が低下していることが判る
。従って基板の外周に近い部分は利用出来ず、その分チ
ップの生産性が低下する。
When a carbon susceptor is used, differences in conductivity, secondary electron emission characteristics, etc. between the surface of the substrate such as a wafer and the carbon surface during the reaction will cause a difference in plasma excitation state, and the rate of H film formation around the substrate will decrease. descend. The results are shown by the solid line a in Figure 3. Approximately 1 On from the outer circumference + approximately 10% on the inside, 5
It can be seen that the formed film thickness is reduced by about 20% on the inner side of the dragon. Therefore, the portion near the outer periphery of the substrate cannot be used, and the productivity of the chip decreases accordingly.

C問題点を解決するための手段〕 本発明では、上記問題点を解決するため少なくとも基板
周辺部のカーボンサセプタ部に、基板材質に近い電導度
と表面二次電子放射特性を持つアルミニュウム、あるい
はアルミニウム合金の金属皮膜、あるいは部品を設けて
カーボン面を被うことにより、薄膜形成速度の基板全面
にわたっての均一化をはかるものである。
Means for Solving Problem C] In the present invention, in order to solve the above problems, at least the carbon susceptor portion around the substrate is made of aluminum, or aluminum, which has conductivity and surface secondary electron emission characteristics close to that of the substrate material. By covering the carbon surface with an alloy metal film or parts, the thin film formation rate is made uniform over the entire surface of the substrate.

〔作用〕[Effect]

プラズマCVDにおいて、動作時のプラズマ励起特性が
膜厚形成速度に大きな影響を及ぼずことが知られている
。プラズマは電子と流入ガス分子との衝突による電離に
よって発生するが、電子の発生は、一方基板あるいはカ
ーボンサセプタに突入した電子による二次電子発生によ
って著しく影響をうける。基板とサセプタ部の二次電子
放射特性を、出来る限り近づけることにより薄膜形成速
度の均一化をはかることが可能となる。カーボンは表面
の平滑度が低く、二次電子放出比が基板部と比較して劣
るので、アルミニュウム等の金属を配置することにより
、これの改善をはかるものである。
In plasma CVD, it is known that the plasma excitation characteristics during operation do not have a large effect on the film thickness formation rate. Plasma is generated by ionization caused by collisions between electrons and incoming gas molecules, but the generation of electrons is significantly influenced by the generation of secondary electrons due to electrons entering the substrate or carbon susceptor. By making the secondary electron emission characteristics of the substrate and the susceptor part as close as possible, it is possible to make the thin film formation rate uniform. Since carbon has a low surface smoothness and a secondary electron emission ratio inferior to that of the substrate, this problem is improved by disposing a metal such as aluminum.

〔実施例〕〔Example〕

第1図は本発明によってカーボンサセプタ6の基板周辺
部に、アルミニュウム皮膜8を設けた一例を示す。装置
全体の構成はサセプタ部を除いて第2図と殆ど変わらな
い、第1図(a)は第1図(b)のA−AIgr面図、
第1図(b)は斜めよりみた図を示す。カーボンサセプ
タは、図の左右方向に延びた形状であるが、第1図では
説明の便宜上、ウェハ一部分のみ示す。この図では、基
板5はカーボンサセプタ6に設けられた、それぞれ2本
のピン9によって挟持もしくは係止されている。ビンの
位置は、はぼ基板の中心線上に近い位置に設けられてい
るので、基板はほぼカーボンサセプタに密着した状態で
保持され、脱落する恐れはない。またカーボンサセプタ
には基板の取りつけ、敢り外しを容易にするためビンセ
ット挿入用の逃げ溝10を設けである。
FIG. 1 shows an example in which an aluminum film 8 is provided around the substrate of a carbon susceptor 6 according to the present invention. The configuration of the entire device is almost the same as in Fig. 2 except for the susceptor part. Fig. 1(a) is an A-AIgr side view of Fig. 1(b).
FIG. 1(b) shows an oblique view. Although the carbon susceptor has a shape extending in the left-right direction in the figure, only a portion of the wafer is shown in FIG. 1 for convenience of explanation. In this figure, the substrate 5 is held or locked by two pins 9 provided on the carbon susceptor 6, respectively. Since the position of the bottle is close to the center line of the substrate, the substrate is held in close contact with the carbon susceptor, and there is no risk of it falling off. Further, the carbon susceptor is provided with an escape groove 10 for inserting a bottle set in order to facilitate attachment and detachment of the substrate.

カーボンサセプタの基板周辺部8にはアルミニウムまた
はアルミニウム合金を溶射、塗布等によって被覆されて
いる。
The substrate peripheral portion 8 of the carbon susceptor is coated with aluminum or an aluminum alloy by thermal spraying, coating, or the like.

溶射技術は付着すべき金属材料を、高温焔のなかを高速
度で通過させ、熔融状態で物体表面に吹き付け、皮膜を
形成する方法で、比較的簡単に必要個所に皮膜をつくる
ことが出来る。溶射法によらずにアルミニニウムの金属
部品を用いることも同様の効果が期待出来る。
Thermal spraying technology is a method in which the metal material to be adhered passes through a high-temperature flame at high speed and is sprayed onto the surface of an object in a molten state to form a film, making it relatively easy to form a film where necessary. Similar effects can be expected by using aluminum metal parts without using the thermal spraying method.

