JPH0566653B2 - - Google Patents

Info

Publication number
JPH0566653B2
JPH0566653B2 JP18052584A JP18052584A JPH0566653B2 JP H0566653 B2 JPH0566653 B2 JP H0566653B2 JP 18052584 A JP18052584 A JP 18052584A JP 18052584 A JP18052584 A JP 18052584A JP H0566653 B2 JPH0566653 B2 JP H0566653B2
Authority
JP
Japan
Prior art keywords
sector mark
circuit
sector
output
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18052584A
Other languages
Japanese (ja)
Other versions
JPS6159626A (en
Inventor
Shinichi Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18052584A priority Critical patent/JPS6159626A/en
Publication of JPS6159626A publication Critical patent/JPS6159626A/en
Publication of JPH0566653B2 publication Critical patent/JPH0566653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光デイスクにおける長穴で構成された
特殊マークの検出方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting a special mark composed of an elongated hole on an optical disc.

〔発明の背景〕[Background of the invention]

光デイスクへ情報を記録する場合、例えば特願
昭57−51230号明細書(特開昭58−169337号)に
記載されているように、一記録単位毎にその始点
を示すマークを付けることが一般的である。ここ
では記録単位をセクタと呼び、上記マークをセク
タマークと呼ぶことにする。セクタマークはトラ
ツクTR上にデータとして記録される他の孤立穴
P(第1図A)と区別出来るよう、第1図Bに示
すような長穴Qの組み合わせで構成される。
When recording information on an optical disk, for example, as described in Japanese Patent Application No. 57-51230 (Japanese Unexamined Patent Publication No. 58-169337), it is possible to attach a mark to each recording unit to indicate its starting point. Common. Here, the recording unit is called a sector, and the mark mentioned above is called a sector mark. The sector mark is composed of a combination of elongated holes Q as shown in FIG. 1B so that it can be distinguished from other isolated holes P (FIG. 1A) recorded as data on the track TR.

従って、長穴Qからなるセクタマーク部Mと孤
立穴Pからなるデータ部とが第2図Aの如く連続
するトラツク上を光ヘツドで走査すると、光ヘツ
ド出力のセクタマーク波形は第2図Bの様にな
る。この場合、高周波特性の良い直流アンプは高
価なため、信号再生系でAC結合の高周波アンプ
を使って増幅を行なうと、増幅後の波形は、第2
図Cのように、時間的に変動する成分を持つこと
になる。このため、従来は第3図に示すような回
路を用いて、この変動分を除去してから、セクタ
マークの検出を行なつていた。
Therefore, when the optical head scans a track in which the sector mark part M made up of the elongated hole Q and the data part made up of the isolated hole P are continuous as shown in FIG. 2A, the sector mark waveform of the optical head output is It will look like this. In this case, since DC amplifiers with good high frequency characteristics are expensive, if an AC-coupled high frequency amplifier is used for amplification in the signal regeneration system, the waveform after amplification will be
As shown in Figure C, it has components that vary over time. For this reason, conventionally, a circuit as shown in FIG. 3 has been used to remove this variation before detecting a sector mark.

第3図において、増幅された読取り信号1は、
パルス化回路2で波形成形されてパルスとなり、
パルス幅・位置検出回路3に入力されて長穴の幅
と位置関係からセクタマークが認識され、セクタ
マーク検出信号4が出力される。
In FIG. 3, the amplified read signal 1 is
The waveform is shaped by the pulse generator 2 and becomes a pulse.
The signal is input to a pulse width/position detection circuit 3, a sector mark is recognized from the width and positional relationship of the elongated hole, and a sector mark detection signal 4 is output.

