JPS6159317A - Electrochromic element provided with heating circuit - Google Patents

Electrochromic element provided with heating circuit

Info

Publication number
JPS6159317A
JPS6159317A JP59181193A JP18119384A JPS6159317A JP S6159317 A JPS6159317 A JP S6159317A JP 59181193 A JP59181193 A JP 59181193A JP 18119384 A JP18119384 A JP 18119384A JP S6159317 A JPS6159317 A JP S6159317A
Authority
JP
Japan
Prior art keywords
electrode
layer
transparent
low
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59181193A
Other languages
Japanese (ja)
Inventor
Tatsuo Niwa
達雄 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP59181193A priority Critical patent/JPS6159317A/en
Publication of JPS6159317A publication Critical patent/JPS6159317A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the response speed in low-temp. environment and to prevent dimming by providing a heating circuit which generates heat by passing electric current to a lower electrode or upper electrode which sandwiches an electrochromic layer and at least one of which is a transparent electrode. CONSTITUTION:For example, an antidazzle mirror which ECD is formed of a transparent glass substrate S on the front, thin ITO film E as the transparent lower electrode, thin film D as an oxidation colorable EC layer, thin film C as a transparent ion conductive layer, a thin film B as a reduction colorable EC layer and the upper electrode layer A in common use as a reflecting layer. Heat is generated in the electrode A when the electric current passes thereto from a low-voltage power source F via a switch SW2, level shift circuit LA and SW4. On the other hand, the heat is generated in the electrode E as well as the current flows to said electrode as well. As a result, the EC layers B, D are warmed, by which the response speed in the low-temp. environment is improved. The substrate S is also warmed and the dimming can be prevented even if the substrate S contacts with the moist and warm air in the low-temp. environment. The colored state is maintained even if the SW1, 3, 5 are turned off after the coloring.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、電圧の印加によって着消色するエレクトロク
ロミック表示装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an improvement in an electrochromic display device that can be colored or erased by applying a voltage.

(発明の背景) エレクトロクロミック素子とは、基本的にはエレクトロ
クロミック層 例えばWO,の薄膜を少なくとも一方が透明な一対の電
極層で挟持したもので、これらの電極間に例えば約1.
4ボルトの電圧を印加するとWO。
(Background of the Invention) An electrochromic element is basically a thin film of an electrochromic layer, such as WO, sandwiched between a pair of electrode layers, at least one of which is transparent.
When a voltage of 4 volts is applied, WO.

薄膜が青色に着色し、着色は電圧の印加をやめても保持
され、また同程度の逆電圧を印カロすると消色し元の無
色透明に戻り、消色は逆電圧の印加をやめても保持され
る。このようなEC素子(以下、ECDと言う)は、駆
動電源が小さいこと、消費電力が少ないこと、着消色の
応答速度が比較的速いこと、素子全体が比較的薄いこと
、消色時の光透過率が高く着色時の光透過率が比較的低
いこと、信頬性が比較的高いことなどから、セブン・セ
グメントを用いた表示装置や透過又は反射光量制御装置
などに利用されようとしている。
The thin film is colored blue, and the coloration is retained even after the application of the voltage is stopped, and when the same amount of reverse voltage is applied, the color disappears and returns to its original colorless and transparent state, and the coloration is maintained even when the application of the reverse voltage is stopped. Ru. Such an EC element (hereinafter referred to as ECD) has a small driving power supply, low power consumption, a relatively fast response speed for coloring/decoloring, a relatively thin overall element, and a low power consumption when decoloring. Due to its high light transmittance, relatively low light transmittance when colored, and relatively high brightness, it is being used for displays using seven segments and devices for controlling the amount of transmitted or reflected light. .

