JPS6159626A - Mark detection system of optical disc - Google Patents

Mark detection system of optical disc

Info

Publication number
JPS6159626A
JPS6159626A JP18052584A JP18052584A JPS6159626A JP S6159626 A JPS6159626 A JP S6159626A JP 18052584 A JP18052584 A JP 18052584A JP 18052584 A JP18052584 A JP 18052584A JP S6159626 A JPS6159626 A JP S6159626A
Authority
JP
Japan
Prior art keywords
circuit
output
voltage
waveform
sector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18052584A
Other languages
Japanese (ja)
Other versions
JPH0566653B2 (en
Inventor
Shinichi Arai
紳一 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18052584A priority Critical patent/JPS6159626A/en
Publication of JPS6159626A publication Critical patent/JPS6159626A/en
Publication of JPH0566653B2 publication Critical patent/JPH0566653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel

Abstract

PURPOSE:To eliminate the variance of waveform and prevent erroneous detection of sector marks due to the degradation of resolution to improve the read reliability by reproducing a low frequency component by a DC circuit on a basis of the signal level of total reflected just before the sector mark. CONSTITUTION:An amplified read signal 1 is applied to a DC reproducing circuit 29 and has a DC component restored, and a DC reproduced output waveform 30 is uniformed to the total reflection signal level and is inputted to a peak holding circuit 31. The circuit 31 holds a peak voltage 32 of the sector mark and divides this voltage to output a reference voltage 33. The waveform 30 is compared with the voltage 33 by a comparator 34 to output a pulse output 35. The output 35 is a pulse shorter than the sector mark independently of resolution, thus preventing erroneous detection of sector marks.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光ディスクにおける長穴で構成された特殊マー
クの検出方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for detecting a special mark composed of a long hole on an optical disc.

〔発明の背景〕[Background of the invention]

光ディスクへ情報を記録する場合、例えば特願昭57−
51230号明細書に記載されているように、−記録単
位毎にその始点を示すマークを付けることが一般的であ
る。ここでは記録単位をセクタと呼び、上記マークをセ
クタマークと呼ぶことにする。セクタマークはトラック
TR上にデータとして記録される他の孤立′KP(第1
図(A))と区別出来るよう、第1図(B)に示すよう
な長′F:、Qの組み合わせで構成される。
When recording information on an optical disc, for example,
As described in the specification of No. 51230, it is common to attach a mark to each recording unit to indicate its starting point. Here, the recording unit is called a sector, and the mark mentioned above is called a sector mark. The sector mark is another isolated 'KP (first sector mark) recorded as data on the track TR.
It is composed of a combination of lengths 'F: and Q as shown in Fig. 1 (B) so that it can be distinguished from Fig. 1 (A)).

従って、長KQからなるセクタマーク部Mと弧立穴Pか
らなるデータ部とが第2図(A)の如く連続するトラッ
ク上を光ヘッドで走査すると、光ヘツド出力のセクタマ
ーク波形は第2図(B)の様てなる。この場合、高周波
特性の良い直流アンプは高価なため、信号再生系でAC
結合の高周波アンプを使って増幅を行なうと、増幅後の
波形は、第2図(C)のように、時間的に変動する成分
を持つことになる。このため、従来は第3図に示すよう
な回路を用いて、この変動分を除去してから、セクタマ
ークの検出を行なっていた。
Therefore, when the optical head scans a track in which the sector mark part M consisting of the long KQ and the data part consisting of the vertical hole P are continuous as shown in FIG. 2(A), the sector mark waveform output from the optical head is It will look like figure (B). In this case, since DC amplifiers with good high frequency characteristics are expensive, AC
When amplification is performed using a coupled high-frequency amplifier, the waveform after amplification will have components that fluctuate over time, as shown in FIG. 2(C). For this reason, conventionally, a circuit as shown in FIG. 3 has been used to remove this variation before detecting a sector mark.

第3図において、増幅された読取り信号1は、パルス化
回路2で波形成形されてパルスとなり、パルス幅・位置
検出回路3に入力されて長への幅と位置関係からセクタ
マークが認識され、セクタマーク検出信号4が出力され
る。
In FIG. 3, the amplified read signal 1 is shaped into a pulse by the pulse forming circuit 2, and is input to the pulse width/position detection circuit 3, where the sector mark is recognized from the width and positional relationship. A sector mark detection signal 4 is output.

