JPS6159254A - Wide range air/fuel ratio sensor - Google Patents
Wide range air/fuel ratio sensorInfo
- Publication number
- JPS6159254A JPS6159254A JP59181249A JP18124984A JPS6159254A JP S6159254 A JPS6159254 A JP S6159254A JP 59181249 A JP59181249 A JP 59181249A JP 18124984 A JP18124984 A JP 18124984A JP S6159254 A JPS6159254 A JP S6159254A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- electrode
- fuel ratio
- air
- oxygen concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 41
- 239000001301 oxygen Substances 0.000 claims abstract description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims abstract description 29
- 238000001514 detection method Methods 0.000 claims abstract description 21
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 11
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 9
- 238000007664 blowing Methods 0.000 claims description 11
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 27
- 229910052697 platinum Inorganic materials 0.000 abstract description 11
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 4
- 238000005245 sintering Methods 0.000 abstract description 4
- 230000007774 longterm Effects 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 239000003792 electrolyte Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 230000008859 change Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- -1 oxygen ions Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0029—Cleaning of the detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/4065—Circuit arrangements specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は広域空燃比センサーに関し、詳しくは、燃料に
対してエアが少ないリッチ領域およびその逆のリーン領
域を含む全領域において、空燃比・起電力特性をリニア
なものとした空燃比センサーの改良に関する。これは、
特にエンジンの排気ガス中の酸素濃度を検出して、空燃
比を連続的に計測するセンサーの分野で利用されるもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wide range air-fuel ratio sensor, and more specifically, the present invention relates to a wide-range air-fuel ratio sensor, and more specifically, the air-fuel ratio This paper relates to an improvement of an air-fuel ratio sensor with linear electromotive force characteristics. this is,
It is particularly used in the field of sensors that detect the oxygen concentration in engine exhaust gas and continuously measure the air-fuel ratio.
自動車に搭載されているエンジンから排出される排気ガ
ス中の酸素濃度を検出することによつて、間接的に空燃
比を計測することが行なわれているが、そのセンサーは
、−酸化炭素の容量%と酸素のそれとが等しい14.7
なる理論空燃比に対応する酸素濃度を境界にして、起電
力がステップ状に変化するλ特性を存することが知られ
ている。これは、理論空燃比に対する大小を判別するこ
とができても、エンジンの運転状態に応じた種々の制御
を、検出された空燃比に基づいて極め細かく行なうよう
な正確な空燃比を検出することはできない。The air-fuel ratio is measured indirectly by detecting the oxygen concentration in the exhaust gas emitted from the engine installed in a car. % and that of oxygen are equal 14.7
It is known that the electromotive force has a λ characteristic in which the electromotive force changes stepwise with the oxygen concentration corresponding to the stoichiometric air-fuel ratio as the boundary. Although it is possible to determine whether the air-fuel ratio is large or small relative to the stoichiometric air-fuel ratio, it is difficult to accurately detect the air-fuel ratio so that various controls depending on the operating state of the engine can be performed in extremely detailed ways based on the detected air-fuel ratio. I can't.
それを可能とするために、空燃比・起電力特性をリニア
にしたものとして、特開昭59−100854号公報に
記載された酸素濃度検出素子が知られている。In order to make this possible, an oxygen concentration detection element is known that has linear air-fuel ratio/electromotive force characteristics and is described in Japanese Patent Application Laid-open No. 100854/1983.
それは、多孔質電極のうち被測定ガスに接触する側に半
触媒性能を持た廿1.その電極と固体電fIB質と被測
定ガスとで構成される三相点近傍に、HCを酸化してC
Oを生成する金属酸化物を存在させたものである。It has semi-catalytic performance on the side of the porous electrode that comes into contact with the gas to be measured. The HC is oxidized and the C
A metal oxide that generates O is present.
