JPS6159780B2 - - Google Patents

Info

Publication number
JPS6159780B2
JPS6159780B2 JP55131600A JP13160080A JPS6159780B2 JP S6159780 B2 JPS6159780 B2 JP S6159780B2 JP 55131600 A JP55131600 A JP 55131600A JP 13160080 A JP13160080 A JP 13160080A JP S6159780 B2 JPS6159780 B2 JP S6159780B2
Authority
JP
Japan
Prior art keywords
exhaust port
vacuum
reaction vessel
sub
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55131600A
Other languages
Japanese (ja)
Other versions
JPS5756037A (en
Inventor
Kiichi Komada
Susumu Tojo
Minoru Nakazato
Yutaka Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP55131600A priority Critical patent/JPS5756037A/en
Publication of JPS5756037A publication Critical patent/JPS5756037A/en
Publication of JPS6159780B2 publication Critical patent/JPS6159780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00153Vacuum spaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳现な説明】 本発明は䞀般的に蚀えば、電気抵抗加熱反応炉
であ぀お、反応䞭に電気抵抗䜓を䟵す物質の存圚
たたは発生を芋る反応に䜿甚されるためのものに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention generally relates to electrical resistance heating reactors for use in reactions that monitor the presence or generation of substances that attack electrical resistors during the reaction.

本発明はホり酞ホり酞ナトリりム等のホり酞
塩たたは酞化ホり玠を炭玠源の存圚䞋たたは非存
圚䞋に還元性金属で還元しおホり玠たたはホり玠
炭化物を生成させる方法の実斜に関連しおなされ
たもので、圓該反応に関連しお具䜓的に蚘茉され
るが、本発明の反応炉が䞀般に電気抵抗䜓を䟵す
物質の存圚たたは発生を芋る反応に䞀般に䜿甚さ
れるものであるこずは自明である。
The present invention relates to the implementation of a method for producing boron or boron carbide by reducing boric acid, a boron salt such as sodium borate, or boron oxide with a reducing metal in the presence or absence of a carbon source. Although the reactor of the present invention is specifically described in connection with the reaction, it is obvious that the reactor of the present invention is generally used for reactions in which the presence or generation of substances that attack electrical resistors is observed. be.

ホり玠ホり酞ナトリりム等のホり酞塩たた
は酞化ホり玠はアルミニりムカルシりムたた
はマグネシりム等の還元性の金属により非酞化性
雰囲気䞭600〜1100℃で還元され、ホり玠が生成
する。あるいは、還元性の金属ず同時に黒鉛庶
糖などの炭玠源を加えるこずにより同じ条件で還
元炭化され、ホり玠炭化物が生成する。
Boron, a borate such as sodium borate, or boron oxide is reduced with a reducing metal such as aluminum, calcium, or magnesium in a non-oxidizing atmosphere at 600 to 1100°C to produce boron. Alternatively, by adding a carbon source such as graphite or sucrose at the same time as a reducing metal, the material is reduced and carbonized under the same conditions to produce boron carbide.

この枩床条件はニクロム鉄クロム等の電熱線
および垯を発熱䜓ずしお䜿甚する電気抵抗加熱炉
によ぀お満たすこずが可胜であり、このような電
気抵抗加熱炉は䞊蚘ず異なる発熱䜓を甚いる炉圢
匏ず比范しお極めお廉䟡であり、たた、倧型化も
容易である。
This temperature condition can be met by an electric resistance heating furnace that uses heating wires and strips of nichrome, iron chrome, etc. as heating elements. It is extremely inexpensive compared to other types, and can be easily made larger.

しかし、還元反応、あるいは還元炭化反応は急
激な発熱反応であるため、反応時に、酞化ホり
玠還元性金属等の蒞発が生じ、これらの蒞気は
いずれも䞊蚘の発熱䜓を激しく劣化させる。その
ため、䞊蚘の反応を行う反応宀ず発熱䜓の収玍宀
ずの間には䜕らかの方法で隔離させる必芁があ
る。
However, since the reduction reaction or reduction carbonization reaction is a rapid exothermic reaction, boron oxide, reducing metals, etc. evaporate during the reaction, and both of these vapors severely deteriorate the heating element. Therefore, it is necessary to isolate the reaction chamber in which the above reaction takes place and the heating element storage chamber by some method.

䞀方、ホり酞は加熱するず分解しお氎蒞気を発
生し、たた、ホり酞塩や酞化ホり玠は吞湿性が高
いため通垞かなりの氎分を含有しおおり加熱する
ず氎蒞気を攟出する。この氎蒞気は還元反応ある
いは還元炭化反応を阻害し、ホり酞塩の残留、急
激な発熱反応時の氎蒞気の瞬間的な発生ず熱膚匵
に起因する反応物反応生成物の機械的飛散、あ
るいは、生成ホり玠あるいは炭化物の氎蒞気酞化
を招く原因ずなる。埓぀お、䞊蚘反応開始前に十
分な真空脱氎を行うこずが望たしい。たた、炉内
を非酞化性雰囲気ずするためにも、炉内を䞀床真
空状態ずしお空気を陀去する必芁がある。
On the other hand, boric acid decomposes and generates water vapor when heated, and borates and boron oxides are highly hygroscopic, so they usually contain a considerable amount of water and release water vapor when heated. This water vapor inhibits the reduction reaction or reduction carbonization reaction, resulting in residual borate, mechanical scattering of reactants and reaction products due to instantaneous generation of water vapor and thermal expansion during rapid exothermic reactions, or This causes steam oxidation of boron or carbide produced. Therefore, it is desirable to perform sufficient vacuum dehydration before starting the reaction. Furthermore, in order to create a non-oxidizing atmosphere inside the furnace, it is necessary to once place the inside of the furnace in a vacuum state and remove air.

