JPS6159048B2 - - Google Patents

Info

Publication number
JPS6159048B2
JPS6159048B2 JP52127362A JP12736277A JPS6159048B2 JP S6159048 B2 JPS6159048 B2 JP S6159048B2 JP 52127362 A JP52127362 A JP 52127362A JP 12736277 A JP12736277 A JP 12736277A JP S6159048 B2 JPS6159048 B2 JP S6159048B2
Authority
JP
Japan
Prior art keywords
charging
voltage
circuit
battery
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52127362A
Other languages
Japanese (ja)
Other versions
JPS5460430A (en
Inventor
Takashi Kayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12736277A priority Critical patent/JPS5460430A/en
Publication of JPS5460430A publication Critical patent/JPS5460430A/en
Publication of JPS6159048B2 publication Critical patent/JPS6159048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【発明の詳細な説明】 本発明は電子機器等に使用されるNi−Cd電池
等の蓄電池を充電する充電装置に関し、特に充電
装置の電源電圧を必要最低限とできる様にしたも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charging device for charging a storage battery such as a Ni--Cd battery used in electronic equipment, etc., and particularly to a charging device that can minimize the power supply voltage of the charging device to the necessary minimum.

一般にNi−Cd電池を定電流で充電したときの
この蓄電池の端子間電圧が第1図に示す如く略々
80%充電時点T1までは徐々にわずかずつ増大
し、この略々80%充電時点T1より略々100%充電
時点T2までは比較的勾配が急に増大し、この
略々100%充電時点T2以後はこの端子間電圧が低
下することが知られている。特にこの第1図に示
す如き現象は1/2C(ここで蓄電池(100%充電し
たもの)の放電容量が例えば4Aの電流を流して
1時間であるとき、この蓄電池を4Aの電流で充
電することを1Cという。)以上の電流で充電した
とき顕著である。
Generally, when a Ni-Cd battery is charged with a constant current, the voltage between the terminals of this storage battery is approximately as shown in Figure 1.
It gradually increases slightly until the 80% charging point T 1 , and from this approximately 80% charging point T 1 until approximately 100% charging point T 2 , the slope increases relatively steeply, and from this approximately 100% charging point T 1 It is known that the voltage between the terminals decreases after time T2 . In particular, the phenomenon shown in Figure 1 is 1/2C (here, if the discharge capacity of a storage battery (100% charged) is, for example, 1 hour with a current of 4A flowing through it, then charging this storage battery with a current of 4A) This is noticeable when charging with a current higher than 1C.

この第1図に示す如き現象を有効に利用した複
数個の蓄電池を良好に連続的に充電できると共に
この充電時間を比較的短かくする様にしたものと
して第2図に示す如き多連充電装置が提案されて
いる。
A multiple charging device as shown in FIG. 2 is a system that effectively utilizes the phenomenon shown in FIG. is proposed.