このようなセンサーにおいては、燃料に対してエアが少
ないリッチ領域で、カーボンが多孔質電極の表面に付着
し、この付着したカーボンと白金とが高温下で反応して
白金内部に浸透し、次に冷却されるとカーボンが白金内
で析出し、さらにカーボンが燃焼除去されることにより
白金の多孔質化が促進される。その結果、Ptの表面積
が増大するので、意図的に触媒性能の抑制されていた半
触媒性能状態から全触媒性能状態に変質することになり
、リニアな特性がλ特性に戻される。λ特性に戻れば正
確な空燃比の検出ができなくなるだけでなく、被測定ガ
スに接触する側の多孔質電極がますます多孔質化して、
センサーの機能劣化が助長される。したがって、リーン
領域における計測も不正確となり、エンジンの運転制御
に必要な指針を得る広域空燃比センサーとしての使用に
耐え得ないものとなる問題がある。In such sensors, carbon adheres to the surface of the porous electrode in a rich region where there is less air relative to the fuel, and the adhered carbon and platinum react at high temperatures and penetrate into the platinum, causing the following When the platinum is cooled to a certain temperature, carbon is precipitated within the platinum, and the carbon is further burned and removed, thereby promoting the formation of porosity in the platinum. As a result, the surface area of Pt increases, resulting in a change from a half-catalytic performance state in which catalytic performance was intentionally suppressed to a full catalytic performance state, and the linear characteristics are returned to the λ characteristics. If we return to the λ characteristic, not only will it be impossible to accurately detect the air-fuel ratio, but the porous electrode on the side that comes into contact with the gas to be measured will become even more porous.
This will accelerate the deterioration of sensor functionality. Therefore, measurement in the lean region is also inaccurate, and there is a problem in that the sensor cannot be used as a wide range air-fuel ratio sensor for obtaining guidelines necessary for engine operation control.
本発明は上述の問題に鑑みなされたもので、その目的は
、リッチ領域では半触媒性能を有するものとする一方、
リーン領域では三和点における金属酸化物によって、リ
ニア特性とされた空燃比センサーが、リッチ領域で全触
媒性能に変質するのを防止し・す°ア特性を保持して長
期0使脣ゝ耐えることができるようにすることである。The present invention was made in view of the above-mentioned problems, and its purpose is to provide semi-catalytic performance in the rich region, while
In the lean region, the air-fuel ratio sensor, which has a linear characteristic, is prevented from deteriorating in its overall catalytic performance by the metal oxide at the sanwa point, and in the rich region, it maintains the air characteristic and can withstand long-term zero use. The goal is to be able to do so.
本発明の広域空燃比センサーの特徴は以下の通りである
。酸素イオン伝導性の固体電解質の両面に多孔質電極を
形成させると共に、これらの多孔質電極のうち被測定ガ
スに接触する側のものに半触媒性能を持たせ、その電極
と固体電解質と被測定ガスとで構成される三相点近傍に
、HCを酸化してCOを生成する金属酸化物を存在させ
た酸素濃度検出素子をエンジンの排気系に装着してなる
ものであって、空燃比がリッチ領域になるとそのフィー
ドバック回路を遮断する手段を設けると共に、酸素濃度
検出素子に付着したカーボンの焼却除去手段を設けてな
ることである。The features of the wide range air-fuel ratio sensor of the present invention are as follows. Porous electrodes are formed on both sides of a solid electrolyte that conducts oxygen ions, and the side of these porous electrodes that comes into contact with the gas to be measured has semi-catalytic performance, and the electrode, solid electrolyte, and gas to be measured are made to have semi-catalytic performance. An oxygen concentration detection element is installed in the engine exhaust system in which a metal oxide that oxidizes HC to produce CO is present near the three-phase point composed of gas, and the air-fuel ratio is In addition to providing a means for cutting off the feedback circuit when the rich region is reached, a means for incinerating and removing carbon adhering to the oxygen concentration detection element is also provided.
燃料に対してエアが少ないためカーボンの付着が促進さ
れるリッチ領域で、酸素濃度検出素子の電極部への通電
装置および/または酸素濃度検出素子が装着されている
排気系の上流に設けたエア吹出し装置などからなるカー
ボンの焼却除去手段を作動させて、付着カーボンを除去
することにより、多孔質電極の表面に付着したカーボン
とPtとが反応するのを防止して、ptの多孔質化によ
る全触媒性能への変質を防止する。This is a rich region where carbon adhesion is promoted because there is little air relative to the fuel, and the air is provided upstream of the energizing device for the electrode part of the oxygen concentration detection element and/or the exhaust system where the oxygen concentration detection element is installed. By activating a carbon incineration removal means such as a blowing device to remove the attached carbon, it is possible to prevent the carbon attached to the surface of the porous electrode from reacting with Pt, and to prevent the Pt from becoming porous. Prevents deterioration in overall catalyst performance.