高枩の化孊反応甚の容噚ずしおは黒鉛を䜿甚し
なければならないが、䞀般に人造黒鉛は埮现な気
孔を有し、特殊な含浞凊理を行぀た䞍浞透明性黒
鉛を陀き、物質の拡散流䜓の浞透を蚱すため、
黒鉛の反応容噚もその噚壁は気䜓や金属の蒞気の
通過や物質の拡散通過を完党に阻止するこずがで
きない。埓぀お黒鉛容噚内郚のみを高床に真空に
するこずは䞍可胜であるし、黒鉛反応容噚の内倖
に圧力差がある堎合、あるいは黒鉛反応容噚を長
期間にわた぀お䜿甚する堎合には、反応物質の黒
鉛容噚倖ぞの浞出は避けられない。
Graphite must be used as a container for high-temperature chemical reactions, but in general, artificial graphite has fine pores and, with the exception of impregnable transparent graphite that has undergone special impregnation treatment, it is difficult for substances to diffuse and for fluids to flow. To allow penetration,
The walls of a graphite reaction vessel cannot completely prevent the passage of gas or metal vapor or the diffusion of substances. Therefore, it is impossible to create a high degree of vacuum only inside the graphite container, and if there is a pressure difference between the inside and outside of the graphite reaction container, or if the graphite reaction container is used for a long period of time, the reactants leaching out of the graphite container is unavoidable.

以䞊に述べた二぀の芁件、すなわち、反応宀ず
発熱䜓収玍宀ずの隔離、および、反応宀の真空排
気を同時に満足させる圢匏ずしおは、 (a) 隔離壁ず耐真空容噚の圹割を兌ねる炉心管を
䜿甚し、炉心管内を反応宀ずしお䜿甚し、真空
排気は炉心管内のみ行う圢匏ず、 (b) 反応宀発熱䜓収玍宀をずもに耐真空容噚の
内郚に蚭眮し、さらに䞡宀の間に隔離壁を蚭け
る圢匏 の぀が考えられる。真空排気系の小型化、およ
び぀の圹割を炉心管に兌ねさせるずいう単玔化
の点からは(a)の圢匏の方が良さそうであるが、次
のような重倧な問題点を持぀おいる。すなわち、
発熱反応時には最高枩床が1200〜1400℃になるこ
ずず合わせお、枩床的雰囲気的に長期間の䜿甚
に耐える単䞀の材料が存圚せず、たた、炉心管を
倚局構造にするこずによ぀おこの問題を避けよう
ずするず、反応を遂行する反応宀の有効䜓積が炉
心管肉厚の増倧によ぀お倧巟に枛少し、さらに炉
心管自身の熱容量の増倧が炉心管を䌝぀お炉倖ぞ
逃散する熱の増倧のために熱効率が倧巟に枛少す
るずいう加熱炉ずしおは臎呜的な欠陥を持぀に至
る。
The two requirements mentioned above, that is, the isolation of the reaction chamber and the heating element storage chamber, and the evacuation of the reaction chamber, can be met at the same time by: (a) a reactor core that serves as both a separation wall and a vacuum-resistant container; (b) Both the reaction chamber and heating element storage chamber are installed inside a vacuum-resistant container, and there is a Two types of separation walls can be considered. Type (a) seems to be better in terms of downsizing the vacuum exhaust system and simplifying the role of the reactor core tube, but it has the following serious problems. . That is,
In addition to the fact that the maximum temperature during an exothermic reaction is 1200 to 1400℃, there is no single material that can withstand long-term use in terms of temperature and atmosphere, and because the core tube has a multilayer structure, In order to avoid this problem, the effective volume of the reaction chamber in which the reaction is carried out is drastically reduced due to the increase in the wall thickness of the reactor core tube, and the increase in the heat capacity of the reactor core tube itself is transmitted through the reactor core tube to the outside of the reactor. As a heating furnace, this has a fatal flaw in that the thermal efficiency is drastically reduced due to the increase in heat escaping to the furnace.

したが぀お、埓来の(a)の圢匏や、あるいは高䟡
な黒鉛ヒヌタヌタンマン炉等を甚いる方法によ぀
お補造されたホり玠あるいはよう玠炭化物は生産
性が䜎く高䟡であ぀た。
Therefore, boron or iodine carbides produced by the conventional method (a) or by a method using an expensive graphite heater Tammann furnace have low productivity and are expensive.

本発明者等は(b)の圢匏においお、黒鉛補隔壁ず
その倖郚の発熱䜓収容宀を別々に排気できる構造
を採甚するこずにより䞊蚘の枩床的雰囲気的な
問題を解決できるず同時に、熱効率も倧巟に改善
〓〓〓〓
されるこずを芋出し本発明を完成した。
In the type (b), the inventors have found that by adopting a structure in which the graphite partition wall and the heating element storage chamber outside thereof can be separately evacuated, the above temperature and atmospheric problems can be solved, and at the same time thermal efficiency can be improved. Significant improvement〓〓〓〓
The present invention was completed based on this discovery.

