JPS6159141A - Variable capacity type air conditioner - Google Patents

Variable capacity type air conditioner

Info

Publication number
JPS6159141A
JPS6159141A JP59180027A JP18002784A JPS6159141A JP S6159141 A JPS6159141 A JP S6159141A JP 59180027 A JP59180027 A JP 59180027A JP 18002784 A JP18002784 A JP 18002784A JP S6159141 A JPS6159141 A JP S6159141A
Authority
JP
Japan
Prior art keywords
temperature
operating
room temperature
frequency zone
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59180027A
Other languages
Japanese (ja)
Inventor
Hideo Tsunoda
角田 秀夫
Yasuhiro Niima
康博 新間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59180027A priority Critical patent/JPS6159141A/en
Publication of JPS6159141A publication Critical patent/JPS6159141A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide a variable capacity air conditioning system that can smoothly control the temperature during a sleep pattern, etc. by gradually expanding the low capacity operation frequency zone based on the cumulative time of a timer part which starts upon the operation pattern selection signal. CONSTITUTION:When operating under the cooling mode, setting the temperature Ts and the operating hours and selecting 'sound sleep' by an operating pattern selecting switch 23 will cause a differential temperature detecting circuit 32 to determined the difference between the room temperature and the set temperature Ts, and the resultant signal (e) is inputted to an operation control circuit 33, wherein the operation frequency zone of a compressor motor proportionate to the temperature differential, for instance 90Hz zone Z90, is read out to perform the cooling operation at the maximum capacity for 90Hz. As the room temperature is lowered, the operation control circuit 33 reduces the operation frequency zone gradually like Z70(70Hz) Z50(50Hz) Z30(30Hz). An inverter 4 is operated in this manner to perform the cooling operation control for the set hours.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、設定温度と室内温度との差に応じた周波数で
コンプレッサモータの回転数制御を行なう能力可変形空
調装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a variable capacity air conditioner that controls the rotation speed of a compressor motor at a frequency that corresponds to the difference between a set temperature and an indoor temperature.

〔発明の技術的背景〕[Technical background of the invention]

従来の能力可変形空調8置として、例えば、室温調節ス
イッチ、タイマスイッチ、及び「安眠」等の運転パター
ンを選択する運転パターンスイッチを有する操作部と、
室内温度検出センサと、前記操作部及び室内温度検出セ
ンサから与えられる信号に基づいて運転周波数指令信号
を出力する制御装置と、前記指令信号に基づいて所定の
周波数の運転電流をコンプレッサモータに与えるインバ
ータとを備えたものがある。
As a conventional 8-position variable capacity air conditioner, for example, an operation unit having a room temperature control switch, a timer switch, and an operation pattern switch for selecting an operation pattern such as "sleep";
an indoor temperature detection sensor, a control device that outputs an operating frequency command signal based on signals provided from the operating section and the indoor temperature detection sensor, and an inverter that provides an operating current of a predetermined frequency to the compressor motor based on the command signal. There are some that have the following.

そしてこのような空調装置で就寝時にいわゆる「安眠」
運転パターンを選択すると、例えば、第5図のように冷
房または暖房運転が行なわれる。
And with this type of air conditioner, you can enjoy what is called a "sleepful sleep" when you go to bed.
When an operation pattern is selected, cooling or heating operation is performed, for example, as shown in FIG.

ここで第5図(a)、(b)は運転パターンとして「安
眠」を選択した場合の時間経過と苗温との関係を示すも
ので、同図(a)は冷房運転時の図、及び同図(b)は
暖房運転時の図である。
Here, Figures 5(a) and 5(b) show the relationship between the passage of time and seedling temperature when "Sleep" is selected as the operating pattern, and Figure 5(a) shows the diagram during cooling operation, and FIG. 6(b) is a diagram during heating operation.

冷房運転で「安眠」運転パターンを選択する場合、操作
部中の室温調節スイッチで設定温度T。
When selecting the "Sleep" operation pattern for cooling operation, set the temperature T using the room temperature control switch in the control panel.