パルス化回路2の中で、微分回路5は読取り信号1から
時間的に変動させる要因である信号の低周波成分を除去
し、第4図の微分波形6を発生する。微分波形6は比較
器9,10に人力され、それぞれ基準電、圧発生器7お
よび8から発生したプラス側基準電圧およびマイナス側
基準電圧と比較され、几Sフリップフロップ11をセッ
ト、リセットする。この結果、フリップフロップ11か
らは、パルス化出力波形14が得られる。セクタマーク
は、TI、T2の2種類の長穴の組み合わせで4成され
ており、T1幅長穴検出器15でT1幅のパルスがあっ
たことを、T2幅長尺検出器16で12幅のパルスがあ
ったことが検出される。これらの検出信号は、遅延回路
17または遅延回路18によって適当な遅延が施され、
正常なセクタマーク検出時には判定回路19に複数の長
尺検出信号が揃って入力され、長への位置関係の判定結
果によってセクタマーク検出信号4が出力される。
In the pulsing circuit 2, a differentiating circuit 5 removes from the read signal 1 the low frequency component of the signal which is a factor causing temporal fluctuations, and generates a differentiated waveform 6 shown in FIG. The differential waveform 6 is input to comparators 9 and 10, and compared with the positive reference voltage and the negative reference voltage generated from the reference voltage and pressure generators 7 and 8, respectively, to set and reset the S flip-flop 11. As a result, a pulsed output waveform 14 is obtained from the flip-flop 11. The sector mark is made up of four combinations of two types of long holes, TI and T2, and the T1 width long hole detector 15 detects a T1 width pulse, and the T2 width long hole detector 16 detects a 12 width pulse. It is detected that there was a pulse. These detection signals are appropriately delayed by the delay circuit 17 or 18, and
When detecting a normal sector mark, a plurality of long detection signals are all input to the determination circuit 19, and a sector mark detection signal 4 is output based on the determination result of the positional relationship to the length.

第4図において、プラス側基準電圧12及びマイナス側
基準電圧13は、それぞれディスクノイズ20に起因す
る微分波形6上のノイズ21よりも充分大きくなければ
ならない。
In FIG. 4, the plus side reference voltage 12 and the minus side reference voltage 13 must each be sufficiently larger than the noise 21 on the differential waveform 6 caused by the disk noise 20.

従来方式の問題は、分解能低下時にデータ部りでもセク
タマークを誤検出することにある。すなわち、正常時の
データ部は第5図で波形1′に示す如く、充分な撮幅を
持っている。この場合には、微分波形6′もプラス側基
準電圧12及びマイナス側基準電圧13を越え、パルス
化出力波形14′は短かいパルス幅の連続となり、セク
タマークとして誤検出されることはない。しかしながら
、分解能低下時には、データ部波形1′の振幅が第6図
の如く小さくなるため、微分波形6“も小さくなって、
プラス側基準電圧12及びマイナス側基準電圧13とす
れすれになる。このため、パルス化出力14′が、あた
かも長への場合のように、パルス幅が長い部分を発生し
、パルスの幅・位置関係がセクタマークと同一となった
時に、セクタマークとして誤検出されることがある。こ
れが原因で、低分解能部分の読取り信頼度が低下する恐
れがある。
The problem with the conventional method is that sector marks are erroneously detected even in the data section when the resolution is reduced. That is, the data portion under normal conditions has a sufficient imaging width, as shown by waveform 1' in FIG. In this case, the differential waveform 6' also exceeds the plus side reference voltage 12 and the minus side reference voltage 13, and the pulsed output waveform 14' becomes a series of short pulse widths, so that it will not be erroneously detected as a sector mark. However, when the resolution decreases, the amplitude of the data section waveform 1' becomes smaller as shown in FIG. 6, so the differential waveform 6'' also becomes smaller.
The voltage is almost the same as the positive reference voltage 12 and the negative reference voltage 13. For this reason, when the pulsed output 14' generates a part with a long pulse width, as in the case of a long pulse, and the pulse width and positional relationship are the same as a sector mark, it is incorrectly detected as a sector mark. Sometimes. Due to this, there is a possibility that the reading reliability of the low-resolution portion may be lowered.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述したAC結合高周波アンプ使用に
よる波形の変動を除去し、分解能低下の影響を受けるこ
となくセクタマークのディジタル化信号パルスを取り出
せるようにしたマーク検出方式を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a mark detection method that eliminates waveform fluctuations caused by the use of an AC-coupled high-frequency amplifier, and that makes it possible to extract digitized signal pulses of sector marks without being affected by resolution degradation. .