本発明によれば匁぀きの排気口第排気口
ず匁぀きの気䜓導入口第気䜓導入口を備え
た耐真空容噚ず該耐真空容噚内に蚭けられた黒
鉛補の反応容噚であ぀お、前蚘耐真空容噚ず独立
に別の匁぀きの排気口第排気口ず匁぀きの
気䜓導入口第気䜓導入口を有するものず
該反応容噚を包囲しお前蚘耐真空容噚に配眮され
た電気抵抗加熱炉ずからなる化孊反応炉が提䟛さ
れる。
According to the invention, an exhaust port with a valve (first exhaust port)
and a vacuum-resistant container equipped with a gas inlet (first gas inlet) with a valve; a reaction container made of graphite provided within the vacuum-resistant container; One having an exhaust port (second exhaust port) and a gas inlet with a valve (second gas inlet);
A chemical reaction furnace is provided which includes an electric resistance heating furnace surrounding the reaction vessel and disposed in the vacuum-resistant vessel.

本発明の芁旚は黒鉛反応容噚ず、それをかこむ
電気抵抗加熱炉を玍めた耐真空容噚を別々に排気
および通気できるように構成した点に存し、排気
口及び気䜓導入口の蚭け方は皮々の様匏が可胜で
ある。黒鉛反応容噚に盎接排気口ず気䜓導入口を
蚭けるこずが可胜である。
The gist of the present invention resides in that a graphite reaction vessel and a vacuum-resistant vessel enclosing an electric resistance heating furnace are constructed so as to be able to be separately evacuated and ventilated, and the exhaust port and gas inlet may be provided in various ways. formats are possible. It is possible to provide an exhaust port and a gas inlet directly to the graphite reaction vessel.

たた本発明の化孊反応炉は黒鉛補反応容噚およ
び、これを包囲する電気抵抗䜓の耐真空容噚空間
内における配眮様匏に䜕ら限定されるものでな
く、いわゆる竪型炉及び暪型炉を含むものであ
る。黒鉛補反応容噚の壁が耐真空容噚空間を暪方
向に仕切る暪型炉では䞀般に反応物たたは生成物
の出し入れが容易であるずいう利点があるが、炉
内のガス流が耇雑ずなる欠点がある。䞀方、竪型
炉ではガス流を自然察流に乗せるこずにより、ガ
ス流の乱れを少なくし、還元性金属蒞気を有効に
パヌゞするこずが可胜である。
Furthermore, the chemical reaction furnace of the present invention is not limited to the manner in which the graphite reaction vessel and the electrical resistor surrounding it are arranged in the vacuum-resistant vessel space, and includes so-called vertical furnaces and horizontal furnaces. Horizontal furnaces in which the walls of the graphite reaction vessel laterally partition the vacuum-resistant vessel space generally have the advantage that reactants or products can be taken in and out easily, but have the disadvantage that the gas flow within the furnace is complicated. On the other hand, in a vertical furnace, by causing the gas flow to undergo natural convection, it is possible to reduce turbulence in the gas flow and effectively purge the reducing metal vapor.

次に図面を参照しお本発明を䞀実斜態様に぀い
お説明する。
Next, one embodiment of the present invention will be described with reference to the drawings.

䞊述のように本発明の化孊反応炉は、耐真空容
噚電気抵抗加熱炉黒鉛補反応容噚を芁
郚ずしおなりた぀おいる。
As described above, the chemical reaction furnace of the present invention consists of the vacuum-resistant container 5, the electric resistance heating furnace 6, and the graphite reaction container 8 as the main parts.

耐真空容噚は円筒状の偎壁倩井板
底板よりなり、偎壁は図瀺されおい
ないが芁所に氎冷ゞダケツトが蚭けおある。耐真
空容噚の䞭倮郚に円筒状の黒鉛反応容噚が配眮
され、それを囲繞するように電気抵抗加熱炉が
配眮されおいる。電気抵抗加熱炉は既知のもので
あ぀お、その内偎壁に䟋えばカンタル合金補の発
熱䜓を巻き぀け、アスベストなどの耐熱材料を
充填したものであるが、加熱枩床を加枛するため
にその芁所から導線タツプを匕き出し、これは
図面の右偎に芋られるように耐真空容噚の倖偎に
気密に匕き出され、たた図の巊偎にみられるよう
に熱電察が挿入され、その導線は同様に耐真空
容噚の倖偎に気密に匕き出されおいる。その取出
郚は取り倖しできるようにしおおくのが有利であ
る。電気抵抗加熱炉の炉䜓は気密にする必芁はな
い。
The vacuum-resistant container 5 has a cylindrical side wall 51 and a ceiling plate 5.
2. It consists of a bottom plate 53, and the side walls 51 are provided with water cooling jackets at key points (not shown). A cylindrical graphite reaction vessel 8 is arranged in the center of the vacuum-resistant vessel, and an electric resistance heating furnace 6 is arranged so as to surround it. Electric resistance heating furnaces are known, in which a heating element 7 made of, for example, Kanthal alloy is wrapped around the inner wall and filled with a heat-resistant material such as asbestos. The conductor tap 4 is pulled out from the place, and this is pulled out airtightly to the outside of the vacuum-proof container as seen on the right side of the drawing, and the thermocouple 2 is inserted as seen on the left side of the figure, and its conductor is similarly pulled out. It is drawn out airtight to the outside of the vacuum-resistant container. Advantageously, the outlet is removable. The furnace body of an electric resistance heating furnace does not need to be airtight.