第2図に於いて、1は商用電源が供給される商
用電源入力端子を示し、この商用電源入力端子1
に供給される商用電源を4連5段切換の切換装置
2の第1の切換器3の第1、第2、第3及び第4
の固定接点3b,3c,3d及び3eに夫々供給
する。この切換装置2の第1、第2、第3及び第
4の切換器3,4,5及び6の夫々の可動接点3
a,4a,5a及び6aは切換制御装置7に依
り、この切換制御装置7に制御信号が供給される
毎に順次連動して1段づつ切換わる如くなされて
いる。又、この第1の切換器3の可動接点3aに
得られる商用電源を整流回路8を介して定電流回
路9に供給し、この定電流回路9の出力側に例え
ば2/3C程度の電流例えば3Aの定電流が得られる
如くし、この定電流回路9の出力側に得られる定
電流を切換装置2の第2の切換器4の可動接点4
aに供給する。この第2の切換器4の第1、第
2、第3及び第4の固定接点4b,4c,4d及
び4eを夫々第1、第2、第3及び第4の充電端
子10a,10b,10c及び10dに夫々供給
し、この定電流回路9の出力側に得られる定電流
に依り、Ni−Cd電池等の蓄電池を充電する如く
する。又11はアステーブルマルチバイブレータ
に依り構成した例えば2〜10分に1個のパルスを
発生するサンプリングパルス発生器を示す。この
サンプリングパルス発生器11の発生するパルス
間隔はNi−Cd電池を充電時充電端子間電圧の変
化が検出できる時間とする。このサンプリングパ
ルス発生器11の出力側に得られるサンプリング
パルスをアンド回路12及び13の夫々の一方の
入力端子に供給し、このアンド回路12の出力側
に得られるサンプリングパルスをサンプリングホ
ールド回路14のサンプリングパルス入力端子に
供給する。又第2の切換器4の第1、第2、第3
及び第4の固定接点4b,4c,4d及び4eを
夫々第3の切換器5の第1、第2、第3及び第4
の固定接点5b,5c,5d及び5eに夫々接続
し、この第3の切換器5の可動接点5aに得られ
る充電中のNi−Cd電池の端子電圧をこのサンプ
リングホールド回路14に供給すると共に比較回
路15の一方の入力端子に供給する。このサンプ
リングホールド回路14に於いてはサンプリング
パルス入力端子にサンプリングパルスが存在する
毎にそのときのNi−Cd電池の端子電圧を保持す
る様になされたものである。このサンプリングホ
ールド回路14の出力信号を比較回路15の他方
の入力端子に供給する。この比較回路15はホー
ルド回路14の出力信号とNi−Cd電池の端子電
圧とを比較し、この端子電圧がホールド回路14
の出力信号の電圧より高いときはその出力側にハ
イ信号Hを例えば正の電圧を得、この端子電圧が
ホールド回路14の出力信号の電圧より低いとき
はその出力側にロー信号L例えば負の電圧を得る
如くなしたものである。この比較回路15の出力
側に得られる信号をアンド回路12の他方の入力
端子に供給すると共にこの比較回路15の出力信
号をインバータ回路16を介してアンド回路13
の他方の入力端子に供給する。このアンド回路1
3の出力信号をオア回路17を介して制御信号と
して切換制御装置7に供給する。
In Fig. 2, 1 indicates a commercial power input terminal to which commercial power is supplied, and this commercial power input terminal 1
The commercial power supplied to the
are supplied to fixed contacts 3b, 3c, 3d and 3e, respectively. The movable contacts 3 of each of the first, second, third and fourth switches 3, 4, 5 and 6 of this switching device 2
A, 4a, 5a, and 6a are controlled by a switching control device 7 so that each time a control signal is supplied to the switching control device 7, they are sequentially linked and switched one stage at a time. Further, the commercial power obtained from the movable contact 3a of the first switching device 3 is supplied to a constant current circuit 9 via a rectifier circuit 8, and a current of about 2/3C, for example, is supplied to the output side of the constant current circuit 9. The constant current obtained at the output side of the constant current circuit 9 is connected to the movable contact 4 of the second switching device 4 of the switching device 2 so that a constant current of 3A is obtained.
supply to a. The first, second, third and fourth fixed contacts 4b, 4c, 4d and 4e of this second switch 4 are connected to the first, second, third and fourth charging terminals 10a, 10b, 10c, respectively. and 10d, respectively, and the constant current obtained at the output side of the constant current circuit 9 is used to charge a storage battery such as a Ni-Cd battery. Reference numeral 11 denotes a sampling pulse generator which generates one pulse every 2 to 10 minutes, for example, which is constructed using an astable multivibrator. The pulse interval generated by the sampling pulse generator 11 is set to a time period during which a change in the voltage between the charging terminals can be detected during charging of the Ni--Cd battery. The sampling pulse obtained at the output side of this sampling pulse generator 11 is supplied to one input terminal of each of AND circuits 12 and 13, and the sampling pulse obtained at the output side of this AND circuit 12 is applied to the sampling hold circuit 14. Supplied to pulse input terminal. Also, the first, second, and third switches of the second switch 4
and the fourth fixed contacts 4b, 4c, 4d and 4e are connected to the first, second, third and fourth contacts of the third switching device 5, respectively.
are connected to fixed contacts 5b, 5c, 5d, and 5e, respectively, and the terminal voltage of the Ni-Cd battery being charged, which is obtained at the movable contact 5a of this third switching device 5, is supplied to this sampling hold circuit 14 and compared. It is supplied to one input terminal of the circuit 15. This sampling hold circuit 14 is designed to hold the terminal voltage of the Ni--Cd battery at that time every time a sampling pulse is present at the sampling pulse input terminal. The output signal of the sampling and holding circuit 14 is supplied to the other input terminal of the comparison circuit 15. This comparison circuit 15 compares the output signal of the hold circuit 14 with the terminal voltage of the Ni-Cd battery, and this terminal voltage is determined by the output signal of the hold circuit 14.
When the voltage is higher than the voltage of the output signal of the hold circuit 14, a high signal H, for example, a positive voltage is obtained on the output side, and when this terminal voltage is lower than the voltage of the output signal of the hold circuit 14, a low signal L, for example a negative voltage, is obtained on the output side. This is done to obtain voltage. The signal obtained at the output side of this comparison circuit 15 is supplied to the other input terminal of the AND circuit 12, and the output signal of this comparison circuit 15 is passed through the inverter circuit 16 to the AND circuit 13.
to the other input terminal. This AND circuit 1
The output signal of No. 3 is supplied to the switching control device 7 via the OR circuit 17 as a control signal.