そして反射光量制御装置の一種として自動車のルームミ
ラーの上にECDを設けてこのECDを電気的に着消色
することによって反射光量を調節できる防眩ミラーも提
案されている(実開昭58−21120参照)。 自動
車のルームミラーは、夜間、後続車のライトが映ると、
運転者が眩しく感じるので、ライトが映ったときはEC
Dを着色させて反射光量を落とし、それ以外のときには
ECDを消色して反射光量を増やす(つまり、明るくす
る)のである。
As a type of reflected light amount control device, an anti-glare mirror has also been proposed in which the amount of reflected light can be adjusted by installing an ECD on the interior mirror of an automobile and electrically coloring and decolorizing the ECD (Utility Model No. 21120). When a car's rearview mirror reflects the lights of a car following you at night,
The driver feels dazzled, so use EC when the lights are reflected.
D is colored to reduce the amount of reflected light, and at other times ECD is decolored to increase the amount of reflected light (in other words, to make it brighter).

ところでECDの応答速度は、周囲の温度に依存してお
り、一般にO′c以下の低温環境では応答速度は0.5
〜10秒以下と遅くなる欠点がある。
By the way, the response speed of an ECD depends on the surrounding temperature, and generally the response speed is 0.5 in a low temperature environment below O'c.
It has the disadvantage that it is slow at ~10 seconds or less.

また低温環境で湿った暖かい空気(例えば人の呼気)が
接触するとECDの表面がくもりを生じる欠点もある。
Another drawback is that the surface of the ECD becomes cloudy when it comes into contact with moist, warm air (for example, human breath) in a low-temperature environment.

(発明の目的) 従って、本発明の目的は、低温環境での応答速度の改善
およびくもり防止を目的として加熱手段を設りたECD
を提供することにある。
(Object of the Invention) Therefore, the object of the present invention is to provide an ECD equipped with a heating means for the purpose of improving response speed and preventing fogging in a low-temperature environment.
Our goal is to provide the following.

(発明の概要) 本発明者らは、ECDのエレクトロクロミック層を挟持
する上部または下部電極自身を発熱体として利用するこ
とを着想し、本発明をなすに至った。
(Summary of the Invention) The present inventors came up with the idea of using the upper or lower electrode itself that sandwiches the electrochromic layer of an ECD as a heating element, and have accomplished the present invention.

しかして、本発明は、下部電極、エレクトロクロミック
層および上部電極からなり、下部電極と上部電極の少な
くとも一方が透明電極であるエレクトロクロミック素子
に於いて、 前記下部電極または上部電極に電流を流して発熱させる
加熱回路を設&ノたことを特徴とするエレクトロクロミ
ック素子を提供する。
Accordingly, the present invention provides an electrochromic element comprising a lower electrode, an electrochromic layer, and an upper electrode, in which at least one of the lower electrode and the upper electrode is a transparent electrode, in which a current is passed through the lower electrode or the upper electrode. Provided is an electrochromic element characterized by having a heating circuit that generates heat.

エレクトロクロミック素子(ECD)は、基本的には、
EC層とそれを挟持する一対の電極からなるが、一般的
にはEC層のほかに透明なイオン導電層ないし電解質(
電解液でもよい)層が必要であり、またEC層として還
元発色性のEC層と酸化発色性のEC層の2層をペアで
使用してもよい。従って、本発明に於けるECr)も、
「電極/ECEC法明なイオン導電層ないし電解質(電
解液でもよい)層/電極」の4層構造または 「電極/還元発色性EC層/透明なイオン導電層ないし
電解質(電解液でもよい)層/酸化発色性EC層ないし
可逆的電解酸化還元層ないし触媒層/電極」の5層構造 を持つものが好ましい。
Electrochromic devices (ECDs) are basically
It consists of an EC layer and a pair of electrodes sandwiching it, but generally, in addition to the EC layer, a transparent ion conductive layer or electrolyte (
A layer (which may be an electrolytic solution) is required, and a pair of two layers, a reduction color-forming EC layer and an oxidation color-forming EC layer, may be used as the EC layer. Therefore, ECr) in the present invention also
4-layer structure of "electrode/ECEC transparent ion conductive layer or electrolyte (electrolyte may be used) layer/electrode" or "electrode/reductive coloring EC layer/transparent ion conductive layer or electrolyte (electrolyte may be used) layer" It is preferable to have a five-layer structure: /oxidative color-forming EC layer, reversible electrolytic redox layer, catalyst layer/electrode.