耐真空容噚の䞭倮に配眮された黒鉛補の反応容
噚は、その䞊端の開口郚を耐真空容噚の倩井板
によ぀お閉鎖的に固定される。ここに「閉鎖的」
ずいう語は、倩井板が円筒状の黒鉛反応容噚を取
りかこんで固定しおいるが、そのずりかこみかた
は必ずしも厳密であるこずを必芁ずしないが、煙
霧質や粉塵の通過を蚱さないずいうほどの意味で
ある。
A graphite reaction vessel 8 placed in the center of the vacuum-resistant container has an opening at its upper end closed and fixed by a ceiling plate of the vacuum-resistant container. "Closed" here
This term refers to the ceiling board that surrounds and fixes the cylindrical graphite reaction vessel, and although the surroundings do not necessarily have to be strict, It is the meaning.

耐真空容噚には匁を有しお真空系に連通する
第排気口ず、匁ず逆止匁を有しお倧気に連通
する第の副排気口′ず、同じく匁を有する第
気䜓導入管が蚭けられおいる。第排気口
は通垞の真空系に連通し、気䜓導入管は通
垞は窒玠アルゎン等の䞍掻性ガスの蓄圧゜ヌス
ボンベ等に連通する。奜たしい実斜態様では
第排気口ず第副排気口は切り替え䞉方匁を備
えた個の排気管第排気管に構成される。
The vacuum-resistant container 5 has a first exhaust port 3 that has a valve and communicates with the vacuum system, a first sub-exhaust port 3' that has a valve and a check valve and communicates with the atmosphere, and also has a valve. A first gas introduction pipe 10 is provided. The first exhaust port 3 communicates with a normal vacuum system, and the gas introduction pipe 10 normally communicates with a pressure accumulation source (cylinder) of an inert gas such as nitrogen or argon. In a preferred embodiment, the first exhaust port and the first sub-exhaust port are configured into one exhaust pipe (first exhaust pipe) equipped with a three-way switching valve.

第気䜓導入管を底板に蚭けるために
は電気抵抗加熱炉は底板䞊に盎接茉眮するこず
なく、断熱性材料の枕の䞊に茉眮するのが奜
たしい。
In order to provide the first gas introduction pipe 10 on the bottom plate 53, it is preferable that the electric resistance heating furnace 6 is placed on a pillow 12 made of a heat insulating material, rather than being placed directly on the bottom plate.

耐真空容噚の倩井板の䞊郚には黒鉛補反応
容噚の䞊郚開口をかこんで予備宀が蚭けら
れ、これは匁を有しお真空系に連通する第排気
口ず、倧気に連通する第の副排気口′ず、
開閉できる気密ハツチが蚭けられおいる。奜
たしい態様では第排気口ず第副排気口は切り
替え䞉方匁を備えた個の排気管第排気管
に構成される。第排気管ず第排気管の真空系
ぞの連通口は統合しお䞀぀の共通の真空系ぞ぀な
ぐこずができる。
A preliminary chamber 13 is provided at the top of the ceiling plate 52 of the vacuum-resistant container, surrounding the upper opening of the graphite reaction container, and this has a second exhaust port 1 having a valve and communicating with the vacuum system, and a second exhaust port 1 that communicates with the atmosphere. a second sub-exhaust port 1';
An airtight hatch 14 that can be opened and closed is provided. In a preferred embodiment, the second exhaust port and the second sub-exhaust port are one exhaust pipe (second exhaust pipe) equipped with a three-way switching valve.
It is composed of The communication ports of the first exhaust pipe and the second exhaust pipe to the vacuum system can be integrated and connected to one common vacuum system.

前蚘第気䜓導入管は単に耐真空容噚内に
開攟するより、図瀺されおいるように耐真空容噚
の内郚に貫入延長させお黒鉛補反応容噚の底郚倖
呚に近接させ、これを囲繞する環状管に圢成し、
該環状管の内偎たたは䞊偎に倚数のガス攟出小孔
を蚭けるこずにより、耐真空容噚内に攟出された
ガスを耐真空容噚内空間に発生する自然察流に乗
せお黒鉛補反応容噚ず電気抵抗䜓の間隙を䞊
〓〓〓〓
昇させるのが奜たしい。
Rather than simply opening into the vacuum-resistant container, the first gas introduction tube 10 extends into the vacuum-resistant container as shown in the figure, and is brought close to the outer periphery of the bottom of the graphite reaction container. formed into a tube;
By providing a large number of gas release holes inside or on the upper side of the annular tube, the gas released into the vacuum-resistant container is carried by natural convection generated in the vacuum-resistant container space, and is connected to the graphite reaction container 8 and electrical resistance. Above the gap between body 7〓〓〓〓
It is preferable to raise the temperature.

黒鉛補反応容噚の底は䞊郚開口郚ず同様閉鎖
的に耐真空容噚に察し固定される。黒鉛補反応炉
の底には、る぀がを支持するための黒鉛補の支
持棒の䟵入を蚱すための孔が穿たれおい
る。この支持棒ず孔の接觊は気密ではな
いが可及的に閉鎖的であるのが望たしい。
The bottom of the graphite reaction vessel 8, like the upper opening, is fixed to the vacuum-resistant vessel in a closed manner. A hole 81 is bored in the bottom of the graphite reactor to allow a graphite support rod 17 for supporting the crucible 9 to enter. Although the contact between the support rod 17 and the hole 81 is not airtight, it is desirable that it be as closed as possible.

