JPS6159762B2 - - Google Patents

Info

Publication number
JPS6159762B2
JPS6159762B2 JP6832780A JP6832780A JPS6159762B2 JP S6159762 B2 JPS6159762 B2 JP S6159762B2 JP 6832780 A JP6832780 A JP 6832780A JP 6832780 A JP6832780 A JP 6832780A JP S6159762 B2 JPS6159762 B2 JP S6159762B2
Authority
JP
Japan
Prior art keywords
crystals
stock solution
crystallized
growth tank
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6832780A
Other languages
Japanese (ja)
Other versions
JPS56163702A (en
Inventor
Akio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP6832780A priority Critical patent/JPS56163702A/en
Publication of JPS56163702A publication Critical patent/JPS56163702A/en
Publication of JPS6159762B2 publication Critical patent/JPS6159762B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は形状の大なる結晶を得る晶析方法に関
し、詳しくは、目的被晶析成分を含む液(以下
「原液」と云う)を冷却固化し、固化物を壊砕
後、被晶析成分をスラリーとして取り扱える温度
に保持された原液中に該固化物を投入し、所定時
間滞留させて結晶を成長させた後取り出す晶析方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystallization method for obtaining crystals with a large shape, and more specifically, a liquid containing a target component to be crystallized (hereinafter referred to as "undiluted solution") is cooled and solidified, and the solidified product is broken. The present invention relates to a crystallization method in which, after crushing, the solidified product is poured into a stock solution maintained at a temperature at which the component to be crystallized can be handled as a slurry, allowed to remain for a predetermined period of time to grow crystals, and then taken out.

従来、被晶析成分を含む液より晶析して目的物
を結晶として分離することは広く行なわれてい
る。通常工業的には伝熱、または沸点の低い成分
の蒸発潜熱を利用して撹拌下にて冷却して晶析し
ているが、この場合冷却速度が速くなるほど生成
する結晶の大きさが細かくなる。更に伝熱を利用
して冷却晶析の場合は、冷却壁面に結晶の析出付
着があり冷却効率の落ちることは避けられない。
Conventionally, it has been widely practiced to separate a target substance as crystals by crystallizing it from a liquid containing a component to be crystallized. Normally, industrially, crystallization is performed by cooling under stirring using heat transfer or the latent heat of vaporization of components with low boiling points, but in this case, the faster the cooling rate, the smaller the crystals formed. . Furthermore, in the case of cooling crystallization using heat transfer, it is inevitable that crystals will deposit and adhere to the cooling wall surface, resulting in a decrease in cooling efficiency.

晶析により得られる結晶の形状が大であること
とは後の過分離或は精製に供する場合に極めて
好ましいことである。勿論大きな結晶を得るには
静置下にて遅い冷却速度で晶析すればよいが、工
業的でない。
It is extremely preferable that the crystals obtained by crystallization have a large shape when used for subsequent excessive separation or purification. Of course, large crystals can be obtained by crystallizing at a slow cooling rate while standing still, but this is not industrially practical.

本発明者は工業的に過分離の容易な、形状の
大なる結晶を得る晶析方法について研究した結
果、目的被晶析成分を含む液を固化し、これを壊
砕して、被晶析結晶をスラリーとして取り換える
温度に保持した原液を含む成長槽に該壊砕固化物
を投入し、所定時間滞留させた後取り出した場
合、微細結晶を殆んど含まず、且つ形状の大なる
結晶が得られることを見出し、本発明に至つた。
As a result of research on a crystallization method for obtaining crystals with a large shape that are easy to overseparate industrially, the present inventor solidified a liquid containing the target component to be crystallized, crushed it, and When the crushed and solidified material is put into a growth tank containing an undiluted solution maintained at a temperature at which the crystals are replaced as a slurry, and taken out after residence for a predetermined period of time, it contains almost no fine crystals and large-shaped crystals. It was discovered that the present invention can be obtained.