EC層特に還元発色性EC層の着色消色反応にはカチオ
ンが必要とされ、H+イオンやしけイオンをEC層その
他に含有させる必要がある。H+イオンは初めからイオ
ンである必要はなく、電圧が印加されたときに■(+イ
オンが生じればよく、従って11+イオンの代わりに水
を含有させてもよい。この水は非常に少なくて十分であ
り、しばしば、大気中から自然に侵入する水分でも着消
色す透明電極の材料としては、例えば、SnO2、In
2O3、ITO(酸化インジウムに5%程度の酸化スズ
が混入したもの)などが使用される。
Cations are required for the coloring and decoloring reaction of the EC layer, particularly the reduction color-forming EC layer, and it is necessary to contain H+ ions and ions in the EC layer and other parts. H+ ions do not need to be ions from the beginning; it is only necessary that ■(+ ions are generated when a voltage is applied. Therefore, water may be contained instead of 11+ ions. This water is very small. Examples of transparent electrode materials that are sufficient and often change color and fade even with moisture that naturally enters from the atmosphere include, for example, SnO2, In
2O3, ITO (indium oxide mixed with about 5% tin oxide), etc. are used.

不透明電極の材料としては、例えば金、根、アルミニウ
ム、クロム、スズ、亜鉛、ニッケル、ルテニウム、ロジ
ウム、ステンレスなどの金属が使用される。これらの金
属による電極は反射層を兼用することかできる。
Examples of materials used for the opaque electrode include metals such as gold, metal, aluminum, chromium, tin, zinc, nickel, ruthenium, rhodium, and stainless steel. Electrodes made of these metals can also serve as a reflective layer.

還元発色性EC物質としては一般にはWO3が使用され
る。
WO3 is generally used as the reduction color-forming EC substance.

透明なイオン導電層としては、例えば酸化ケイ素、酸化
タンタル、酸化チタン、酸化アルミニウム、酸化ニオブ
、酸化ジルコニウム、酸化ハフニウム、酸化ランタン、
フン化マグネシウムなどが使用される。これらの物質薄
膜は製造の際微量の水分を含ませると電子に対して絶縁
体であるが、プロトンH(+’)およびヒドロキシイオ
ン(OH−)に対しては良導体となる。イオン導電層と
して又はその代わりに電解質ないし電解液を用いても良
く、例えば硫酸、塩酸、リン酸、酢酸、酪酸、しゅう酸
のような酸又はその水溶液、水酸化ナトリウム、水酸化
カリウムのようなアルカリの水溶液、塩化ナトリウム、
塩化カリウム、塩化リチウム、硫酸リチウムなどの水溶
液が使用される。また電解質又は電解質水溶液をゲル化
剤例えばPVA、CMC,寒天、ゼラチンなどでゲル化
させたものも使用しうる。更に水を含むかまたはヒドロ
キシル基もしくはカルボキシル基を有する合成樹脂例え
ばメタクリル酸β−ヒドロキシエチルと他のビニルモノ
マーとの共重合体、2−アクリルアミド−2−メチルプ
ロパンスルホンと他のビニルモノマーとの共重合体、ポ
リアクリル酸、含水ポリエステル等も使用可能である。
Examples of the transparent ion conductive layer include silicon oxide, tantalum oxide, titanium oxide, aluminum oxide, niobium oxide, zirconium oxide, hafnium oxide, lanthanum oxide,
Magnesium fluoride etc. are used. When these thin films of materials contain a small amount of water during manufacture, they become insulators for electrons, but become good conductors for protons H (+') and hydroxy ions (OH-). An electrolyte or an electrolytic solution may be used as the ion conductive layer or in its place, for example, an acid such as sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, butyric acid, oxalic acid or an aqueous solution thereof, sodium hydroxide, potassium hydroxide, etc. aqueous alkali solution, sodium chloride,
Aqueous solutions of potassium chloride, lithium chloride, lithium sulfate, etc. are used. Further, an electrolyte or an electrolyte aqueous solution gelled with a gelling agent such as PVA, CMC, agar, gelatin, etc. may also be used. Furthermore, synthetic resins containing water or having hydroxyl or carboxyl groups, such as copolymers of β-hydroxyethyl methacrylate and other vinyl monomers, copolymers of 2-acrylamide-2-methylpropanesulfone and other vinyl monomers, etc. Polymers, polyacrylic acids, hydrous polyesters, etc. can also be used.