パルス化回路2の中で、微分回路5は読取り信
号1から時間的に変動させる要因である信号の低
周波成分を除去し、第4図の微分波形6を発生す
る。微分波形6は比較器9,10に入力され、そ
れぞれ基準電圧発生器7および8から発生したプ
ラス側基準電圧およびマイナス側基準電圧と比較
され、RSフリツプフロツプ11をセツト、リセ
ツトする。この結果、フリツプフロツプ11から
は、パルス化出力波形14が得られる。セクタマ
ークは、T1,T2の2種類の長穴の組み合わせ
で構成されており、T1幅長穴検出器15でT1
幅のパルスがあつたことを、T2幅長穴検出器1
6でT2幅のパルスがあつたことが検出される。
これらの検出信号は、遅延回路17または遅延回
路18によつて適当な遅延が施され、正常なセク
タマーク検出時には判定回路19に複数の長穴検
出信号が揃つて入力され、長穴の位置関係の判定
結果によつてセクタマーク検出信号4が出力され
る。
In the pulsing circuit 2, a differentiating circuit 5 removes from the read signal 1 the low frequency component of the signal which is a factor causing temporal fluctuations, and generates a differentiated waveform 6 shown in FIG. Differential waveform 6 is input to comparators 9 and 10, and compared with the positive reference voltage and negative reference voltage generated from reference voltage generators 7 and 8, respectively, to set and reset RS flip-flop 11. As a result, a pulsed output waveform 14 is obtained from the flip-flop 11. The sector mark is composed of a combination of two types of elongated holes, T1 and T2, and the T1 width elongated hole detector 15
The T2 wide oblong hole detector 1 detects that a pulse of
At 6, it is detected that a pulse of T2 width has been applied.
These detection signals are appropriately delayed by a delay circuit 17 or 18, and when a sector mark is detected normally, a plurality of elongated hole detection signals are all input to the determination circuit 19, and the positional relationship of the elongated holes is determined. A sector mark detection signal 4 is output based on the determination result.

第4図において、プラス側基準電圧12及びマ
イナス側基準電圧13は、それぞれデイスクノイ
ズ20に起因する微分波形6上のノイズ21より
も充分大きくなければならない。
In FIG. 4, the plus side reference voltage 12 and the minus side reference voltage 13 must each be sufficiently larger than the noise 21 on the differential waveform 6 caused by the disk noise 20.

従来方式の問題は、分解能低下時にデータ部D
でもセクタマークを誤検出することにある。すな
わち、正常時のデータ部は第5図で波形1′に示
す如く、充分な振幅を持つている。この場合に
は、微分波形6′もプラス側基準電圧12及びマ
イナス側基準電圧13を越え、パルス化出力波形
14′は短かいパルス幅の連続となり、セクタマ
ークとして誤検出されることはない。しかしなが
ら、分解能低下時には、データ部波形1″の振幅
が第6図の如く小さくなるため、微分波形6″も
小さくなつて、プラス側基準電圧12及びマイナ
ス側基準電圧13とすれすれになる。このため、
パルス化出力14″が、あたかも長穴の場合のよ
うに、パルス幅が長い部分を発生し、パルスの
幅・位置関係がセクタマークと同一となつた時
に、セクタマークとして誤検出されることがあ
る。これが原因で、低分解能部分の読取り信頼度
が低下する恐れがある。
The problem with the conventional method is that the data section D
However, the problem lies in falsely detecting sector marks. That is, the data portion under normal conditions has sufficient amplitude, as shown by waveform 1' in FIG. In this case, the differential waveform 6' also exceeds the plus side reference voltage 12 and the minus side reference voltage 13, and the pulsed output waveform 14' becomes a series of short pulse widths, so that it will not be erroneously detected as a sector mark. However, when the resolution decreases, the amplitude of the data portion waveform 1'' becomes smaller as shown in FIG. 6, so the differential waveform 6'' also becomes smaller and becomes almost equal to the plus side reference voltage 12 and the minus side reference voltage 13. For this reason,
When the pulsed output 14'' generates a part with a long pulse width, as in the case of a long hole, and the pulse width and positional relationship are the same as the sector mark, it may be mistakenly detected as a sector mark. This may reduce the reliability of reading low-resolution parts.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述したAC結合高周波アン
プ使用による波形の変動を除去し、分解能低下の
影響を受けることなくセクタマークのデイジタル
化信号パルスを取り出せるようにしたセクタマー
ク検出装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sector mark detection device that eliminates waveform fluctuations caused by the use of an AC-coupled high-frequency amplifier as described above, and is capable of extracting digitized signal pulses of sector marks without being affected by resolution degradation. be.