を、タイマスイッチで安眠運転時間t。をそれぞれ設定
すると共に、運転パターン選択スイッチで「安眠」を選
択した後、運転スイッチをオンする。
Set the sleep driving time t with the timer switch. After setting each and selecting "Sleep" with the driving pattern selection switch, turn on the driving switch.

すると、制御装置は運転開始から時刻t1 (例えば、
1時間)までの間、設定温度T、に基づいて、この設定
温度T、と室温検出値の差に応じた運転周波数指令信号
をインバータに与え、このインバータの出力である運転
電流によってコンプレッサモータを所定の回転数で回転
させ、設定温度T。
Then, the control device changes from the start of operation to time t1 (for example,
Based on the set temperature T, an operating frequency command signal corresponding to the difference between the set temperature T and the detected room temperature value is given to the inverter for up to 1 hour), and the compressor motor is controlled by the operating current that is the output of this inverter. Rotate at the specified rotation speed and set temperature T.

と室温検出値の差が零になるような冷房運転を行なう。Cooling operation is performed so that the difference between the detected room temperature and the detected room temperature value becomes zero.

時刻t1になると、制御装置1は設定温度を(T、+1
℃)にシフトさせ、この設定温度(T5+1℃)で前記
と同様の冷房運転を行なう。
At time t1, the control device 1 changes the set temperature to (T, +1
℃), and the same cooling operation as above is performed at this set temperature (T5+1℃).

τ    さらに時刻t2 (例えば、2時間)になる
と、設定温度を予め定めたシフト限界温度(T、+2℃
)にシフ1−さしこの設定温度(T、+2℃)で設定時
間t。まで冷房運転を行なう。ここで時刻t2以後、時
間が経過するにつれ、空温か下がって時刻t 時に設定
温度T3に達すると、制御部置1は運転を一時停止させ
る。その後も室温を監祝しつづけ、時刻tb時に室温が
(T、+1°C)にもどると設定温度(T、+2℃)で
運転を再開し、タイマスイッチで設定した時間T。後に
運転をすべて停止する。
τ Further, at time t2 (for example, 2 hours), the set temperature is changed to a predetermined shift limit temperature (T, +2°C).
) at Schiff 1-Sashiko's set temperature (T, +2°C) for the set time t. Perform cooling operation until After time t2, the air temperature decreases as time passes, and when the set temperature T3 is reached at time t, the control unit 1 temporarily stops the operation. After that, the room temperature continues to be monitored, and when the room temperature returns to (T, +1°C) at time tb, operation is resumed at the set temperature (T, +2°C) for the time T set by the timer switch. Then stop all operations.

一方、暖房運転では第5図(b)のようなパターンに従
って上記と同様の暖房運転制御が行なわれる。
On the other hand, in the heating operation, heating operation control similar to that described above is performed according to a pattern as shown in FIG. 5(b).

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来の能力可変形空調装置にあっては、
「安眠」パターンを選択した場合、一定時間毎に強制的
に設定温度をシフトするため、急な温度変化が生ずるお
それがあり、必ずしも快適な空調制御ではなかった。
However, in conventional variable capacity air conditioners,
When the "restful sleep" pattern is selected, the set temperature is forcibly shifted at regular intervals, which may result in sudden temperature changes, which does not necessarily provide comfortable air conditioning control.

〔発明の目的〕[Purpose of the invention]

この発明は、上記従来技術の問題点に鑑みなされたもの
で、「安眠」パターン等の運転時に円滑な温度制御が可
能な能力可変形空調装置を提供することを目的とする。
The present invention was made in view of the problems of the prior art described above, and it is an object of the present invention to provide a variable capacity air conditioner that is capable of smooth temperature control during operation such as in a "sleep" pattern.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は、従来の能力可変形
空調装置において、運転パターン選択信号によって起動
するタイマ部と、このタイマ部の積算時間によって前記
低能力の運転周波数ゾーンを順次拡大するように作動す
る運転制御部とを備えたことを特徴とする。
To achieve the above object, the present invention provides a conventional variable capacity air conditioner with a timer unit activated by an operation pattern selection signal, and a system that sequentially expands the low capacity operating frequency zone based on the cumulative time of this timer unit. The invention is characterized by comprising an operation control section that operates in accordance with the invention.