H+イオンに代えてLi+イオンを使用してもよく、そ
の場合にはLiCIO4、LiBF4などのリチウム塩
をメタノール、エタノール、エチレングリコール、エチ
ルセロソルブ、テトラヒドロフラン、アセトニトリル、
ピリジン、T−ブチロラクトン、ジメチルスルホキシド
、ジメチルホル1、アミド、プロビレンカーボネ−1・
などの溶媒に溶かしたもの又は固体リチウム電解質例え
ば1.i、WoいLi3N、 LiN等が使用される。
Li+ ions may be used instead of H+ ions, in which case lithium salts such as LiCIO4, LiBF4, etc. may be mixed with methanol, ethanol, ethylene glycol, ethyl cellosolve, tetrahydrofuran, acetonitrile,
Pyridine, T-butyrolactone, dimethyl sulfoxide, dimethylform 1, amide, propylene carbonate 1.
or solid lithium electrolyte dissolved in a solvent such as 1. i, WoiLi3N, LiN, etc. are used.

場合により使用される酸化発色性EC層ないし可逆的電
解酸化還元層ないし触媒層としては、例えば酸化ないし
水酸化イリジウム、同じくニッケル、同しくクロム、同
しくバナジウム、同じくルテニウム、同じくロジウムな
どがあげられる。これらの物質は他の透明なイオン導電
体又は透明電極材料中に分散されていても良い。いずれ
にせよ、電圧を印加しないときに無色透明であって電圧
を印加したときに無色透明または着色するものでなけれ
ばならない。
Examples of the oxidative color-forming EC layer or reversible electrolytic redox layer or catalyst layer that may be used include iridium oxide or hydroxide, nickel, chromium, vanadium, ruthenium, rhodium, etc. . These materials may also be dispersed in other transparent ionic conductors or transparent electrode materials. In any case, it must be colorless and transparent when no voltage is applied, and colorless and transparent or colored when a voltage is applied.

以下、実施例により本発明の詳細な説明するが、本発明
はこれに限定されるものではない。
Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

(実施例) 第1図は、本実施例のECD付き防眩ミラーの鶴を説明
する概念図である。
(Example) FIG. 1 is a conceptual diagram illustrating an anti-glare mirror with ECD according to this example.

第1図中、(S)は表面の透明ガラス基板、(E)は透
明下部電極としてのI−To薄膜、(D)は酸化発色性
EC層としての水酸化イリジウム薄膜、(C)は透明な
イオン導電層としての、微量の水分を含む酸化タンタル
薄膜、(B)は還元発色性EC層としてのWO,薄膜、
(A)は反射層と兼用の上部電極としてのAn層である
In Figure 1, (S) is a transparent glass substrate on the surface, (E) is an I-To thin film as a transparent lower electrode, (D) is an iridium hydroxide thin film as an oxidative color-forming EC layer, and (C) is transparent. A tantalum oxide thin film containing a trace amount of water is used as an ion conductive layer, (B) is a WO thin film as a reduction coloring EC layer,
(A) is an An layer serving as an upper electrode that also serves as a reflective layer.

また、(F)は定電圧電源であり、(LA)および(L
B)はレベルシフトである。
In addition, (F) is a constant voltage power supply, (LA) and (L
B) is a level shift.