又本例に於いては充電端子10a,10b,1
0c,10dの正側端aを比較的大きい抵抗値例
えば10KΩの抵抗器18a及び比較的小さい抵抗
値例えば1KΩの抵抗器18bの直列回路を介し
て接地し、この抵抗器18a及び18bの接続点
と正側端aとの間に接触子bを設け、この接触子
bはNi−Cd電池の充電用プラグ20が差し込ま
れたときは正側端aと電気的に離れ、これが差し
込まれないときはこの正側端aと電気的に接続さ
れる如く、即ち抵抗器18aを短絡する如くな
す。即ちこの抵抗器18a及び18bの接続点に
得られる電圧はNi−Cd電池の充電用プラグ20
が差し込まれているときはこの抵抗器18a及び
18bにより分割された比較的低い電圧Vaであ
り、この充電用プラグ20が差し込まれないとき
は充電端子の正側端aに得られる電圧がそのまま
得られるので比較的高い電圧Vbが得られる。本
例に於いては第1、第2及び第4の充電端子10
a,10b及び10dに充電すべき3個のNi−
Cd電池19a,19b及び19dの充電用プラ
グ20を差し込むものとする。又充電端子10
a,10b,10c及び10dの夫々に於いて、
cは接地端である。
Also, in this example, charging terminals 10a, 10b, 1
The positive side ends a of 0c and 10d are grounded through a series circuit of a resistor 18a with a relatively large resistance value, e.g. 10KΩ, and a resistor 18b with a relatively small resistance value, e.g. 1KΩ, and the connection point of the resistors 18a and 18b is connected to the ground. A contact b is provided between the positive side end a and the positive side end a, and this contact b is electrically separated from the positive side end a when the Ni-Cd battery charging plug 20 is inserted, and when it is not inserted. is electrically connected to this positive side end a, that is, the resistor 18a is short-circuited. That is, the voltage obtained at the connection point of these resistors 18a and 18b is the same as that of the Ni-Cd battery charging plug 20.
When the charging plug 20 is plugged in, a relatively low voltage Va is divided by the resistors 18a and 18b, and when the charging plug 20 is not plugged in, the voltage obtained at the positive end a of the charging terminal is obtained as is. Therefore, a relatively high voltage Vb can be obtained. In this example, the first, second and fourth charging terminals 10
Three Ni− to be charged to a, 10b and 10d
It is assumed that the charging plugs 20 for the CD batteries 19a, 19b, and 19d are inserted. Also charging terminal 10
In each of a, 10b, 10c and 10d,
c is a grounding end.

この充電端子10a,10b,10c及び10
dの夫々の抵抗器18a及び18bの接続点を第
4の切換器6の第1、第2、第3及び第4の固定
接点6b,6c,6d及び6eに夫々接続し、こ
の第4の切換器6の可動接点6aをレベル検出回
路21の入力側に接続し、このレベル検出回路2
1の出力側にこの入力側に供給される電圧が比較
的高い電圧Vbになつたとき制御信号を得、この
レベル検出回路21の出力側に得られる制御信号
をオア回路17を介して切換制御装置7に供給す
る。7aは直流電圧が供給される電源端子であ
り、又第1、第2、第3及び第4の切換器3,
4,5及び6の夫々の第5の固定接点3f,4
f,5f及び6fは電気的に浮いた状態とする。
These charging terminals 10a, 10b, 10c and 10
The connection points of the resistors 18a and 18b of d are respectively connected to the first, second, third and fourth fixed contacts 6b, 6c, 6d and 6e of the fourth switching device 6, and the fourth The movable contact 6a of the switch 6 is connected to the input side of the level detection circuit 21, and the level detection circuit 2
A control signal is obtained on the output side of 1 when the voltage supplied to this input side reaches a relatively high voltage Vb, and the control signal obtained on the output side of this level detection circuit 21 is switched via an OR circuit 17. Supplied to device 7. 7a is a power supply terminal to which DC voltage is supplied, and the first, second, third and fourth switching devices 3,
Fifth fixed contacts 3f, 4, 4, 5 and 6, respectively
f, 5f and 6f are electrically floating.