(発明の実施例) 以下、第1図〜第4図を参照しつ)本発明の詳細な説明
する。
(Embodiments of the Invention) The present invention will be described in detail below with reference to FIGS. 1 to 4.

第1図は能力可変形空調装置の要部構成図である。図に
おいて、1は制御装置、2は制御装置1へ操作信号を与
える操作部、及び3は制御装置1へ室温検出信号を与え
る室温センサであり、操作81≦2及び室温センサ3か
ら制御装置1へ操作信号及び室温検出信号が与えられる
と、制御2′Il装置1は所定の演算等を行なって出力
信号をインバータ4に与える。インバータ4は制御装置
1から与えられる運転周波数指令信号に基づいて所定の
周波数の運転電流をコンプレッサモータ5に与え、該コ
ンプレッサモータ5の回転数を周波数制御する。
FIG. 1 is a diagram showing the main parts of a variable capacity air conditioner. In the figure, 1 is a control device, 2 is an operation unit that provides an operation signal to the control device 1, and 3 is a room temperature sensor that provides a room temperature detection signal to the control device 1. When an operation signal and a room temperature detection signal are applied to the controller 2', the control 2'Il device 1 performs predetermined calculations and provides an output signal to the inverter 4. The inverter 4 applies an operating current of a predetermined frequency to the compressor motor 5 based on an operating frequency command signal given from the control device 1, and frequency-controls the rotation speed of the compressor motor 5.

6は制御装置1の出力側に接続されたファンモータ駆動
回路で、このファンモータ駆動回路6は制御装置1から
与えられる出力信号に基づいて室内ファンモータ7を回
転させる。また、8はインバータ4の出力側に接続され
た室外ファンモータであり、インバータ4から与えられ
る信号により回転する。
A fan motor drive circuit 6 is connected to the output side of the control device 1, and the fan motor drive circuit 6 rotates the indoor fan motor 7 based on an output signal given from the control device 1. Further, 8 is an outdoor fan motor connected to the output side of the inverter 4, and is rotated by a signal given from the inverter 4.

第2図は操作部2の一例を示す外観図である。FIG. 2 is an external view showing an example of the operation section 2. As shown in FIG.

この操作部2には、運転/停止スイッチ21、空温の調
節を行なうスライド方式のV温調節スイッチ22、「安
眠」等の運転パターンを選択するスライド方式の運転パ
ターン選択スイッチ23、及び運転時間の設定を行なう
スライド方式のタイマスイッチ24等が設けられている
The operation unit 2 includes a run/stop switch 21, a slide-type V temperature adjustment switch 22 that adjusts the air temperature, a slide-type driving pattern selection switch 23 that selects a driving pattern such as "sleep", and a driving time. A slide-type timer switch 24 and the like are provided for making settings.

第3図は制御装置1における回路構成の一例を。FIG. 3 shows an example of the circuit configuration of the control device 1.

示ずものである。この制御2′Il装置1は、タイマ回
路31、温度検出回路32、及び運転制御回路を備えて
いる。
It's nothing to show. This control 2'Il device 1 includes a timer circuit 31, a temperature detection circuit 32, and an operation control circuit.

ここで、タイマ回路31は、タイマスイッチ24から与
えられる時限信号aに基づいて運転時間を積節しその時
間信号すを運転制御回路33に与える。温度差検出回路
32は、室温調節スイッチ4の出力である設定温度T、
の信号Cと、1gセンサ3で検出された空温検出信号d
とから温度差を求め、その信号eを運転制御回路33に
与える。運転制御回路33は、運転パターン選択スイッ
チ23のパターン選択信号f、時限信号a及び温度差信
号eを入力し、これらの入力信号に基づいて予め記憶し
た温度差に応じたコンプレッサモータ5の運転周波数を
選定し、運転時間の経過に従って低能力の運転周波数範
囲を拡大し/j運転周波数指令信号qを出力し、インバ
ータ4に与える。
Here, the timer circuit 31 sets the operating time based on the time limit signal a given from the timer switch 24 and provides the time signal to the operation control circuit 33. The temperature difference detection circuit 32 detects the set temperature T, which is the output of the room temperature control switch 4;
signal C and air temperature detection signal d detected by 1g sensor 3
The temperature difference is determined from the above and the signal e is given to the operation control circuit 33. The operation control circuit 33 inputs the pattern selection signal f, time limit signal a, and temperature difference signal e from the operation pattern selection switch 23, and adjusts the operating frequency of the compressor motor 5 according to the temperature difference stored in advance based on these input signals. is selected, and the low-capacity operating frequency range is expanded as the operating time elapses, and an operating frequency command signal q is output and given to the inverter 4.