以下、本発明をその実施例に基づいて詳細に説明する。 Hereinafter, the present invention will be explained in detail based on examples thereof.
第1図は本発明の広域空燃比センサーの全体系統図で、
酸素濃度検出素子1は、はぼU字状に形成され、エンジ
ンの排気ガスが流過する排気管(被測定ガス流路)2に
取付けられている。Figure 1 is an overall system diagram of the wide range air-fuel ratio sensor of the present invention.
The oxygen concentration detection element 1 is formed in a U-shape and is attached to an exhaust pipe (measuring gas flow path) 2 through which engine exhaust gas flows.
その構成は、大気3と被測定ガス4とを隔絶する例えば
管状の固体電解質5と、その両表面に形成された多孔質
電極6A、6Bと、その被測定ガス4側の表面に形成さ
れた図示しない金属酸化物からなっている。固体電解質
5は酸素イオン伝導性の物質で、その両面における酸素
濃度が異なっていると、濃度の高い方の酸素がイオン化
されて低い方に流れ、その程度に応じた起電力が発生す
るようになっている。多孔質電極6A、6BはPt(白
金)であって多孔質に焼結され、そのうち被測定ガス4
に接触する側のもの6Aは低活性化となるように、材料
や焼結条件が異なっていて半触媒性能とされている。さ
らに、その多孔質電極6Aと固体電解質5と被測定ガス
4とで構成される三相点近傍に、HCを酸化してCOを
生成する微細な金属酸化物が存在され、起電力を高める
ように工夫されている。その結果、リーン領域において
、半触媒性能の多孔質電極6Aにより排気ガス中のHC
が三相点近傍まで酸化されることなく到達し、そこで生
成されるCOの濃度が向上され、第2図の破線で示すλ
特性が実線で示すほぼリニアな特性に改善されているの
である。なお、7は両釜孔質電極6A、6Bに接続され
たリード線8A、8Bを介して、起電力による発生電圧
を検出する電圧計である。The structure consists of, for example, a tubular solid electrolyte 5 that isolates the atmosphere 3 and the gas to be measured 4, porous electrodes 6A and 6B formed on both surfaces of the solid electrolyte, and porous electrodes 6A and 6B formed on the surface of the gas to be measured 4. It is made of a metal oxide (not shown). The solid electrolyte 5 is an oxygen ion conductive material, and when the oxygen concentration on both sides is different, the oxygen with higher concentration will be ionized and flow to the lower one, and an electromotive force will be generated according to the degree of ionization. It has become. The porous electrodes 6A and 6B are made of Pt (platinum) and are porously sintered.
The material and sintering conditions of the material and sintering condition of the material 6A in contact with the material are different so that the activation is low, and the material is said to have semi-catalytic performance. Furthermore, near the three-phase point composed of the porous electrode 6A, solid electrolyte 5, and gas to be measured 4, there is a fine metal oxide that oxidizes HC to generate CO, increasing the electromotive force. It has been devised. As a result, in the lean region, the porous electrode 6A with semi-catalytic performance reduces HC in the exhaust gas.
reaches the vicinity of the three-phase point without being oxidized, and the concentration of CO produced there increases to λ shown by the broken line in Figure 2.
The characteristics have been improved to almost linear characteristics as shown by the solid line. Note that 7 is a voltmeter that detects the voltage generated by the electromotive force via lead wires 8A and 8B connected to both pot porous electrodes 6A and 6B.
このような酸素濃度検出素子1の被測定ガス流路の上流
に、エアを吹き出すエア吹出し装w9が設置されている
。そのエアの供給管路10には電磁弁】1が介在され、
その上流にはエアポンプ12が設けられている。なお、
電磁弁11は後述するコントロールユニット18からの
指令を受けて開閉するようになっている。An air blowing device w9 that blows out air is installed upstream of the gas flow path to be measured of such oxygen concentration detection element 1. A solenoid valve 1 is interposed in the air supply line 10,
An air pump 12 is provided upstream thereof. In addition,
The solenoid valve 11 opens and closes in response to commands from a control unit 18, which will be described later.