〔発明の概要〕[Summary of the invention]

セクタマークは各セクタの先頭にあるため、セ
クタマークの直前にはギヤツプと呼ばれる未書込
領域が一定長続いている。この部分は全反射の信
号レベルにあるため、このレベルを基準にすれ
ば、テレビ受像機等で用いられている直流再生回
路を使用して、AC結合高周波アンプで失われた
低周波成分を再生することが可能である。従来方
式では微分回路により、さらに低周波成分を除去
していた為、セクタマーク自身の低周波成分迄除
去しており、その結果、セクタマークとその他の
信号との区別が出来なくなつたものであり、直流
再生回路による低周波成分の再生がこの解決に効
果を発揮する。
Since the sector mark is located at the beginning of each sector, an unwritten area called a gap continues for a certain length immediately before the sector mark. Since this part is at the signal level of total reflection, if we use this level as a reference, we can use the DC regeneration circuit used in television receivers etc. to regenerate the low frequency components lost in the AC coupled high frequency amplifier. It is possible to do so. In the conventional method, a differentiating circuit was used to further remove low frequency components, which also removed the low frequency components of the sector marks themselves, and as a result, it was no longer possible to distinguish between sector marks and other signals. Regeneration of low frequency components using a DC regeneration circuit is effective in solving this problem.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第7図、第8図によ
り説明する。
An embodiment of the present invention will be described below with reference to FIGS. 7 and 8.

第7図は、従来例として説明した第3図のパル
ス化回路2に代る本発明によるセクタマーク検出
装置(パルス化回路)の構成図を示す。増幅され
た読取り信号1(第8図の上段に示す)は直流再
生回路29に加えられ、直流分が回復される。こ
の結果、直流再生出力波形30は、第8図の中段
に示す様に、全反射信号レベルに揃えられてピー
クホールド回路31に入力される。ピークホール
ド回路31では、セクタマークのピーク電圧32
を保持し、これを適当な分圧比で分圧して基準電
圧33を出力する。直流再生出力波形30は比較
器34で基準電圧33と比較され、第8図の下段
に示す様なパルス化出力35となる。本実施例に
よれば、データ部パルス化出力36は、分解能に
関係なく、セクタマークより充分小さいパルスと
なり、データ部におけるセクタマーク誤検出を防
止できる。
FIG. 7 shows a configuration diagram of a sector mark detection device (pulsing circuit) according to the present invention, which replaces the pulsing circuit 2 of FIG. 3 described as a conventional example. The amplified read signal 1 (shown in the upper part of FIG. 8) is applied to a DC regeneration circuit 29 to recover the DC component. As a result, the DC reproduction output waveform 30 is input to the peak hold circuit 31 after being adjusted to the total reflection signal level, as shown in the middle part of FIG. In the peak hold circuit 31, the peak voltage 32 of the sector mark
is held and divided at an appropriate voltage division ratio to output a reference voltage 33. The DC reproduction output waveform 30 is compared with a reference voltage 33 by a comparator 34, resulting in a pulsed output 35 as shown in the lower part of FIG. According to this embodiment, the data section pulsed output 36 becomes a pulse that is sufficiently smaller than the sector mark, regardless of the resolution, and erroneous detection of sector marks in the data section can be prevented.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、AC結合高周波アンプ使用に
よる波形の変動を除去し、分解能の低下によるセ
クタマーク誤検出を防止して、高信頼度で低コス
トのセクタマーク検出装置を提供できる。
According to the present invention, it is possible to eliminate waveform fluctuations caused by the use of an AC-coupled high-frequency amplifier, prevent erroneous sector mark detection due to a decrease in resolution, and provide a highly reliable and low-cost sector mark detection device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Bはそれぞれ光デイスク上のデータ
とマークの関係を説明するための図、第2図A,
B,Cはセクタマークの長穴と読取り波形の説明
図、第3図は従来のセクタマーク検出回路の説明
図、第4図〜第6図は上記従来回路における信号
波形を説明するための図、第7図は本発明の一実
施例を示す回路図、第8図はその波形説明図であ
る。 29……直流再生回路、31……ピークホール
ド回路、34……電圧比較器。
Figures 1A and 1B are diagrams for explaining the relationship between data and marks on an optical disk, and Figure 2A,
B and C are explanatory diagrams of sector mark slots and read waveforms, FIG. 3 is an explanatory diagram of a conventional sector mark detection circuit, and FIGS. 4 to 6 are diagrams for explaining signal waveforms in the above conventional circuit. , FIG. 7 is a circuit diagram showing one embodiment of the present invention, and FIG. 8 is a waveform explanatory diagram thereof. 29...DC regeneration circuit, 31...Peak hold circuit, 34...Voltage comparator.