以上の構成において室内4度を自動制御する場合の動作
を第4図(a−1) 〜(a−3)、(b−1)〜(b
−3)を参照しつつ、以下説明する。
Figure 4 (a-1) to (a-3), (b-1) to (b) shows the operation when automatically controlling the indoor 4 degrees in the above configuration.
This will be explained below with reference to -3).

第4図(a−1)〜(a−3)は室温と設定温度T、の
差によるコンプレッサモータ運転周波数の関係を示すも
ので、(a−1)〜(a−3)は冷房運転時の、(b−
1)〜(b−3)は暖房運転時の図である。
Figure 4 (a-1) to (a-3) show the relationship between the compressor motor operating frequency due to the difference between room temperature and set temperature T, and (a-1) to (a-3) are during cooling operation. of, (b-
1) to (b-3) are diagrams during heating operation.

冷房運転で運転パターンとして「安眠」を選択する場合
、・第2図の操作部2にJ5いて、V l?uf調節ス
イッチ22で設定温度T、を例えば26°Cに設定する
と共に、タイマスイッチ24で安眠運転時間t。(第5
図参照)を設定し、ざらに運転パターン選択スイッチ2
3で「安眠」を選択し、運転/停止スイッチ21をオン
する。
When selecting "Sleep" as the operating pattern during air conditioning operation, ・Place J5 on the operating section 2 in Fig. 2 and press V l? The set temperature T is set to, for example, 26°C using the uf adjustment switch 22, and the sleep driving time t is set using the timer switch 24. (5th
(see figure), and then set the rough operation pattern selection switch 2.
3, select "Sleep" and turn on the run/stop switch 21.

すると、タイマスイッチ24から与えられた信号at、
:基づきタイマ回路31が運転時間T。の積算を始め、
運転開始から第5図に示す時刻t1(例えば、1時間)
までの間は、設定温度T8に基づいて第4図(a−1>
のような運転周波数パターンで冷房運転を行なう。すな
わら、室温センサ3により室温(例えば28℃)が検出
され、この検出信号dが設定温度T、(例えば26°C
)の信号Cと共に温度差検出回路32に与えられる。
Then, the signal at given from the timer switch 24,
: Based on the timer circuit 31, the operating time T. Start calculating the
Time t1 (for example, 1 hour) shown in FIG. 5 from the start of operation
Until then, the temperature shown in FIG. 4 (a-1>
Cooling operation is performed with an operating frequency pattern like this. That is, the room temperature (e.g., 28°C) is detected by the room temperature sensor 3, and this detection signal d is detected as the set temperature T, (e.g., 26°C).
) is applied to the temperature difference detection circuit 32 together with the signal C.

温度差検出回路32は室温と設定温度T、の差2℃を求
めその信号eを運転制御回路33に与える。
The temperature difference detection circuit 32 determines the difference of 2° C. between the room temperature and the set temperature T, and provides the obtained signal e to the operation control circuit 33.

運転制御回路33には第4図(a−1)に示すような温
度に対する運転周波数パターンが予め記憶されており、
この記憶値から温度差+2℃に応じたコンプレッサモー
タ5の運転周波数ゾーン、例えば90HzゾーンZ9o
を読み出し、その指令信号Qをインバータ4に与える。
The operation control circuit 33 stores in advance an operation frequency pattern with respect to temperature as shown in FIG. 4 (a-1).
From this stored value, the operating frequency zone of the compressor motor 5 corresponding to the temperature difference +2°C, for example, 90Hz zone Z9o is determined.
is read out and the command signal Q is given to the inverter 4.