本発明の実施例で示された方法で、プラズマCVDを行
った結果を第3図の点線すに示す。点線すは周辺より5
1−内側で、約5%膜厚増加となっているが、従来の方
法による実線aと比較して著しく改善されていることが
わかる。本実施例ではアルミニウムを用いたので、膜厚
が少し増加しているが、アルミニュウム合金でもよいし
、またその他の金属を用いることも出来る。
The results of plasma CVD performed using the method shown in the embodiments of the present invention are shown by the dotted line in FIG. The dotted line is 5 from the surrounding area.
Although the film thickness increased by about 5% on the 1-inner side, it can be seen that this is a significant improvement compared to the solid line a according to the conventional method. In this embodiment, aluminum is used, so the film thickness is slightly increased, but an aluminum alloy or other metals may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明を実施することにより従来のプラズマCVD法で
は基板周辺部で薄膜形成速度の低下が避けられなかった
が、基板周辺まで形成速度を上げることが可能となった
By implementing the present invention, it has become possible to increase the formation rate to the periphery of the substrate, whereas in the conventional plasma CVD method, the thin film formation rate inevitably decreases at the periphery of the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いたカーボンサセプタ部の構
造を示す、ここで第1図(b)は斜視図、第1図(a)
は第1図(b)のA−Aによる断面図を示す。第2図は
プラズマCVD装置の全体の構成図を示す。第3図は従
来方法と対比しての形成膜厚の分布を示す図である。 図面において、1は石英反応管、2は反応ガス流入口、
3は排気口、4は電気加熱炉、5はウェハー等の基板、
6はカーボンサセプタ、7は高周波電源、8はアルミニ
ュウム等の金属被覆部、9は基板保持用ピン、10はピ
ンセット挿入用溝をそれぞれ示す。 第 1 図(久) 第1図(b)
FIG. 1 shows the structure of the carbon susceptor used in the implementation of the present invention, where FIG. 1(b) is a perspective view and FIG. 1(a)
shows a sectional view taken along line A-A in FIG. 1(b). FIG. 2 shows an overall configuration diagram of the plasma CVD apparatus. FIG. 3 is a diagram showing the distribution of the formed film thickness in comparison with the conventional method. In the drawing, 1 is a quartz reaction tube, 2 is a reaction gas inlet,
3 is an exhaust port, 4 is an electric heating furnace, 5 is a substrate such as a wafer,
Reference numeral 6 indicates a carbon susceptor, 7 a high frequency power source, 8 a metal covering portion such as aluminum, 9 a substrate holding pin, and 10 a groove for inserting tweezers. Figure 1 (Ku) Figure 1 (b)

Claims (1)

【特許請求の範囲】[Claims]  基板を保持するカーボンサセプタの該基板周囲のサセ
プタ部に、金属部材を露出させて取付けてなるカーボン
サセプタを用い、このカーボンサセプタと対向する電極
間に高周波を印加し、プラズマを発生させて該基板上に
薄膜を形成することを特徴とする気相成長方法。
A carbon susceptor that holds a substrate is attached to the susceptor part around the substrate with a metal member exposed, and a high frequency is applied between the electrodes facing the carbon susceptor to generate plasma and remove the substrate. A vapor phase growth method characterized by forming a thin film on top.
JP18190484A 1984-08-31 1984-08-31 Vapor growth method Pending JPS6159840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18190484A JPS6159840A (en) 1984-08-31 1984-08-31 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18190484A JPS6159840A (en) 1984-08-31 1984-08-31 Vapor growth method

Publications (1)

Publication Number Publication Date
JPS6159840A true JPS6159840A (en) 1986-03-27

Family

ID=16108917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18190484A Pending JPS6159840A (en) 1984-08-31 1984-08-31 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS6159840A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127171A (en) * 1976-04-19 1977-10-25 Tokyo Ouka Kougiyou Kk Method of new plasma reaction treatment at low temperature
JPS5643724A (en) * 1979-09-13 1981-04-22 Pacific Western Systems Method and device for semiconductorrwafer pecvvtreatment
JPS59161828A (en) * 1983-03-07 1984-09-12 Hitachi Micro Comput Eng Ltd Reaction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127171A (en) * 1976-04-19 1977-10-25 Tokyo Ouka Kougiyou Kk Method of new plasma reaction treatment at low temperature
JPS5643724A (en) * 1979-09-13 1981-04-22 Pacific Western Systems Method and device for semiconductorrwafer pecvvtreatment
JPS59161828A (en) * 1983-03-07 1984-09-12 Hitachi Micro Comput Eng Ltd Reaction device

Similar Documents

Publication Publication Date Title
JP4007640B2 (en) Shield for electrostatic chuck
US5456757A (en) Susceptor for vapor deposition
US4962727A (en) Thin film-forming apparatus
JPH0645261A (en) Semiconductor vapor growing apparatus
JPS639584B2 (en)
TWI788654B (en) Substrate support cover for high-temperature corrosive environment
JPH09219369A (en) Equipment and method for manufacturing semiconductor device
JPH01272A (en) Microwave plasma CVD equipment
JPH0377655B2 (en)
JPH06163423A (en) Semiconductor manufacturing device
JPS6159840A (en) Vapor growth method
WO2009116579A1 (en) Plasma processing method and plasma processing apparatus
JPH0639709B2 (en) Plasma CVD equipment
JPS631044A (en) Vapor phase reaction equipment
JPS5931977B2 (en) Plasma CVD equipment
JPH01188678A (en) Plasma vapor growth apparatus
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH10223620A (en) Semiconductor manufacturing device
JPH0361377A (en) Microwave-plasma film depositing device
JP2504489B2 (en) Chemical vapor deposition
JPS6068619A (en) Plasma chemical vapor deposition device
JPS6115976A (en) Plasma reaction device and method for use thereof
JPH05195230A (en) Coating device for long-sized body
JPH0669032B2 (en) Plasma processing device
TW202343669A (en) Pocket heater with purge to improve gap tolerance