(SI’L )はメイン・スイッチであり、定電圧電源
を0N−OFFする。(S6)及び(5W3)はECD
を着消色するスイッチであり、両者は同時にON、OF
Fを行う必要があって、ONで着色、OFFで消色する
。<5u4)および(!J5 )は電圧の印加を止めて
も着色状態または消色状態を保持させる(つまり、メモ
リー性を持たせる)ためのスイッチであり、両者は同時
にON、OFFを行う必要があって、着消色の駆動時は
ONにしておき、メモリ一時はOFFにする。
(SI'L) is a main switch, which turns the constant voltage power supply ON-OFF. (S6) and (5W3) are ECD
It is a switch for coloring and decoloring, and both can be turned ON and OFF at the same time.
It is necessary to perform F, and when it is ON, it colors, and when it is OFF, it decolors. <5u4) and (!J5) are switches that maintain the colored state or decolored state even when the voltage is stopped (that is, have memory properties), and both must be turned on and off at the same time. Therefore, it is turned on when driving coloring/decoloring, and turned off when the memory is temporarily activated.

第2図は、第1図に示したレベルシフトの一例を示す電
気回路図である。
FIG. 2 is an electrical circuit diagram showing an example of the level shift shown in FIG. 1.

メイン・スイッチ(Sl’l+ )をONにして定電圧
電源(F)をから電流(ro)を流し、スイッチ(!l
Jz )及び(5ILK)をONにすると、レベルシフ
ト(LA)で一定の電位差(−V、)を生じるように電
流(IA)と電流(IE)に分かれ、電流(IA)は反
射層と兼用の上部Al電極(A)に流れて、そこでAl
電極(A)の抵抗をRAとすると、QA =(IA )
2XRAの熱量を発熱させる。一方、電流(IE )は
、下部rTo電極(E)に流れて、そこでITO電極(
E)の抵抗をR1とすると、QE −(IE )”XR
Eの熱量を発熱させる。例えば、A1は3オ一ム程度の
電気抵抗を持っており、そのため0.5〜2アンペア程
度の電流を流すと、手に感じるほどに発熱する。その結
果、EC1i (B)、(D)は暖められて低温環境で
も応答速度が遅くなることがなく、また透明基板(S)
も暖められるので、低温環境で湿った暖かい空気に触れ
ても、くもりを生じることがない。
Turn on the main switch (Sl'l+), apply current (ro) from the constant voltage power supply (F), and turn on the switch (!l).
When Jz ) and (5ILK) are turned on, the current (IA) is divided into the current (IA) and the current (IE) so that a constant potential difference (-V, ) is generated by the level shift (LA), and the current (IA) is also used as a reflective layer. flows to the upper Al electrode (A), where Al
If the resistance of the electrode (A) is RA, then QA = (IA)
Generates heat from 2XRA. On the other hand, the current (IE) flows to the lower rTo electrode (E) where it flows to the ITO electrode (
If the resistance of E) is R1, then QE - (IE)"XR
Generates heat of E. For example, A1 has an electrical resistance of about 3 ohms, so when a current of about 0.5 to 2 amperes is passed through it, it generates heat that can be felt in the hand. As a result, EC1i (B) and (D) are warmed and the response speed does not slow down even in low-temperature environments, and the transparent substrate (S)
It also warms the air, so even if it comes in contact with warm, humid air in a low-temperature environment, it won't become cloudy.

他方、電極(A)−(E)間には、どの位置においても
、一定の電圧(−1が印加されるので、EC層(B)、
(D)は着色する。その結果、反射光量が低下する。そ
して一旦、着色したならば、スイッチ(SWa )およ
び(SWs )をOFFにすると、メイン・スイッチ(
SW+ )をOFFにしても着色状態が保持される。仮
にスイッチ(SW、 )および(S誓、)をOFFにし
ないと、電極(A)−(E)間が短絡状態になるので、
やがて消色してしまう。しかし、保温するうえからは、
メイン・スイッチ(SW+ )をOFFにしないことが
好ましい。
On the other hand, since a constant voltage (-1) is applied between the electrodes (A) and (E) at any position, the EC layer (B),
(D) is colored. As a result, the amount of reflected light decreases. Once colored, turn off the switches (SWa) and (SWs), and the main switch (
The colored state is maintained even if SW+) is turned off. If the switches (SW, ) and (S) are not turned off, a short circuit will occur between electrodes (A) and (E), so
The color will fade eventually. However, in terms of keeping warm,
It is preferable not to turn off the main switch (SW+).