インバータ4は指令信号9に基づき90Hzの運転電流
をコンプレッサモータ5に供給し、該コンプレッサモー
タ5を90Hzの最大能力で駆動させて冷房運転を行な
わせる。ここで、運転制御回路33は指令信号Qをイン
バータ4に与えると同時に、ファンモータ駆動回路6を
介して室内ファンモータ7を回転させると共に、インバ
ータ4を介して室外ファンモータ8を回転させる。室外
ファンモータ8はコンプレッサモータ5と同期して運転
する。コンプレッサモータ5が901−IZで回転する
ことにより、空温が低下していく。この室温の低下とと
もに、運転制御回路33は運転周波数ゾーンをZ7゜(
70Hz)  → Z5(、(50Hz)  → Z 
3o (30H7)へと低下させ、インバータ4を介し
てコンプレッサモータ5の回転数を下げていき、冷房能
力を徐々に絞っていく。空温と設定温度T、の差が零に
なるとく周波数0)−1z (7)Zoゾーン)、運転
制御回路33はインバータ4を介してコンプレッサモー
タ5を停止させる。そして室温が設定温度T、よりも高
くなる。と、その温度差に応じた運転周波数でコンプレ
ッサモータ5を再駆動させ、室温が設定温度T、になる
ように冷房運転制御が行なわれる。  [安眠]運転開
始から時刻t1(例えば、1時間)経過すると、運転制
御回路33はタイマ回路31の信号すに基づいて最低か
又は最低に近い低能ノコの運転周波数ゾーンZ3oを第
4図(a−2>の範囲まで拡大し、その周波数指令信号
qでインバータ4を作動させる。
The inverter 4 supplies an operating current of 90 Hz to the compressor motor 5 based on the command signal 9, and drives the compressor motor 5 at the maximum capacity of 90 Hz to perform cooling operation. Here, the operation control circuit 33 supplies the command signal Q to the inverter 4, simultaneously rotates the indoor fan motor 7 via the fan motor drive circuit 6, and rotates the outdoor fan motor 8 via the inverter 4. The outdoor fan motor 8 operates in synchronization with the compressor motor 5. As the compressor motor 5 rotates at 901-IZ, the air temperature decreases. As the room temperature decreases, the operation control circuit 33 changes the operating frequency zone to Z7° (
70Hz) → Z5(, (50Hz) → Z
3o (30H7), the rotational speed of the compressor motor 5 is lowered via the inverter 4, and the cooling capacity is gradually reduced. When the difference between the air temperature and the set temperature T becomes zero, the frequency 0)-1z (7) Zo zone), the operation control circuit 33 stops the compressor motor 5 via the inverter 4. Then, the room temperature becomes higher than the set temperature T. The compressor motor 5 is driven again at an operating frequency according to the temperature difference, and cooling operation control is performed so that the room temperature reaches the set temperature T. [Sleep] When time t1 (for example, 1 hour) has elapsed since the start of operation, the operation control circuit 33 sets the operating frequency zone Z3o of the low-performance saw at or near the minimum based on the signal from the timer circuit 31 as shown in FIG. 4(a). -2> range, and the inverter 4 is operated with the frequency command signal q.

次いで第5図に示す時刻t2 (例えば2時間)が経過
すると、低能力の運転周波数ゾーンZ3oを第4図<a
−3ンのように、例えば設定一度T。
Next, when time t2 (for example, 2 hours) shown in FIG. 5 has elapsed, the low capacity operating frequency zone Z3o is changed to
For example, set T once, like -3.

〜+2℃の範囲まで拡大し、この周波数パターンでイン
バータ4を2[動させ、設定時間t。まで冷房運転制御
を行なう。
Expand the range to +2°C and operate the inverter 4 for 2 seconds using this frequency pattern for the set time t. Cooling operation is controlled until

以上のように、運転後の経過時間により低能力運転周波
数ゾーンZ3oを拡入りるようにしたので、設定温度に
対し)品度が緩Abかに変化する。従って従来の設定温
度値をシフトする方式よりもなめらかな温度変化かえら
れ、理想的な安眠回路が14られる。
As described above, since the low capacity operation frequency zone Z3o is expanded depending on the elapsed time after operation, the quality (with respect to the set temperature) changes slowly to Ab. Therefore, the temperature can be changed more smoothly than the conventional method of shifting the set temperature value, and an ideal sound sleep circuit can be achieved.