〔発明の概要〕[Summary of the invention]

セクタマークは各セクタの先頭にあるため、セクタマー
クの直前にはギャップと呼ばれる未書込領域が一定長続
いている。この部分は全反射の信号レベルにあるため、
このレベルを基準にすれば、テレビ受像機等で用いられ
ている直流再生回路を使用して、AC結合高周波アンプ
で失なわれた低周波成分を再生することが可能である。
Since the sector mark is located at the beginning of each sector, an unwritten area called a gap continues for a certain length immediately before the sector mark. This part is at the signal level of total reflection, so
Using this level as a reference, it is possible to reproduce the low frequency components lost in the AC coupled high frequency amplifier using a DC regeneration circuit used in television receivers and the like.

従来方式では微分回路により、さらに低周波成分を除去
していた為、セクタマーク自身の低周波成分迄除去して
おり、その結果、セクタマークとその他の信号との区別
が出来なくなったものであり、直流再生回路による低周
波成分の再生がこの解決に効果を発揮する。
In the conventional method, a differentiating circuit was used to further remove low frequency components, which also removed the low frequency components of the sector marks themselves, and as a result, it was no longer possible to distinguish between sector marks and other signals. , regeneration of low frequency components using a DC regeneration circuit is effective in solving this problem.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第7図、第8図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 7 and 8.

第7図は、従来例として説、明した第3図のパルス化回
路2に代る本発明によるパルス化回路の構成図を示す。
FIG. 7 shows a configuration diagram of a pulsing circuit according to the present invention, which replaces the pulsing circuit 2 of FIG. 3, which has been explained and illustrated as a conventional example.

増幅された貌取り信号1は直流再生回路29に加えられ
、直流・分が回復される。この結果、直流再生出力波形
は、第8図に示す様に、全反射信号レベルに揃えられて
ピークホールド回路31に人力される。ピークホールド
回路31では、セクタマークのピーク電圧32を保持し
、これを適当な分圧比で分圧して基準電圧33を出力す
る。[θ流再生出力波形30は比較器34で基糸電圧3
3と比較され、パルス化出力35となる。この方式によ
れは、データ部パルス化出力36は、分解能に関係な(
、セクタマークより充分小さいパルスとなり、データ部
におけるセクタマーク誤検出を防止できる。
The amplified face-picking signal 1 is applied to a DC regeneration circuit 29, and the DC signal is recovered. As a result, the DC reproduction output waveform is adjusted to the total reflection signal level and input to the peak hold circuit 31, as shown in FIG. The peak hold circuit 31 holds the peak voltage 32 of the sector mark, divides it at an appropriate voltage division ratio, and outputs a reference voltage 33. [Theta flow reproduced output waveform 30 is determined by the comparator 34 when the base thread voltage 3
3, resulting in a pulsed output 35. According to this method, the data part pulsed output 36 is
, the pulse is sufficiently smaller than the sector mark, and erroneous detection of the sector mark in the data area can be prevented.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、AC結合高周波アンプ使用による波形
の変動を除去し、分解能の低下によるセクタマーク誤検
出を防止して、高信頼度で低コストのセクタマーク検出
回路を提供できる。
According to the present invention, waveform fluctuations caused by the use of an AC-coupled high-frequency amplifier can be removed, and erroneous sector mark detection due to a decrease in resolution can be prevented, thereby providing a highly reliable and low-cost sector mark detection circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) 、 (B)はそれぞれ光デイスク上のデ
ータとマークの関係を説明するための図、第2図(A)
 、 CB) 、 (C)はセクタマークの長尺と読取
り波形の説明図、第3図は従来のセクタマーク検出回路
の説明図、第4図〜第6図は上記従来回路における信号
波形を説明するための図、第7図は本発明の一実施例を
示す回路図、第8図はその波形説明図である。 第 1 凹 θ  0100f   σ  θ θ  l0t)z2
 図
Figures 1 (A) and (B) are diagrams for explaining the relationship between data and marks on an optical disk, respectively, and Figure 2 (A)
, CB), (C) is an explanatory diagram of the length of a sector mark and a read waveform, FIG. 3 is an explanatory diagram of a conventional sector mark detection circuit, and FIGS. 4 to 6 are explanatory diagrams of signal waveforms in the above conventional circuit. FIG. 7 is a circuit diagram showing an embodiment of the present invention, and FIG. 8 is a waveform explanatory diagram thereof. 1st concave θ 0100f σ θ θ l0t)z2
figure