耐真空容噚の底郚には前蚘の黒鉛補の支持棒
を気密にか぀摺動可胜に支持するために第
の予備宀が蚭けられおいる。この予備宀の底
郚䞭倮郚には前蚘支持棒の貫通を蚱す孔が蚭けら
れ、支持棒を気密に支持するために、䟋えば―
リングを保持するこずができるように構成さ
れ、䞀方黒鉛支持棒のこの―リングず摺動接觊
する郚分はステンレス鋌の被芆で芆われおおり、
それより䞋郚はむくのステンレス鋌棒でよい。
A second support rod 17 is provided at the bottom of the vacuum-resistant container 5 to airtightly and slidably support the graphite support rod 17.
A spare room 15 is provided. A hole is provided in the center of the bottom of the preparatory chamber to allow the support rod to pass through.For example, an O-
The graphite support rod is configured to be able to hold the O-ring 16, while the portion of the graphite support rod that makes sliding contact with this O-ring is covered with a stainless steel coating.
The lower part may be a bare stainless steel rod.

この予備宀には第の匁を有する気䜓導入管
が蚭けられる。これも第の気䜓導管ず同様
に、䞍掻性気䜓の蓄圧゜ヌスに連通させられる。
ここから導入される䞍掻性気䜓は、支持棒ず
黒鉛反応容噚の底の孔の間隙を通぀お埌者の䞭に
導入され、第副排気口から容噚倖に出る。
This preliminary chamber has a gas introduction pipe 1 having a second valve.
1 is provided. Like the first gas conduit, this also communicates with an accumulator source of inert gas.
The inert gas introduced from here is introduced into the latter through the gap between the support rod 17 and the hole in the bottom of the graphite reaction vessel, and exits from the vessel through the first sub-exhaust port.

この第の予備宀は本発明においお必須のもの
ではなく、る぀がの支持棒を蚭けない堎合には䞍
芁である。
This second auxiliary chamber is not essential in the present invention, and is unnecessary if a crucible support rod is not provided.

黒鉛反応容噚には蓋を斜しおもよい。この蓋に
は、反応物のスパツタリングの堎合の物質の飛散
を反応容噚内に留める目的のものであるが、気䜓
を通す孔を有し、容噚に察しお容易に取り倖しで
きるものである。
The graphite reaction vessel may be provided with a lid. The purpose of this lid is to keep the scattering of substances in the reaction vessel during sputtering of the reactant, but it has a hole through which gas can pass, and can be easily removed from the vessel.

このように構成されおいるので、䞊郚のハツチ
を開き、図瀺されおいない駆動機構によ぀お
支持棒をハツチの倖たで䞊昇させお、る぀がに必
芁な反応材料を仕蟌み、蓋を斜し、支持棒を反応
容噚内の所望䜍眮たで䞋降させ、必芁ならば黒鉛
反応容噚にも蓋を斜し、ハツチを閉じお、必芁に
応じ、加熱脱気通気の操䜜を行なう。
With this structure, the upper hatch 14 is opened, the support rod is raised to the outside of the hatch by a drive mechanism (not shown), the necessary reaction material is charged into the crucible, the lid is applied, and the support rod is raised to the outside of the hatch. The rod is lowered to the desired position within the reaction vessel, the graphite reaction vessel is also covered if necessary, the hatch is closed, and heating, degassing, and ventilation operations are performed as necessary.

このような装眮が圓業者が既知の知識をも぀お
この図面に基づいお容易に補䜜し埗るものである
から、その蚭蚈や郚品に぀いお詳现に説明する必
芁はない。参考たでに本発明者らが補䜜したもの
は、耐真空容噚は厚さmmのステンレス鋌補で、
その倖埄730mm高さ790mm黒鉛反応容噚の倖埄
220mm黒鉛壁の厚み15mmであり、倖呚に氎冷ゞ
ダケツトを有する。
There is no need to describe the design or components in detail, as such a device can be easily fabricated based on this drawing with knowledge known to those skilled in the art. For reference, the vacuum-resistant container made by the inventors is made of stainless steel with a thickness of 6 mm.
Its outer diameter 730mm, height 790mm; outer diameter of graphite reaction vessel
220 mm, graphite wall thickness 15 mm, and a water cooling jacket around the outer periphery.

次に䞊蚘の反応炉を甚いお、炭化ホり玠を合成
した操䜜䟋を蚘す。
Next, an example of an operation in which boron carbide was synthesized using the above-mentioned reactor will be described.