一方、暖房運転で運転パターンとして「安眠」を選択す
る場合は、冷房運転と同様に、運転時間がo−t、の範
囲では第4図(b−1>、ti〜t の範囲では第4図
(b−2)、及びt2〜t の範囲では第4図(b−3
)のような、周波数パターンで暖房運転が行なわれ、こ
れによって冷房運転と同様の効果が得られる。なお、第
4図”i      (b −1)中の室温と設定温度
T5の差が一3℃〜−2°Cの範囲で80H7となって
いるのは、運転開始時の暖房負担が大きいので、コンプ
レッサモータ5の過負荷運転を軽減するために運転周波
数を低くしている。
On the other hand, when selecting "Sleep" as the driving pattern in heating mode, similarly to cooling mode, if the operating time is in the range o-t, the operating time is in Figure 4 (b-1>, in the range from ti to t, it is in Figure 4). Figure (b-2), and Figure 4 (b-3) in the range from t2 to t.
) Heating operation is performed with a frequency pattern such as , and thereby the same effect as cooling operation can be obtained. In addition, the reason why the difference between the room temperature and the set temperature T5 in Figure 4 "i (b -1) is 80H7 in the range of -2°C to -2°C is because the heating burden at the start of operation is large. , the operating frequency is lowered to reduce overload operation of the compressor motor 5.

なお、上記実施例において、第1図中の制御装置1は、
第3図の回路構成に限定されるものでなく、他の回路構
成で同様の線面を果すことも可能であり、また小型化の
ためにマイクロコンピュータで構成することもできる。
In addition, in the above embodiment, the control device 1 in FIG.
The circuit configuration is not limited to the one shown in FIG. 3, but it is possible to achieve the same function with other circuit configurations, and it is also possible to use a microcomputer for miniaturization.

また、上記実施例ではいわゆる安眠回路について説明し
ているが、本発明はこれに限定されず、なめらかな温度
変化をさせるような他の制御方式に適用できることは勿
論である。
Further, in the above embodiment, a so-called sleep circuit has been described, but the present invention is not limited thereto, and can of course be applied to other control methods that cause smooth temperature changes.

〔発明の効果) 本発明は、時間の経過をモニタリングしながら最低能力
又は最低能力に近い状態での運転範囲を拡大するように
したので、なめらかな温度変化を得ることができる。
[Effects of the Invention] The present invention expands the operating range at the minimum capacity or in a state close to the minimum capacity while monitoring the passage of time, so that smooth temperature changes can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す能力可変形空調装置の主
要構成図、第2図は第1図の操作部の外観図、第3図は
第1図の制御装置の回路(8成図、第4図は第1図の動
作説明図、第5図は従来の能力可変形空調装置の動作説
明図である。 1・・・制御211装置、2・・・操作部、3・・・室
温センサ、4・・・インバータ、5・・・コンプレツナ
モータ、22・・・空温調節スイッチ、23・・・運転
パターン選択スイッチ、24・・・タイマスイッチ、3
1・・・タイマ回路、32・・・温度差検出回路、33
・・・運転制i11回路。 出願人代理人  猪  股    清 図面の小口(内容にて更なし) 第3図 第5区 手続ネ1n正書 昭和59年9月ユb日
Fig. 1 is a main configuration diagram of a variable capacity air conditioner showing an embodiment of the present invention, Fig. 2 is an external view of the operation section shown in Fig. 1, and Fig. 3 is a circuit (8 components) of the control device shown in Fig. 1. 4 is an explanatory diagram of the operation of FIG. 1, and FIG. 5 is an explanatory diagram of the operation of the conventional variable capacity air conditioner. 1...Control 211 device, 2...Operation unit, 3...・Room temperature sensor, 4... Inverter, 5... Compressuna motor, 22... Air temperature adjustment switch, 23... Operation pattern selection switch, 24... Timer switch, 3
1... Timer circuit, 32... Temperature difference detection circuit, 33
...Driving control i11 circuit. Applicant's agent Kiyoshi Inomata Drawing foreword (no changes in content) Figure 3 Section 5 Procedures Nei 1n Original book Date of September 1982