消色するには、メイン・スイッチ(SH+ )をONに
したうえで、スイッチ(SWg )及び(5W3)をO
FFにすると、今度は電流(Io)がレベルシフト(L
A)で一定の電位差(+VI)を有する電流(I、)と
電流(I、)に分かれ、電流(IA)は反射層と兼用の
上部A1電極(A)に流れ、電流(I、)は下部ITO
電極(E)に流れ、その結果、同様に各電極(A>、(
E)が発熱する。そして、電極(A)−(B)間にはど
の位置においても一定の電位差(→−V+)が印加され
るので、EC層は直ちに消色する。そして一旦、消色し
たならば、スイッチ<SUa )および(sW5)をO
FFにすると、メイン・スイッチ(SW+ )を6FF
にしても消色状態が保持される。しかし、保温するうえ
からは、メイン・スイッチ(SW+ )をOFFにしな
いことが好ましい。
To erase the color, turn on the main switch (SH+), then turn on switches (SWg) and (5W3).
When the FF is turned on, the current (Io) is level shifted (L
A) is divided into a current (I,) and a current (I, ) with a constant potential difference (+VI), the current (IA) flows to the upper A1 electrode (A) which also serves as a reflective layer, and the current (I,) is Lower ITO
flows to the electrode (E), and as a result, each electrode (A>, (
E) generates heat. Since a constant potential difference (→-V+) is applied between the electrodes (A) and (B) at any position, the EC layer is immediately decolored. Once the color is erased, switch <SUa) and (sW5) are turned off.
When set to FF, turn the main switch (SW+) to 6FF.
However, the decolored state is maintained. However, from the standpoint of keeping warm, it is preferable not to turn off the main switch (SW+).

(発明の効果) 以上のとおり、本発明によれば、ECDの電極をそのま
ま発熱体として利用し、単に発熱回路を付けるだけで、
簡単にECDを加熱することができ、その結果、低温環
境での応答速度の低下を解消できるとともに、くもりを
防止できる。
(Effects of the Invention) As described above, according to the present invention, the electrodes of the ECD can be used as they are as heating elements, and simply by attaching a heating circuit.
The ECD can be easily heated, and as a result, it is possible to eliminate the decrease in response speed in a low-temperature environment and to prevent fogging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例にかかるECD付き防眩ミラ
ーの全体構成を説明する概念図である。 第2図は、第1図のレベルシフトの一例を示す電気回路
図である。 〔主要部分の符号の説明〕 S ・・・・・・ 透明基板 SW、・・・・・・ メイン・スイッチSWz、 SL
、 5IAa、 SWs ・・・・・・ スイッチLA
、I、B・・・・・・ レベルシフト        
 4F ・・・・・・ 定電圧電源
FIG. 1 is a conceptual diagram illustrating the overall configuration of an ECD-equipped anti-glare mirror according to an embodiment of the present invention. FIG. 2 is an electrical circuit diagram showing an example of the level shift shown in FIG. 1. [Explanation of symbols of main parts] S... Transparent substrate SW,... Main switch SWz, SL
, 5IAa, SWs... Switch LA
, I, B... Level shift
4F ・・・・・・ Constant voltage power supply

Claims (1)

【特許請求の範囲】 下部電極、エレクトロクロミック層および上部電極から
なり、下部電極と上部電極の少なくとも一方が透明電極
であるエレクトロクロミック素子に於いて、 前記下部電極または上部電極に電流を流して発熱させる
加熱回路を設けたことを特徴とするエレクトロクロミッ
ク素子。
[Claims] In an electrochromic element comprising a lower electrode, an electrochromic layer, and an upper electrode, in which at least one of the lower electrode and the upper electrode is a transparent electrode, heat is generated by passing a current through the lower electrode or the upper electrode. An electrochromic element characterized in that it is provided with a heating circuit.
JP59181193A 1984-08-30 1984-08-30 Electrochromic element provided with heating circuit Pending JPS6159317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59181193A JPS6159317A (en) 1984-08-30 1984-08-30 Electrochromic element provided with heating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59181193A JPS6159317A (en) 1984-08-30 1984-08-30 Electrochromic element provided with heating circuit