Claims (1)

【特許請求の範囲】[Claims] 1、トラック上にマーク情報が長穴、データ情報が弧立
穴によって記録され、未記録部分が全反射面をもつ光デ
ィスクからの信号再生系において、光ヘッドからの出力
信号を入力して全反射側のレベルの揃った信号として出
力する直流再生回路と、該直流再生回路の出力信号ピー
ク電圧を保持し、これを分圧して基準電圧として出力す
るピークホールド回路と、該ピークホールド回路の出力
を基準に上記直流再生回路出力を2値化する電圧比較器
とを有し、該電圧比較器から得られるパルスのパターン
から前記マーク情報を識別するようにしたことを特徴と
するマーク検出方式。
1. In a signal reproducing system from an optical disc where mark information is recorded on the track through elongated holes, data information is recorded through vertical holes, and the unrecorded area has a total reflection surface, the output signal from the optical head is input to perform total reflection. A DC regeneration circuit that outputs a signal with a uniform level on the side, a peak hold circuit that holds the output signal peak voltage of the DC regeneration circuit, divides it, and outputs it as a reference voltage, and a peak hold circuit that outputs the output signal as a reference voltage. A mark detection method comprising a voltage comparator that binarizes the output of the DC reproduction circuit as a reference, and the mark information is identified from a pulse pattern obtained from the voltage comparator.
JP18052584A 1984-08-31 1984-08-31 Mark detection system of optical disc Granted JPS6159626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18052584A JPS6159626A (en) 1984-08-31 1984-08-31 Mark detection system of optical disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18052584A JPS6159626A (en) 1984-08-31 1984-08-31 Mark detection system of optical disc

Publications (2)

Publication Number Publication Date
JPS6159626A true JPS6159626A (en) 1986-03-27
JPH0566653B2 JPH0566653B2 (en) 1993-09-22

Family

ID=16084786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18052584A Granted JPS6159626A (en) 1984-08-31 1984-08-31 Mark detection system of optical disc

Country Status (1)

Country Link
JP (1) JPS6159626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027294A1 (en) * 1993-05-19 1994-11-24 Maxoptix Corporation Apparatus and method for dc restoration of optical recording read channel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027294A1 (en) * 1993-05-19 1994-11-24 Maxoptix Corporation Apparatus and method for dc restoration of optical recording read channel

Also Published As

Publication number Publication date
JPH0566653B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
US5101395A (en) Data detection employing high-speed baseline tracking compensation
JP2845915B2 (en) Information reproducing method and information reproducing apparatus
JPS5848209A (en) Device with circuit for discriminating whether information signal exist or not
JPH0737330A (en) Information reproducer
JP2810270B2 (en) Signal playback method
JPS6159626A (en) Mark detection system of optical disc
JPH09237401A (en) Accurate measurement of track servo pattern of preformat by magnetic data tape drive
US5999510A (en) Apparatus and method for recording/reproducing information
JP3291047B2 (en) Magneto-optical disk playback device
JP3191389B2 (en) Recording method of tracking error detection signal and tracking error detection device
JPH0611653Y2 (en) Wave shaping circuit
JP2552053B2 (en) Level slice circuit, floppy disk read circuit, and magnetic reproducing device
JPS6286587A (en) Magnetic head positioning system for floppy disk device
JP2675018B2 (en) Magnetic recording method for digital signals
SU1068987A1 (en) Method of reproducing magnetic record of phase-modulated signals
JPH0540978A (en) Optical information recording and reproducing device
JPH056634Y2 (en)
JPS62110673A (en) Information detection
JPH0778898B2 (en) Optical information recording / reproducing device
JPS6240665A (en) Sector mark detecting circuit for optical disk
JPH05282783A (en) Optical recording and reproducing device
JPH0375922B2 (en)
JPH0258733A (en) Optical information reproducing device
JPS59188844A (en) Disk recording medium and disk device using said recording medium
JPH01165037A (en) Signal reproducing system