Claims (1)

【特許請求の範囲】  設定温度と室内温度との差に応じてコンプレッサの運
転周波数ゾーンを低能力から高能力まで複数段階に区分
しておき、室内温度を検出して設定温度との温度差を求
め、この温度差に応じた運転周波数ゾーンの運転電流を
インバータから出力してこの出力によりコンプレッサモ
ータの回転数制御を行なうようにした能力可変形空調装
置において、 運転パターン選択信号によって起動するタイマ部と、こ
のタイマ部の積算時間によつて前記低能力の運転周波数
ゾーンを順次拡大するように作動する運転制御部とを備
えたことを特徴とする能力可変形空調装置。
[Claims] The operating frequency zone of the compressor is divided into multiple stages from low capacity to high capacity according to the difference between the set temperature and the indoor temperature, and the indoor temperature is detected and the temperature difference between the set temperature and the set temperature is determined. In variable capacity air conditioners, the operating current in the operating frequency zone corresponding to this temperature difference is output from the inverter and the rotation speed of the compressor motor is controlled using this output. and an operation control unit that operates to sequentially expand the low capacity operating frequency zone according to the cumulative time of the timer unit.
JP59180027A 1984-08-29 1984-08-29 Variable capacity type air conditioner Pending JPS6159141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59180027A JPS6159141A (en) 1984-08-29 1984-08-29 Variable capacity type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180027A JPS6159141A (en) 1984-08-29 1984-08-29 Variable capacity type air conditioner

Publications (1)

Publication Number Publication Date
JPS6159141A true JPS6159141A (en) 1986-03-26

Family

ID=16076185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180027A Pending JPS6159141A (en) 1984-08-29 1984-08-29 Variable capacity type air conditioner

Country Status (1)

Country Link
JP (1) JPS6159141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694029A (en) * 1990-09-07 1994-04-05 Torrington Co:The Bearing seat encoder mount for sensor device
CN107504619A (en) * 2016-09-27 2017-12-22 成都誉华科技有限公司 A kind of computer room temperature control method and system based on distributed optical fiber temperature measuring
US10973708B2 (en) 2015-12-09 2021-04-13 Livedo Corporation Absorbent product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694029A (en) * 1990-09-07 1994-04-05 Torrington Co:The Bearing seat encoder mount for sensor device
US10973708B2 (en) 2015-12-09 2021-04-13 Livedo Corporation Absorbent product
CN107504619A (en) * 2016-09-27 2017-12-22 成都誉华科技有限公司 A kind of computer room temperature control method and system based on distributed optical fiber temperature measuring
CN107504619B (en) * 2016-09-27 2019-09-10 成都誉华科技有限公司 A kind of computer room temperature control method and system based on distributed optical fiber temperature measuring

Similar Documents

Publication Publication Date Title
JPS6159141A (en) Variable capacity type air conditioner
JP2697281B2 (en) Control device for air conditioner
JPH0731193A (en) Controller for air-conditioner
JPH0735391A (en) Control device for air conditioner
JPS5899635A (en) Controlling circuit for air conditioner
JPH04155139A (en) Air conditioner
JP2720595B2 (en) Air conditioner
JPS58179759A (en) Air conditioner
JPH06185795A (en) Controlling method of air conditioner
JP2940713B2 (en) Refrigeration equipment
JPH1035240A (en) Vehicular air conditioner
JPH02122139A (en) Airconditioner
JP3327657B2 (en) Air conditioner operation control method
JPH06206423A (en) Air-conditioning device of electric vehicle
JPS6011047A (en) Operation control of air-conditioner
JPS61130744A (en) Air conditioner
JPH0221313A (en) Temperature controller
JPS62123246A (en) Control unit of air conditioner
JPH04176B2 (en)
JPH07190463A (en) Compressor rotation speed control method of air conditioner
JPH03156194A (en) Air conditioner
JPH04198649A (en) Inverter with 1/f fluctuation function for air conditioning
JP3134352B2 (en) Air conditioner
JPS6131843A (en) Air conditioner
JPH09105546A (en) Control method of air conditioner