次にこの第2図の動作につき説明するに、第
1、第2及び第4の充電端子10a,10b及び
10dに夫々Ni−Cd電池19a,19b及び1
9dの夫々の充電用プラグ20が差し込まれてい
るものとし、初め切換装置2の第1、第2、第3
及び第4の切換器3,4,5及び6の夫々の可動
接点3a,4a,5a及び6aが夫々第1の固定
接点3b,4b,5b及び6bに接続される如く
セツトするものとする。このとき商用電源入力端
子1よりの商用電源が整流回路8に依り整流され
て定電流回路9に供給され、この定電流回路9よ
りの電流が充電端子10aに供給され、この充電
端子10aに接続されたNi−Cd電池19aを充
電する。この場合この充電端子10aに充電用プ
ラグ20が差し込まれているので接触子bは正側
端aと離れており、この抵抗器18a及び18b
の接続点の電圧は比較的低い電圧Vaとなりレベ
ル検出回路21の出力側に何等制御信号が得られ
ない。このときサンプリングパルス発生器11の
出力側に第3図Aに示す如き例えば5分毎に1個
のパルス11aが存するサンプリングパルス信号
が得られたとする。充電開始時はNi−Cd電池1
9aの端子電圧は第3図Bの曲線Sに示す如く増
大しているので、サンプリングホールド回路14
の出力信号14aより高く、このときは比較回路
15の出力側には第3図Cに示す如くハイ信号H
となり、アンド回路12は導通となりアンド回路
12の出力側に第3図Dに示す如きサンプリング
パルス信号12aが得られ、このアンド回路12
の出力側に得られるサンプリングパルス信号12
aをサンプリングホールド回路14に供給し、こ
のサンプリングパルスに依りNi−Cd電池19a
の端子電圧を順次サンプリングし、このサンプリ
ングホールド回路14の出力側には第3図Bの曲
線14aに示す如き階段状電圧が得られる。この
Ni−Cd電池19aの端子間電圧が増大している
間、即ち略々100%充電時点T2までは上述動作を
順次行う。このときはインバータ回路16の出力
側即ちアンド回路13の他方の入力端子はロー信
号Lであるのでこのアンド回路13は不導通であ
る。次にこのNi−Cd電池19aが100%充電され
た後は、このNi−Cd電池19aの端子間電圧S
がサンプリングホールド回路14の出力電圧14
aより低くなるので、比較回路15の出力側はロ
ー信号Lとなり、アンド回路12の他方の入力端
子はロー信号Lとなり、このアンド回路12は不
導通となり、サンプリングホールド回路14はサ
ンプリングパルスが供給されず前の状態を保持す
る。又このときはインバータ回路16の出力側即
ちアンド回路13の他方の入力端子はハイ信号H
となり、このアンド回路13が導通となりこのア
ンド回路13の出力側に第3図Eに示す如き制御
信号13aが得られ、この制御信号13aに依り
切換制御装置7を動作し、第1、第2、第3及び
第4の切換器3,4,5及び6の夫々の可動接点
3a,4a,5a及び6aを夫々第2の固定接点
3c,4c,5c及び6cに接続し、Ni−Cd電
池19aの充電を停止し、第2の充電端子10b
に定電流回路9よりの電流を供給し、次のNi−
Cd電池19bの充電を開始する。
Next, to explain the operation of FIG. 2, Ni-Cd batteries 19a, 19b and 1
It is assumed that each charging plug 20 of 9d is inserted, and the first, second, and third charging plugs of the switching device 2 are initially connected.
The movable contacts 3a, 4a, 5a and 6a of the fourth switching devices 3, 4, 5 and 6 are connected to the first fixed contacts 3b, 4b, 5b and 6b, respectively. At this time, the commercial power from the commercial power input terminal 1 is rectified by the rectifier circuit 8 and supplied to the constant current circuit 9, and the current from this constant current circuit 9 is supplied to the charging terminal 10a, and connected to the charging terminal 10a. The charged Ni-Cd battery 19a is charged. In this case, since the charging plug 20 is inserted into the charging terminal 10a, the contact b is separated from the positive end a, and the resistors 18a and 18b
The voltage at the connection point becomes a relatively low voltage Va, and no control signal is obtained at the output side of the level detection circuit 21. At this time, it is assumed that a sampling pulse signal as shown in FIG. 3A is obtained on the output side of the sampling pulse generator 11, in which one pulse 11a exists every five minutes, for example. At the start of charging, Ni-Cd battery 1
Since the terminal voltage of terminal 9a is increasing as shown by curve S in FIG. 3B, sampling and holding circuit 14
At this time, the output side of the comparator circuit 15 receives a high signal H as shown in FIG. 3C.
Therefore, the AND circuit 12 becomes conductive, and a sampling pulse signal 12a as shown in FIG. 3D is obtained on the output side of the AND circuit 12.
The sampling pulse signal 12 obtained on the output side of
a is supplied to the sampling hold circuit 14, and depending on this sampling pulse, the Ni-Cd battery 19a is
The terminal voltages of the sampling and holding circuit 14 are sequentially sampled, and a stepped voltage as shown by the curve 14a in FIG. 3B is obtained at the output side of the sampling and holding circuit 14. this
While the voltage between the terminals of the Ni--Cd battery 19a is increasing, that is, until approximately 100% charging time T2 , the above-described operations are performed sequentially. At this time, the output side of the inverter circuit 16, ie, the other input terminal of the AND circuit 13, is the low signal L, so the AND circuit 13 is non-conductive. Next, after this Ni-Cd battery 19a is charged to 100%, the terminal voltage S of this Ni-Cd battery 19a is
is the output voltage 14 of the sampling hold circuit 14
a, the output side of the comparison circuit 15 becomes a low signal L, the other input terminal of the AND circuit 12 becomes a low signal L, this AND circuit 12 becomes non-conductive, and the sampling and holding circuit 14 is supplied with a sampling pulse. The previous state is maintained. Also, at this time, the output side of the inverter circuit 16, that is, the other input terminal of the AND circuit 13, receives a high signal H.
Then, this AND circuit 13 becomes conductive, and a control signal 13a as shown in FIG. , the movable contacts 3a, 4a, 5a and 6a of the third and fourth switching devices 3, 4, 5 and 6 are connected to the second fixed contacts 3c, 4c, 5c and 6c, respectively, and the Ni-Cd battery 19a, and the second charging terminal 10b
The current from the constant current circuit 9 is supplied to the next Ni−
Charging of the CD battery 19b is started.