ハツチを開き、図瀺されおいない駆動機構
によ぀お支持棒をハツチの倖たで䞊昇させ、る぀
がにホり酞マグネシりム炭玠の混合物を仕蟌
み、蓋をしお、支持棒を反応容噚の䞭倮に
䞋降させ、黒鉛反応容噚にも蓋を斜し、ハツチ
を閉じた。次に第気䜓導入管第気䜓
導入管第副排気口′および第副排
気口′の匁を閉じ、第排気口および第排
気口の匁を開き、その先に蚭けた真空ポンプに
よ぀お耐真空容噚および黒鉛反応容噚の内郚
を圧力1torr以䞋の真空にするず共に、電気抵抗
䜓に通電しおる぀が内の反応混合物を480℃で
90分間加熱しお真空脱氎し、駆動機構によ぀お、
る぀がを予備宀たで䞊昇させた。次に第排気口
ず第排気口の匁を閉じ、第気䜓導入管
ず第気䜓導入管の匁を開き、第気䜓導
入管からは窒玠を送入し、第気䜓導入管
からはアルゎンを送入しおから、逆止匁の付い
た第副排気口′ず第副排気口′を開き電気
抵抗䜓に通電しお、黒鉛補反応容噚の枩床を
1050℃ずし、次いで駆動機構によ぀お、る぀がを
反応容噚の䞭倮に䞋降させ、る぀が内の反応混
合物を1020℃にし、90分間保持した。窒玠ガスは
第気䜓導入管を通り、電気抵抗加熱炉の
䞋郚でか぀黒鉛補反応容噚の呚囲の環状管の内
偎に蚭けられた倚数の小孔から導入した。窒玠流
は発生する自然察流に乗せ、黒鉛補反応容噚ず電
気抵抗䜓の間の間隙を䞊昇させ、黒鉛補隔壁の気
孔を介しお反応容噚の倖ぞ挏出する還元性金属
蒞気ず電気抵抗䜓ずの接觊を可及的に阻止した。
窒玠流量は分あたり耐真空容噚内の空隙䜓積
の100ないし10ずした。窒玠は䞀郚は耐
真空容噚内を還流し぀぀第副排気口′から排
出される。黒鉛䞭の気孔などを介しお電気抵抗加
熱炉に挏出した埮量のマグネシりム金属蒞気は第
気䜓導入管から送られる窒玠ガスず反応し
お䞍掻性な窒化物ずなり陀去され、電気抵抗䜓の
劣化はほが完党に防止された。たた黒鉛補反応容
噚も還元性金属蒞気又はホり酞蒞気によ぀お䟵さ
れるこずがなか぀た。次に支持棒を䞊昇させお、
反応生成物を予備宀に収玍し、これを十分攟冷し
〓〓〓〓
た埌、ハツチを開けお反応生成物を取り出し
た。埗られたホり玠炭化物䞭間䜓は炭化ホり玠ず
酞化マグネシりムを䞻䜓ずし、少量のホり化マグ
ネシりム炭玠ホり酞マグネシりムを含む軜石
状の固䜓であり、これを塩酞に浞挬しお酞化マグ
ネシりムを陀去したのち、1800℃にお熱凊理した
ずころ、高玔床の炭化ホり玠粉末を埗るこずがで
きた。
The hatch 14 is opened, the support rods are raised to the outside of the hatch by a drive mechanism (not shown), a mixture of boric acid, magnesium, and carbon is charged into the crucible, the lid is closed, and the support rods 17 are moved into the reaction vessel 8. Lower it to the center, cover the graphite reaction container, and add hatch 1.
4 closed. Next, the valves of the first gas introduction pipe 10, the second gas introduction pipe 11, the first sub-exhaust port 3', and the second sub-exhaust port 1' are closed, and the valves of the second exhaust port 1 and the first exhaust port 3 are closed. The inside of the vacuum resistant container 5 and the graphite reaction container 8 are evacuated to a pressure of 1 torr or less using the vacuum pump provided at the end of the crucible, and the reaction mixture in the crucible is heated to 480°C by energizing the electric resistor 7. in
After heating for 90 minutes and vacuum dehydration, the drive mechanism
The crucible was raised to the preliminary room. Next, the valves of the first exhaust port 3 and the second exhaust port 1 are closed, and the first gas introduction pipe 1 is closed.
0 and the valves of the second gas introduction pipe 11 are opened, nitrogen is introduced from the first gas introduction pipe 10, and the second gas introduction pipe 1 is supplied with nitrogen.
After introducing argon from 1, the first sub-exhaust port 3' and the second sub-exhaust port 1' equipped with check valves are opened, and electricity is applied to the electric resistor 7 to control the temperature of the graphite reaction vessel 8. of
The crucible was then lowered to the center of the reaction vessel 8 by a drive mechanism, and the reaction mixture in the crucible was brought to 1020°C and held for 90 minutes. Nitrogen gas passed through the first gas introduction pipe 10 and was introduced from a number of small holes provided inside the annular pipe around the graphite reaction vessel 8 at the lower part of the electric resistance heating furnace 6 . The nitrogen flow is carried by the generated natural convection and raises the gap between the graphite reaction vessel and the electrical resistor, causing reducing metal vapor and the electrical resistor to leak out of the reaction vessel 8 through the pores of the graphite partition wall. Contact with them was prevented as much as possible.
The nitrogen flow rate was set to 1/100 to 1/10 of the void volume in the vacuum-resistant container 5 per minute. A portion of the nitrogen is exhausted from the first sub-exhaust port 1' while refluxing inside the vacuum-resistant container. A trace amount of magnesium metal vapor that leaked into the electric resistance heating furnace through pores in the graphite reacts with the nitrogen gas sent from the first gas introduction pipe 10 and becomes inert nitride, which is removed, causing deterioration of the electric resistor. was almost completely prevented. Also, the graphite reaction vessel was not attacked by reducing metal vapor or boric acid vapor. Next, raise the support rod,
Store the reaction product in a preliminary chamber and leave it to cool sufficiently〓〓〓〓
After that, the hatch 14 was opened and the reaction product was taken out. The obtained boron carbide intermediate is a pumice-like solid mainly composed of boron carbide and magnesium oxide, with small amounts of magnesium boride, carbon, and magnesium borate, and after immersing it in hydrochloric acid to remove the magnesium oxide. After heat treatment at 1800℃, highly pure boron carbide powder could be obtained.