本発明は、被晶析成分を含む液を冷却した回転
ドラム表面に固着させ、該固着物を剥離壊砕した
後、被晶析成分をスラリーとして取り扱える温度
に保持した原液を含み且つ微細結晶を浮上させる
上昇流のある成長槽に該壊砕固着物を投入し、所
定時間滞留させて結晶を成長させた後取り出す方
法である。即ち、原液を一旦固結し、不純物およ
び微細結晶の融解潜熱を利用して結晶の成長を図
るものである。
The present invention involves fixing a liquid containing a component to be crystallized on the surface of a cooled rotating drum, exfoliating and crushing the adhered material, and then producing fine crystals containing an undiluted solution that maintains the component to be crystallized at a temperature that allows it to be handled as a slurry. This is a method in which the crushed and fixed material is placed in a growth tank with an upward flow for floating, allowed to stay there for a predetermined period of time to grow crystals, and then taken out. That is, the stock solution is once solidified, and the latent heat of fusion of impurities and fine crystals is used to grow the crystals.

本発明の実施に際しては例えば添付図面に示す
如き装置を用いる。該図面に於て、1は固着液槽
であり、この液槽1に供給管2より目的被晶析成
分を含む原液を供給する。原液の固化は、液槽1
に一部浸漬した状態に設置した冷却された回転ド
〓〓〓
ラム3の表面で行なわれる。回転ドラム3内に
は、その冷却のために冷媒を通すか、または沸点
の低い液体、例えばフレオン商標名、メタン等、
を供給してその蒸発潜熱を利用して冷却する。冷
却は接触した原液全体が固化する程度に行う。こ
の回転ドラム3を一部原液に浸漬した状態でゆつ
くり回転させると、その表面に原液が固着してく
る。この固着物を掻取り羽根4により連続的に掻
き取り、更に壊砕機5により壊砕して、成長槽6
に供給する。成長槽6の内部は固着液槽1に供給
するのと同じ原液が漲られており、供給された結
晶をスラリーとして取り扱える温度に保冷されて
いる。この温度を一定に保つために成長槽6にも
供給管7より原液の一部が供給される。また成長
槽6内には撹拌機8が設けられており、微細結晶
が上部に浮遊する程度の上昇流が生じるよう撹拌
が行われる。即ち、槽の下部には成長した結晶が
多く存在し、上部には微細結晶が比較的多く存在
するような撹拌である。ドラム表面に固着し剥離
壊砕された原液の固化物は、このような成長槽内
に於て、微細結晶および不純物を含んだ低融点の
結晶が融解し、このときの潜熱により該槽内のス
ラリー液を冷却し、他方でより高融点の純度の高
い結晶が析出して次第に成長してくる。また浮遊
した微細結晶の一部は供給管7より供給される温
度の高い原液の顕熱で溶解して該槽内液の過飽和
度を増大させることにより、結晶の成長を促進す
ることになる。
In carrying out the present invention, for example, an apparatus as shown in the accompanying drawings is used. In the drawing, reference numeral 1 denotes a fixed liquid tank, and a stock solution containing the target component to be crystallized is supplied to this liquid tank 1 through a supply pipe 2. Solidification of the stock solution is done in liquid tank 1.
A cooled rotating door installed partially immersed in
This is done on the surface of the ram 3. A refrigerant is passed through the rotating drum 3 for cooling, or a liquid with a low boiling point, such as Freon (trade name), methane, etc.
is supplied and the latent heat of vaporization is used for cooling. Cooling is carried out to such an extent that the entire solution that comes into contact with it solidifies. When this rotary drum 3 is rotated slowly while partially immersed in the stock solution, the stock solution will stick to its surface. This stuck material is continuously scraped off with a scraping blade 4, and further crushed with a crusher 5.
supply to. The inside of the growth tank 6 is filled with the same stock solution as that supplied to the fixed liquid tank 1, and is kept cool at a temperature at which the supplied crystals can be handled as a slurry. In order to keep this temperature constant, a portion of the stock solution is also supplied to the growth tank 6 from the supply pipe 7. Further, a stirrer 8 is provided in the growth tank 6, and stirring is performed to generate an upward flow to the extent that fine crystals float to the top. That is, the agitation is such that many grown crystals are present in the lower part of the tank, and relatively many fine crystals are present in the upper part. The solidified raw solution that adheres to the drum surface and is exfoliated and crushed will be melted in such a growth tank by melting the low melting point crystals containing fine crystals and impurities. As the slurry liquid is cooled, crystals with a higher melting point and higher purity begin to precipitate and gradually grow. In addition, some of the suspended fine crystals are melted by the sensible heat of the high-temperature stock solution supplied from the supply pipe 7, increasing the degree of supersaturation of the solution in the tank, thereby promoting crystal growth.