Claims (1)

【特許請求の範囲】[Claims] 1 トラツク上にセクタマーク情報が長穴、デー
タ情報が孤立穴によつて記録され、未記録部分が
全反射面をもつ光デイスクから前記セクタマーク
情報を検出するセクタマーク検出装置において、
光ヘツドからの出力信号を入力として全反射側の
レベルの揃つた信号として出力する直流再生回路
と、該直流再生回路の出力信号ピーク電圧を保持
し、これを分圧して基準電圧として出力するピー
クホールド回路と、該ピークホールド回路の出力
を基準に上記直流再生回路出力を2値化する電圧
比較器とを有し、該電圧比較器から得られるパル
スのパターンから前記セクタマーク情報を識別す
るようにしたことを特徴とする光デイスクにおけ
るセクタマーク検出装置。
1. In a sector mark detection device for detecting sector mark information from an optical disk in which sector mark information is recorded on a track by elongated holes and data information is recorded by isolated holes, and the unrecorded portion has a total reflection surface,
A DC regeneration circuit that receives the output signal from the optical head and outputs it as a signal with a uniform level on the total reflection side, and a peak circuit that holds the output signal peak voltage of the DC regeneration circuit, divides it, and outputs it as a reference voltage. It has a hold circuit and a voltage comparator that binarizes the output of the DC reproduction circuit based on the output of the peak hold circuit, and is configured to identify the sector mark information from the pulse pattern obtained from the voltage comparator. A sector mark detection device for an optical disk, characterized in that:
JP18052584A 1984-08-31 1984-08-31 Mark detection system of optical disc Granted JPS6159626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18052584A JPS6159626A (en) 1984-08-31 1984-08-31 Mark detection system of optical disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18052584A JPS6159626A (en) 1984-08-31 1984-08-31 Mark detection system of optical disc

Publications (2)

Publication Number Publication Date
JPS6159626A JPS6159626A (en) 1986-03-27
JPH0566653B2 true JPH0566653B2 (en) 1993-09-22

Family

ID=16084786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18052584A Granted JPS6159626A (en) 1984-08-31 1984-08-31 Mark detection system of optical disc

Country Status (1)

Country Link
JP (1) JPS6159626A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355356A (en) * 1993-05-19 1994-10-11 Maxoptix Corporation Charge pump for restoring DC in an optical recording read channel

Also Published As

Publication number Publication date
JPS6159626A (en) 1986-03-27

Similar Documents

Publication Publication Date Title
EP0466329B1 (en) Apparatus for detecting digital data signals in a analog signal
KR870001577A (en) Information record reproduction method and device
EP0284279A1 (en) Pulse detection circuit using amplitude and time qualification
JPS5848209A (en) Device with circuit for discriminating whether information signal exist or not
JP2000516378A (en) Automatic gain control circuit
JPH0566653B2 (en)
JPS61120380A (en) Digital signal processing circuit
JPS6232546B2 (en)
JP3042458B2 (en) Information recording / reproducing apparatus and information recording / reproducing method
US5181196A (en) Erase mark detecting circuit for detecting an erase mark superimposed on data recorded on a sector of an optical recording medium
JP2725510B2 (en) Optical disc device and information reading device therefor
KR100276740B1 (en) CUE signal detection circuit of the magnetic recording / reproducing apparatus
JPH04209323A (en) Read signal processing circuit for optical information recording/reproducing device
JPH056634Y2 (en)
JP2552053B2 (en) Level slice circuit, floppy disk read circuit, and magnetic reproducing device
JPS62110673A (en) Information detection
SU1068987A1 (en) Method of reproducing magnetic record of phase-modulated signals
JPH0445890B2 (en)
JPH0722768Y2 (en) Dropout detection circuit
JPS6240665A (en) Sector mark detecting circuit for optical disk
JPS5810275U (en) Information recording area detection device
JPH0778898B2 (en) Optical information recording / reproducing device
JPS6117046B2 (en)
JPS6286587A (en) Magnetic head positioning system for floppy disk device
JPS634462A (en) Storage information readout circuit