このようなエア吹出し装置9とは別に、酸素濃度検出素
子1の多孔質電極6Aに通電して被測定ガス中のカーボ
ンを、エア吹出し装置9から供給されたエア中の酸素と
反応させ、多孔質電極6Aの表面からカーボンを除去す
る通電装置13が設けられている。この装置は多孔質電
極6Aに電力を供給する電源14と、その供給のための
スイッチ15が設けられ、そのスイッチ15はコントロ
ールユニット18からの指令を受けて通断するようにな
っている。なお、酸素濃度検出素子lは通常センサカバ
ー16が被せられているが、その通気性の高いカバー1
6の排気管2への固定は、工 ・ア吹出し装置9のエ
ア吹出孔17と酸素濃度検出素子1を包囲するように取
付けられている。Separately from such an air blowing device 9, electricity is supplied to the porous electrode 6A of the oxygen concentration detection element 1 to cause carbon in the gas to be measured to react with oxygen in the air supplied from the air blowing device 9. An energizing device 13 is provided to remove carbon from the surface of the quality electrode 6A. This device is provided with a power source 14 for supplying power to the porous electrode 6A and a switch 15 for supplying power, and the switch 15 is turned on or off in response to a command from a control unit 18. Note that the oxygen concentration detection element 1 is normally covered with a sensor cover 16, but the highly breathable cover 1
6 is fixed to the exhaust pipe 2 by: - A. It is attached so as to surround the air blowing hole 17 of the blowing device 9 and the oxygen concentration detection element 1.
なお、コントロールユニット18は、上述した機能を有
するものであるが、それは、例えばエンジン回転数やス
ロットル開度などの信号が入力されるようになっている
。The control unit 18 has the above-mentioned functions, and is configured to receive signals such as engine speed and throttle opening.
このような実施例によれば、次のようにして酸素濃度検
出素子1による排気ガス中の酸素濃度を計測すると共に
、そのリニア特性の変質が防止される。According to such an embodiment, the oxygen concentration in the exhaust gas is measured by the oxygen concentration detection element 1 in the following manner, and the deterioration of its linear characteristics is prevented.
エンジンの排気ガスが排気管2内を矢印19方向に流過
していると、本発明の広域空燃比センサーの酸素濃度検
出素子1によって、その酸素濃度が大気3例の濃度と対
比され、その差に応じて流れる酸素イオン量の大小によ
って起電力が発生する。いま、リーンな状態にあるとす
る。多孔質電極6Aは半触媒性能であることから、排気
ガス中のHCが多孔質電極6Aと固体電解質5と被測定
ガス4とで構成される三相点近傍まで酸化されることな
く到達し、そこに存在する金属酸化物によって酸化され
てCOが生成する。その際、金属酸化物においては酸素
を吸収するので酸素の分圧が低下する一方、生成された
COの分圧が上昇するので、第2図のリーン領域に示し
た実線のようにほぼリニアとなる。その結果、空燃比に
よる起電力の発生が連続的に高い精度で検出される。な
お、この起電力に応じてリーン状態の程度が把握される
ので、それに対応する空燃比がエンジンの運転を制御す
るために使用される。このようなり一ン領域での空燃比
の検出により制御系に常にフィードバックが掛けられ、
高速定常走行時などにおいて燃費の向上のために、空燃
比をある程度理論空燃比より燃料の薄いリーンに設定し
てエンジンを運転することができる。When exhaust gas from the engine is flowing through the exhaust pipe 2 in the direction of arrow 19, the oxygen concentration is compared with the concentration in the atmosphere in three cases by the oxygen concentration detection element 1 of the wide range air-fuel ratio sensor of the present invention. An electromotive force is generated depending on the amount of oxygen ions flowing according to the difference. Suppose you are currently in a lean state. Since the porous electrode 6A has semi-catalytic performance, HC in the exhaust gas reaches the vicinity of the three-phase point composed of the porous electrode 6A, the solid electrolyte 5, and the gas to be measured 4 without being oxidized. CO is produced by oxidation by metal oxides present therein. At this time, the metal oxide absorbs oxygen, so the partial pressure of oxygen decreases, while the partial pressure of the generated CO increases, so it becomes almost linear as shown in the solid line in the lean region of Figure 2. Become. As a result, the generation of electromotive force due to the air-fuel ratio is continuously detected with high accuracy. Note that since the degree of the lean state is determined according to this electromotive force, the air-fuel ratio corresponding thereto is used to control the operation of the engine. In this way, by detecting the air-fuel ratio in the 1-in region, feedback is constantly applied to the control system.