成長槽内でのスラリー濃度は平均25〜50%、好
ましくは30〜40%とすることが取り扱い易く好ま
しい。またここでの滞留時間は結晶成分の種類お
よび所望する結晶の大きさによつて決められる
が、多くの場合4〜20時間である。一定時間所定
の温度で成長槽内に滞留した結晶は、順次抜出管
9よりスラリーとして取り出される。このように
して連続的に被晶析液を固結させたのち、目的結
晶を成長させて取り出す本発明方法によれば、結
晶形が大にして高濃度の結晶を得ることができ
る。
The slurry concentration in the growth tank is preferably 25 to 50% on average, preferably 30 to 40% for ease of handling. The residence time here is determined depending on the type of crystal component and the desired size of the crystals, but in most cases it is 4 to 20 hours. The crystals that have remained in the growth tank at a predetermined temperature for a certain period of time are sequentially taken out as a slurry through an extraction pipe 9. According to the method of the present invention, in which the liquid to be crystallized is continuously solidified in this way, and then the target crystal is grown and taken out, a crystal with a large crystal shape and a high concentration can be obtained.

また本発明の実施に際し用いる回転ドラム式冷
却晶析機の回転および成長槽における撹拌機の回
転はともにゆるやかな回転でよいので、他の晶析
装置に比べ消費エネルギーが少なくて済む上製作
も安価であり、故障も起り難い利点がある。
In addition, since both the rotation of the rotary drum type cooling crystallizer and the rotation of the agitator in the growth tank used in carrying out the present invention only require gentle rotation, it consumes less energy than other crystallizers and is inexpensive to manufacture. This has the advantage that failures are unlikely to occur.

以下、実施例にて本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 直径500mm、300mm長さの回転ドラム式冷却機の
一部を浸漬した固着液槽及び直径600mm,高さ500
mm,内容量約140で内部に撹拌翼を設けた成長
槽よりなる添付図面に示す如き装置を用いて、パ
ラジクロベンゼン58%,オルソジクロルベンゼン
42%を含む60℃の溶液16Kg/Hrにて固着液槽
に、そして1.5Kg/Hrにて成長槽に供給し、パラ
ジクロルベンゼンの晶析を行なつた。
Example: A fixed liquid tank in which a part of a rotating drum cooler with a diameter of 500 mm and a length of 300 mm is immersed, and a diameter of 600 mm and a height of 500 mm.
Using a device as shown in the attached drawing, which consists of a growth tank with an internal capacity of about 140 mm and a stirring blade inside,
Paradichlorobenzene was crystallized by supplying a solution containing 42% at 60° C. to the fixing liquid tank at 16 kg/Hr and to the growth tank at 1.5 Kg/Hr.

この時、回転ドラムの表面はメタノールブライ
ンを用いて、−25℃に冷却し、0.13rpmにて回転
させた。回転ドラムの表面に析出した結晶を順次
掻き取り壊砕した後、5℃に保冷した成長槽に連
続的に送り込んだ。成長槽に於ては撹拌翼を
15rpmで回転させながら平均8時間滞留させた
後、槽底より約40%の結晶を含むスラリー17.5
Kg/Hrを連続的に取り出した。こうして得られ
たパラジクロルベンゼンの結晶は見掛け上柱状晶
で、長径約2000〜4000μ,短径約500〜1000μで
あつた。
At this time, the surface of the rotating drum was cooled to −25° C. using methanol brine and rotated at 0.13 rpm. After the crystals deposited on the surface of the rotating drum were successively scraped and crushed, they were continuously fed into a growth tank kept cool at 5°C. A stirring blade is used in the growth tank.
After staying for an average of 8 hours while rotating at 15 rpm, a slurry containing approximately 40% crystals was obtained from the bottom of the tank.
Kg/Hr was taken out continuously. The paradichlorobenzene crystals thus obtained were apparently columnar crystals with a major axis of about 2000 to 4000 μm and a short axis of about 500 to 1000 μm.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明で用いられる装置の断面図で
ある。図面中、 1は固着液槽、2は供給管、3は回転ドラム、
4は掻取り羽根、5は壊砕機、6は成長槽、7は
供給管、8は撹拌機、9は抜出管、である。 〓〓〓
The accompanying drawings are cross-sectional views of the apparatus used in the present invention. In the drawing, 1 is a fixed liquid tank, 2 is a supply pipe, 3 is a rotating drum,
4 is a scraping blade, 5 is a crusher, 6 is a growth tank, 7 is a supply pipe, 8 is a stirrer, and 9 is an extraction pipe. 〓〓〓