Publications (1)

Publication Number Publication Date
JPS6159317A true JPS6159317A (en) 1986-03-26

Family

ID=16096474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59181193A Pending JPS6159317A (en) 1984-08-30 1984-08-30 Electrochromic element provided with heating circuit

Country Status (1)

Country Link
JP (1) JPS6159317A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245143A (en) * 1985-04-23 1986-10-31 Asahi Glass Co Ltd Dimmer
JPH04258429A (en) * 1991-02-08 1992-09-14 Kajima Corp Joint structure of large beam and small beam
US5446576A (en) * 1990-11-26 1995-08-29 Donnelly Corporation Electrochromic mirror for vehicles with illumination and heating control
WO2000038950A3 (en) * 1998-12-29 2001-09-27 Magna Reflex Holding Gmbh Vehicle rearview system with electrochrome mirror
JP2006053551A (en) * 2004-07-23 2006-02-23 Sage Electrochromics Inc Control system for electrochromic device
US8964107B2 (en) 2010-08-20 2015-02-24 Canon Kabushiki Kaisha Electrochromic light control element and image pickup apparatus
US20210078301A1 (en) * 2017-12-07 2021-03-18 Agp America S.A. Laminated glazing having a functional layer with improved low temperature response

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245143A (en) * 1985-04-23 1986-10-31 Asahi Glass Co Ltd Dimmer
US5446576A (en) * 1990-11-26 1995-08-29 Donnelly Corporation Electrochromic mirror for vehicles with illumination and heating control
US5610756A (en) * 1990-11-26 1997-03-11 Donnelly Corporation Electrochromic mirror for vehicles
US5808777A (en) * 1990-11-26 1998-09-15 Donnelly Corporation Electrochromic mirror for vehicles
JPH04258429A (en) * 1991-02-08 1992-09-14 Kajima Corp Joint structure of large beam and small beam
WO2000038950A3 (en) * 1998-12-29 2001-09-27 Magna Reflex Holding Gmbh Vehicle rearview system with electrochrome mirror
JP2006053551A (en) * 2004-07-23 2006-02-23 Sage Electrochromics Inc Control system for electrochromic device
US8964107B2 (en) 2010-08-20 2015-02-24 Canon Kabushiki Kaisha Electrochromic light control element and image pickup apparatus
US20210078301A1 (en) * 2017-12-07 2021-03-18 Agp America S.A. Laminated glazing having a functional layer with improved low temperature response

Similar Documents

Publication Publication Date Title
US5011582A (en) Method for producing electrochromic device with application of AC voltage between the electrode layers
US6798556B2 (en) Locally-switched reversible electrodeposition optical modulator
TWI222530B (en) Anti-glare and anti-fogging element
JPS6159317A (en) Electrochromic element provided with heating circuit
JPH11342790A (en) Visual field widening mirror
JPH07140308A (en) Half mirror variable in ratio of transmittance/ reflectivity
GB2295241A (en) Electrochromic display
JPH0345218Y2 (en)
JPH1138455A (en) Device having variable optical characteristic
JP2000180902A (en) Electrochromic device
JPH05286393A (en) Glare shielding device for automobile inner mirror
JPH0714344Y2 (en) Light control glass structure with temperature control mechanism
JPH0637397Y2 (en) Automatic control device for EC anti-glare mirror for automobiles
JP3556850B2 (en) Electrochromic device
JPH01209423A (en) Transmittance variable spectacle lens
US11927784B2 (en) Display device
JPH052128U (en) EC anti-glare mirror
JPH0746910Y2 (en) Driving circuit for ECD anti-glare mirror
JPH0531627Y2 (en)
JPH04107427A (en) Production of transmission type electrochromic element
JP2603131Y2 (en) Electrochromic mirror
JPH0511131U (en) EC anti-glare mirror for automobiles
JPH07175090A (en) Electrochromic ophthalmic lens
JP2503562B2 (en) Method for manufacturing electrochromic device
JPH0738906Y2 (en) Automatic control device for EC anti-glare mirror for automobiles