In order to improve fuel efficiency during steady high-speed driving, the engine can be operated with the air-fuel ratio set to a lean level with less fuel than the stoichiometric air-fuel ratio.
一方、リッチな状態になると、排気ガス中のHCやco
の量が増大するので、多孔質電極6Aに付着するカーボ
ン量が多くなる。カーボンが多孔質電極6Aの表面に付
着すると、カーボンと白金とが高温下で反応してptの
多孔質化が促進される。その結果、ptの表面積が増大
するので、意図的に半触媒性能状態にある多孔質電極6
Aが、第2図のリッチ領域に示した破線のような全触媒
性能状態に変質する傾向が生じ、リニアな特性がλ特性
に戻されようとする。そのため、リッチ領域になると、
コントロールユニット18から指令が出されて、エアポ
ンプ12の駆動と電磁弁11の開口、これと同時にスイ
ッチ15の接続による多孔質電極6Aへの通電が行なわ
れる。その結果、酸素濃度検出素子1の被測定ガス流路
の上流にエアが吹き出され、しかも、通電によって多孔
質電極6Aの表面に付着したカーボンがエア中の酸素と
反応して燃焼除去されるので、多孔質電極6AのPtの
多孔質化が防止される。On the other hand, when the exhaust gas becomes rich, HC and co
Since the amount of carbon increases, the amount of carbon adhering to the porous electrode 6A increases. When carbon adheres to the surface of the porous electrode 6A, the carbon and platinum react at high temperatures, promoting pt to become porous. As a result, the surface area of the pt increases, so the porous electrode 6 is intentionally in a semi-catalytic performance state.
There is a tendency for A to change to the overall catalyst performance state as shown by the broken line in the rich region of FIG. 2, and the linear characteristics tend to return to the λ characteristics. Therefore, when it comes to rich areas,
A command is issued from the control unit 18 to drive the air pump 12, open the solenoid valve 11, and simultaneously connect the switch 15 to energize the porous electrode 6A. As a result, air is blown out to the upstream side of the gas flow path to be measured of the oxygen concentration detection element 1, and carbon attached to the surface of the porous electrode 6A reacts with oxygen in the air and is burned and removed by energization. , Pt in the porous electrode 6A is prevented from becoming porous.
第2図に示す白丸は、リニア特性を有する場合の計測デ
ータで、リッチ領域における三角はエアの吹出しと多孔
質電極の通電を行なった耐久テスト後の触媒性能の変質
のないことを示す計測データである。一方、リーン領域
における三角は金属酸化物により得られたリニア特性が
耐久テスト後も変化しないことを示す計測データである
。ちなみに、黒丸は、カーボンを除去しない場合のデー
タで、そのリッチ領域で全触媒性能への変質と、リーン
領域での起電力低下を意味し、全領域でλ特性に戻って
いることが判る。The white circles shown in Figure 2 are measurement data when linear characteristics are present, and the triangles in the rich region are measurement data showing no change in catalyst performance after a durability test in which air was blown out and the porous electrode was energized. It is. On the other hand, the triangles in the lean region are measurement data showing that the linear characteristics obtained by the metal oxide do not change even after the durability test. By the way, the black circles are the data when carbon is not removed, indicating a change in the overall catalytic performance in the rich region and a decrease in the electromotive force in the lean region, and it can be seen that the entire region returns to the λ characteristic.