Claims (1)

【特許請求の範囲】 1 被晶析成分を含む原液を固化し、該原液固化
物を壊砕し、被晶析成分のスラリー状原液を含む
成長槽に該壊砕固化物を投入し、該成長槽内で該
被晶析成分の結晶を成長させることを特徴とする
晶析方法。 2 成長槽内に微細結晶を浮上させる上昇流を生
起せしめ、成長槽の上部に原液を供給することを
特徴とする特許請求の範囲第1項に記載の晶析方
法。 3 被晶析成分を含む原液を冷却した回転ドラム
表面上に固着させ、該固着物を剥離壊砕すること
により、原液の固化、壊砕を行うことを特徴とす
る特許請求の範囲第1項又は第2項に記載の晶析
方法。
[Scope of Claims] 1. Solidify a stock solution containing a component to be crystallized, crush the solidified stock solution, put the crushed solidified product into a growth tank containing a slurry stock solution of the component to be crystallized, and A crystallization method characterized by growing crystals of the component to be crystallized in a growth tank. 2. The crystallization method according to claim 1, characterized in that an upward flow that floats fine crystals is generated in the growth tank, and the stock solution is supplied to the upper part of the growth tank. 3. Claim 1, characterized in that the stock solution is solidified and crushed by fixing the stock solution containing the component to be crystallized on the surface of a cooled rotating drum, and peeling off and crushing the stuck material. Or the crystallization method described in Section 2.
JP6832780A 1980-05-22 1980-05-22 Crystal depositing method Granted JPS56163702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6832780A JPS56163702A (en) 1980-05-22 1980-05-22 Crystal depositing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6832780A JPS56163702A (en) 1980-05-22 1980-05-22 Crystal depositing method

Publications (2)

Publication Number Publication Date
JPS56163702A JPS56163702A (en) 1981-12-16
JPS6159762B2 true JPS6159762B2 (en) 1986-12-18

Family

ID=13370615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6832780A Granted JPS56163702A (en) 1980-05-22 1980-05-22 Crystal depositing method

Country Status (1)

Country Link
JP (1) JPS56163702A (en)

Also Published As

Publication number Publication date
JPS56163702A (en) 1981-12-16

Similar Documents

Publication Publication Date Title
USRE32241E (en) Fractional crystallization process
US4373950A (en) Process of preparing aluminum of high purity
JPH0245638B2 (en)
US5814231A (en) Separation of liquid eutectic mixtures by crystallization on cold surfaces and apparatus for this purpose
US3645699A (en) Solid-liquid continuous countercurrent purifier method and apparatus
JPH11342302A (en) Apparatus and method for crystallization
JP4092738B2 (en) Method for separating a substance from a liquid mixture by crystallization
US4588562A (en) Apparatus for purifying crystals
KR880001481B1 (en) Process for the continous crystallization of alpha mond hydrate dextrose utilizing high agitation
JPS6159762B2 (en)
JPH0699346B2 (en) Method and apparatus for crystallizing a manifold
JP3639858B2 (en) Method and apparatus for producing raffinose crystals
JPS5846322B2 (en) Method for purifying crystalline components
EP0533222B1 (en) Method for crystallizing alpha-L-aspartyl-L-phenylalanine methyl ester
JPS6082Y2 (en) crystallizer
EP1077216B1 (en) Crystallization of alpha-L-aspartyl-L-phenylalanine methyl ester from supersaturated solution
JPH0580409B2 (en)
JP4112361B2 (en) Method for concentrating aqueous hydrogen peroxide by crystallization
JPS62100409A (en) Production of caustic potash having high purity
JPS5838160B2 (en) Method for improving fructose crystal yield by pH adjustment
JPS6246201B2 (en)
JPH1147504A (en) Method for purifying crystalline substance
US1787356A (en) Crystallization process
US6657073B1 (en) Crystallization of α-L-aspartyl-L-phenylalanine methyl ester
Haq Freeze purification of water utilizing a cold plastic surface and ice-liquid separation with a centrifuge