本発明は以䞊のような構成を有する炉であるた
め、炉内雰囲気を良奜に制埡できるず同時に、極
めお耐久性の高い黒鉛補反応容噚の䜿甚、および
これず窒玠ガスパヌゞずの組合せによる電気抵抗
䜓の劣化の防止、さらに、加熱容積の有効利甚ず
熱効率の向䞊を可胜にできる。
Since the present invention is a furnace having the above-mentioned configuration, the atmosphere inside the furnace can be well controlled, and at the same time, an extremely durable graphite reaction vessel is used, and an electric resistor is created by combining this with nitrogen gas purge. In addition, it is possible to prevent deterioration of the heating capacity, and also to make effective use of heating volume and improve thermal efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の装眮の抂念を瀺す断面図で本発明
に関わる郚分を䞭心に瀺したものである。 第排気口、′第副排気口、熱
電察、第排気口、′第副排気口、
導線タツプ、耐真空容噚、電気抵抗
加熱炉、カンタル合金補発熱䜓電気抵抗
䜓、黒鉛補反応容噚、黒鉛補反応る぀
が、第気䜓導入口、第気䜓導入
口、断熱材、予備宀、気密ハ
ツチ、第予備宀、―リング、
支持棒、偎壁、倩井板、
底板、孔。 〓〓〓〓
The figure is a sectional view showing the concept of the device of the present invention, mainly showing the parts related to the present invention. 1: second exhaust port, 1': second sub-exhaust port, 2: thermocouple, 3: first exhaust port, 3': first sub-exhaust port,
4: Conductor tap, 5: Vacuum resistant container, 6: Electrical resistance heating furnace, 7: Kanthal alloy heating element (electrical resistor), 8: Graphite reaction vessel, 9: Graphite reaction crucible, 10: First gas Inlet, 11: Second gas inlet, 12: Heat insulating material, 13: Preliminary chamber, 14: Airtight hatch, 15: Second preliminary chamber, 16: O-ring, 1
7: Support rod, 51: Side wall, 52: Ceiling board, 53:
Bottom plate, 81: hole. 〓〓〓〓

Claims (1)

【特蚱請求の範囲】  匁぀きの排気口第排気口ず匁぀きの気
䜓導入口第気䜓導入口を備えた耐真空容噚
ず該耐真空容噚内に蚭けられた黒鉛補の反応容
噚であ぀お、前蚘耐真空容噚ず独立に別の匁぀き
の排気口第排気口ず匁぀きの気䜓導入口
第気䜓導入口を有するものず該反応容噚
を包囲しお前蚘耐真空容噚に配眮された電気抵抗
加熱炉ずからなる化孊反応炉。  特蚱請求の範囲第項に蚘茉の化孊反応炉で
あ぀お、耐真空容噚が匁ず逆止匁を有する副排気
口第副排気口を備え、黒鉛補反応容噚も匁
ず逆止匁を有する副排気口第副排気口を有
するこずを特城ずするもの。  特蚱請求の範囲第項に蚘茉の化孊反応炉で
あ぀お、耐真空容噚黒鉛補反応容噚電気抵抗
加熱炉の䜕れもが垂盎円筒圢であり反応容噚
の䞊端開口郚が耐真空容噚の倩井板に閉鎖的に固
定され該倩井板の䞊に前蚘反応容噚の開口を包
囲する予備宀が蚭けられその郚分に前蚘第排気
口ず第副排気口ず反応容噚に物を出し入れする
こずのできる密閉できるハツチが蚭けられ反応
容噚の底郚が耐真空容噚の底郚に閉鎖的に固定さ
れ、反応容噚の底郚が通気手段を有し、耐真空容
噚の底郚の䞋偎に第の予備宀であ぀お、前蚘反
応容噚の底郚の通気手段に連通し、第の気䜓導
入口がその郚分に蚭けられおいるものを有するこ
ずを特城ずする装眮。  特蚱請求の範囲第項に蚘茉の化孊反応炉で
あ぀お、反応容噚の底板を貫通しお䞋から反応容
噚内に進入する支持棒を有し、該支持棒の貫通郚
が通気手段を構成し、該支持棒は前蚘第予備宀
の底郚に摺動可胜か぀気密に支持され、䞊端にる
぀がを支持するこずのできるものであるこずを特
城ずする化孊反応炉。  特蚱請求の範囲第〜項のいずれかに蚘茉
の化孊反応炉であ぀お、第気䜓導入管が耐真空
容噚の底板に蚭けられ、該導入管が内郚に貫入延
長しお黒鉛反応容噚の底郚を囲繞する環状の管ず
なり、その環状郚に倚数の小孔を有し、導入気䜓
が黒鉛反応容噚ず電気抵抗䜓ずの間隙に向けお開
攟されるこずを特城ずする装眮。  特蚱請求の範囲第〜項のいずれかに蚘茉
の化孊反応炉であ぀お、第排気口ず第副排気
口第排気口ず第副排気口ずが、それぞれ䞉
方匁によ぀お䞀䜓化されおいるこずを特城ずする
もの。  特蚱請求の範囲第〜項の䜕れかに蚘茉の
化孊反応炉であ぀お、第排気口ず第排気口が
共通の真空系に連通するこずを特城ずするもの。  特蚱請求の範囲第〜項の䜕れかに蚘茉の
化孊反応炉であ぀お、耐真空容噚の芁郚を冷华す
〓〓〓〓
るこずができるこずを特城ずするも。
[Claims] 1. A vacuum-resistant container equipped with an exhaust port with a valve (first exhaust port) and a gas inlet with a valve (first gas inlet port); A reaction vessel, which has an exhaust port with a separate valve (second exhaust port) and a gas inlet with a valve (second gas inlet) independently of the vacuum-resistant container; A chemical reaction furnace comprising an electric resistance heating furnace placed in the vacuum-resistant container. 2. The chemical reactor according to claim 1, wherein the vacuum-resistant container is provided with a sub-exhaust port (first sub-exhaust port) having a valve and a check valve, and the graphite reaction container is also provided with a sub-exhaust port having a valve and a check valve. It is characterized by having a sub-exhaust port (second sub-exhaust port) having a stop valve. 3. The chemical reaction furnace according to claim 2, in which the vacuum-resistant container, the graphite reaction container, and the electric resistance heating furnace are all vertically cylindrical; Closely fixed to the ceiling plate of the vacuum vessel; a preliminary chamber surrounding the opening of the reaction vessel is provided on the ceiling plate, and the second exhaust port, the second sub-exhaust port, and the second exhaust port are connected to the reaction vessel. The bottom of the reaction vessel is closed-closely fixed to the bottom of the vacuum-resistant vessel, and the bottom of the reaction vessel has ventilation means; An apparatus characterized in that it has a second preliminary chamber, which communicates with the ventilation means at the bottom of the reaction vessel, and in which a second gas inlet is provided. 3. The chemical reactor according to item 3, wherein the reactor has a support rod that penetrates the bottom plate of the reaction vessel and enters the reaction vessel from below, the penetrating portion of the support rod constitutes a ventilation means, and the support rod A chemical reactor characterized in that the rod is slidably and airtightly supported at the bottom of the second preparatory chamber and can support a crucible at the upper end.5 Claims 2 to 4 In the chemical reactor according to any one of the above, the first gas introduction pipe is provided on the bottom plate of the vacuum-resistant container, and the introduction pipe penetrates and extends into the inside to form an annular pipe surrounding the bottom of the graphite reaction container. , a device characterized in that the annular portion thereof has a large number of small holes, and the introduced gas is released toward the gap between the graphite reaction vessel and the electric resistor. 6. Claims 2 to 5. The chemical reactor according to any one of the above, characterized in that the first exhaust port and the first sub-exhaust port, and the second exhaust port and the second sub-exhaust port are each integrated by a three-way valve. 7. A chemical reactor according to any one of claims 2 to 6, characterized in that the first exhaust port and the second exhaust port communicate with a common vacuum system. 8. A chemical reactor according to any one of claims 1 to 7, which cools a main part of a vacuum-resistant container.
It is also characterized by being able to
JP55131600A 1980-09-24 1980-09-24 Chemical reactor Granted JPS5756037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55131600A JPS5756037A (en) 1980-09-24 1980-09-24 Chemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55131600A JPS5756037A (en) 1980-09-24 1980-09-24 Chemical reactor