なお、本例では、す・ソチ領域になるとエアのイ共給と
多孔質電極の通電を行なうようGこした力鴫、要は、多
孔質電極の表面に析出したカーボンとptとの反応を防
止するようにすればよし)ので、多孔質電極への通電の
みでもよく、また、通電力ロタ尋シを行わない場合でも
、Mitkのエアを供給してCOを自然着火させてカー
ボンを除去するよ痕こしてもよい。エアを大量に供給す
る場合に番よ、多孔質電極を冷却する効果も発揮され、
多孔質化のJrl mll 4こ寄与することができる
。なお、このり・ソチ領域Gこおける操作はいずれもオ
ープンル−プ状態下(市制御を行なうだめのフィードバ
ック回路を遮断していること)で行なうようにしている
ものであり、エンジンの制御系に誤った空燃比の信号を
送ることはない。In this example, in the Su-Sochi region, the G was applied to co-supply air and energize the porous electrode. Therefore, it is sufficient to only energize the porous electrode, or even if you do not perform energization, you can supply Mitk air to spontaneously ignite CO and remove carbon. You can also rub it in. When supplying a large amount of air, it also has the effect of cooling the porous electrode.
Jrl ml 4 can contribute to porosity. All operations in the Sochi and Sochi area G are conducted under open loop conditions (the feedback circuit for city control is shut off), and the engine control system is will not send an incorrect air/fuel ratio signal to the
本発明は以上の実施例の説明から判るようGこ、酸素濃
度検出素子の被測定ガス流路の上流Gこエアを吹き出す
エア吹出し装置と、多孔質電極Gこ通電して被測定ガス
中のカーボンをエア中の酸素と反応させて除去する通電
装置の両方もしくはいずれか一方が設けられているので
、カーボンの析出が促進されるリッチ領域で、カーボン
と多孔質電極のptとの反応が防止される。その結果、
広域空燃比センサーは、長期にわたりリニア特性を保持
することができる。As can be seen from the description of the embodiments described above, the present invention includes an air blowing device for blowing air upstream of the flow path of the gas to be measured of the oxygen concentration detection element, and a porous electrode G that is energized to blow out air in the gas to be measured. Since one or both of the current-carrying devices are installed to remove carbon by reacting with oxygen in the air, the reaction between carbon and PT of the porous electrode is prevented in the rich region where carbon precipitation is promoted. be done. the result,
A wide range air-fuel ratio sensor can maintain linear characteristics over a long period of time.
第1図は本発明の実施例を示す広域空燃比センサーの全
体系統図、第2図は広域空燃比センサーの空燃比・起電
力の特性およびその計測データを示すグラフである。
1−酸素濃度検出素子、4−被測定ガス、5一固体電解
質、6A、6B・−多孔質電極、9・−エア吹出し装置
、13−通電装置。
特許出願人 マ ツ ダ 株式会社代理人 弁理士
吉相 勝俊(ほか1名)第1図FIG. 1 is an overall system diagram of a wide-range air-fuel ratio sensor showing an embodiment of the present invention, and FIG. 2 is a graph showing characteristics of the air-fuel ratio and electromotive force of the wide-range air-fuel ratio sensor and their measured data. 1-Oxygen concentration detection element, 4-Gas to be measured, 5-Solid electrolyte, 6A, 6B.--Porous electrode, 9.-Air blowing device, 13-Electrification device. Patent applicant Mazda Co., Ltd. Agent Patent attorney Katsutoshi Yoshiso (and 1 other person) Figure 1
Claims (4)
極を形成させると共に、これらの多孔質電極のうち被測
定ガスに接触する側のものに半触媒性能を持たせ、その
電極と固体電解質と被測定ガスとで構成される三相点近
傍に、HCを酸化してCOを生成する金属酸化物を存在
させた酸素濃度検出素子をエンジンの排気系に装着して
なるものにおいて、 空燃比がリッチ領域になるとそのフィードバック回路を
遮断する手段を設けると共に、酸素濃度検出素子に付着
したカーボンの焼却除去手段を設けてなることを特徴と
する広域空燃比センサー。(1) Porous electrodes are formed on both sides of an oxygen ion conductive solid electrolyte, and the side of these porous electrodes that comes into contact with the gas to be measured has semi-catalytic performance, and the electrode and the solid electrolyte are In an engine exhaust system, an oxygen concentration detection element is installed in the exhaust system of the engine, in which a metal oxide that oxidizes HC to produce CO is present near the three-phase point consisting of the gas and the gas to be measured. 1. A wide range air-fuel ratio sensor, comprising a means for cutting off the feedback circuit when the oxygen concentration reaches a rich region, and a means for incinerating and removing carbon adhering to an oxygen concentration detecting element.
子の電極部を通電加熱する通電装置であることを特徴と
する特許請求の範囲第1項記載の広域空燃比センサー。(2) The wide-range air-fuel ratio sensor according to claim 1, wherein the carbon incineration removal means is an energizing device that energizes and heats the electrode portion of the oxygen concentration detection element.
子が装着されている排気系の上流に設けたエア吹出し装
置であることを特徴とする特許請求の範囲第1項記載の
広域空燃比センサー。(3) The wide range air-fuel ratio sensor according to claim 1, wherein the carbon incineration removal means is an air blowing device provided upstream of the exhaust system in which the oxygen concentration detection element is installed. .
子の電極部を通電加熱する通電装置と、酸素濃度検出素
子が装着されている排気系の上流に設けたエア吹出し装
置とを装備していることを特徴とする特許請求の範囲第
1項記載の広域空燃比センサー。(4) The carbon incineration removal means is equipped with an energizing device that energizes and heats the electrode portion of the oxygen concentration detection element, and an air blowing device provided upstream of the exhaust system in which the oxygen concentration detection element is installed. The wide range air-fuel ratio sensor according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59181249A JPS6159254A (en) | 1984-08-30 | 1984-08-30 | Wide range air/fuel ratio sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59181249A JPS6159254A (en) | 1984-08-30 | 1984-08-30 | Wide range air/fuel ratio sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6159254A true JPS6159254A (en) | 1986-03-26 |
Family
ID=16097399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59181249A Pending JPS6159254A (en) | 1984-08-30 | 1984-08-30 | Wide range air/fuel ratio sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6159254A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6338055U (en) * | 1986-08-28 | 1988-03-11 |
-
1984
- 1984-08-30 JP JP59181249A patent/JPS6159254A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6338055U (en) * | 1986-08-28 | 1988-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4005273B2 (en) | Gas concentration detector | |
JP3871497B2 (en) | Gas sensor | |
US6287439B1 (en) | Gas sensor | |
EP0916941B1 (en) | Method and apparatus for detecting a functional condition of an NOx occlusion catalyst | |
JP3983422B2 (en) | Gas concentration detector | |
JPH1068346A (en) | Control method for engine exhaust gas system | |
JPH09509478A (en) | Nitrogen oxide detection sensor and detection method | |
US5985118A (en) | Solid electrolyte gas concentration detector | |
JPH09274011A (en) | Nitrogen oxide detector | |
JP3664558B2 (en) | Gas sensor | |
US4844788A (en) | Wide-range air/fuel ratio sensor and detector using the same | |
US5772965A (en) | Method and system for detecting deterioration of exhaust gas control catalyst | |
JP4219414B2 (en) | Method for measuring oxidizable components in gas mixture | |
JP2001141696A (en) | Gas-detecting apparatus | |
KR20000028915A (en) | Sensor for Detecting the Instantaneous Concentrations of a Plurality of Gas Constituents in a Gas | |
JP4625189B2 (en) | Method for defined rich / lean control of combustion mixtures with electrochemical gas sensors | |
JPS6159254A (en) | Wide range air/fuel ratio sensor | |
JP2005180419A (en) | Sensor device for exhaust gas of internal combustion engine and method of operating the same | |
JP3973851B2 (en) | Gas sensor element | |
JP4625261B2 (en) | Sensor element of gas sensor | |
US6589409B2 (en) | Multilayered gas sensing element employable in an exhaust system of an internal combustion engine | |
JPH11352096A (en) | Gas sensor element | |
JPH0713609B2 (en) | Oxygen sensor for internal combustion engine | |
JP3935789B2 (en) | Gas alarm | |
WO2018020814A1 (en) | Gas concentration detecting device |