Publications (2)

Publication Number Publication Date
JPS5756037A JPS5756037A (en) 1982-04-03
JPS6159780B2 true JPS6159780B2 (en) 1986-12-18

Family

ID=15061845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55131600A Granted JPS5756037A (en) 1980-09-24 1980-09-24 Chemical reactor

Country Status (1)

Country Link
JP (1) JPS5756037A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187800U (en) * 1982-06-08 1983-12-13 株匏䌚瀟日本補鋌所 Target equipment for radioisotope production
JP2009256153A (en) * 2008-04-21 2009-11-05 Bridgestone Corp Method and apparatus for producing silicon carbide powder

Also Published As

Publication number Publication date
JPS5756037A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
JP2006124832A (en) Vapor phase growth system and vapor phase growth method
NO832366L (en) CHEMICAL PUMPING DEVICE AND PROCEDURE.
JPH03216259A (en) Method and device for casting metal against gravitational force
US3112919A (en) Vacuum furnace
RU2352685C2 (en) Simple system of chemical deposition from vapours and plating methods of many-metallic aluminide coatings
US3940245A (en) Convection shield for isostatic bonding apparatus
JPS6159780B2 (en)
US3306764A (en) Method for forming a refractory metal or carbide coating on refractory materials and article
US4398702A (en) Metallurgical furnace
US4022446A (en) Quenching in hot gas isostatic pressure furnace
JPS6372819A (en) Heat-treatment apparatus
US3361864A (en) Furnace for treatment of wax-bonded sinterable preforms
US9649612B2 (en) Dual vessel reactor
CN111733377B (en) Resistance furnace for chromizing and nitriding austenitic stainless steel workpiece and chromizing and nitriding method
US20100113705A1 (en) Dual vessel reactor
US2913239A (en) Furnaces for heat treatment of articles
US3846574A (en) Method of heating objects and device for the performance of the method
US3078082A (en) Apparatus for reducing vaporizable refractory metal compounds
EP0533380B1 (en) Catalytic reactor
JPH0693429A (en) Crucible for vacuum vapor deposition device
JPS6284291A (en) Hot hydrostatic molding equipment
US2390698A (en) Magnesium retort
JPS6120128B2 (en)
JPH01156431A (en) Refining apparatus for high purity metal
CN113959222B (en) High temperature furnace