この場合第1図に示す如き充電時に於ける電池
の端子電圧特性を利用し、サンプリングされた端
子電圧とこの電池の端子電圧とを比較して略々
100%充電時を検出しているので、この略々100%
充電時点を確実に知ることができる。この為蓄電
池を充電するのに100%充電まで急速充電するこ
とができ、充電時間を短縮することができる。例
えば2/3Cの電流で充電して2時間程度で充電を
終了することができた。又更に充電電流を増大す
るに従つて第1図に示す如き充電時の端子間電圧
特性のピークがより顕著に表われるのでサンプリ
ングホールド回路14の出力電圧14aと蓄電池
19aの端子電圧Sとの差が得やすく、サンプリ
ングパルス発生器11のパルス間隔を小さくすれ
ばより早く急速充電が可能となる。
In this case, using the terminal voltage characteristics of the battery during charging as shown in Figure 1, the sampled terminal voltage and the terminal voltage of this battery are compared and approximately
This is approximately 100% because it detects when it is 100% charged.
You can reliably know when to charge. Therefore, it is possible to quickly charge the storage battery to 100% charge, reducing charging time. For example, I was able to charge it with a current of 2/3C and finish charging it in about 2 hours. Furthermore, as the charging current is further increased, the peak of the terminal voltage characteristic during charging as shown in FIG. is easy to obtain, and if the pulse interval of the sampling pulse generator 11 is made small, rapid charging becomes possible more quickly.

又この場合は上述の如く充電時における蓄電池
の端子電圧特性を利用しているので電池自体のバ
ラツキ、温度変化等に関係なく常に良好に略100
%充電ができる利益がある。
Also, in this case, as mentioned above, since the terminal voltage characteristics of the storage battery are used during charging, the voltage is always maintained at approximately 100% regardless of variations in the battery itself, temperature changes, etc.
There is a profit that can be charged by %.

又このNi−Cd電池19bは上述同様に充電さ
れ、このNi−Cd電池19bの充電終了時にアン
ド回路13の出力側に第3図Eに示す如き制御信
号13aが得られ、この制御信号13aに依り切
換制御装置7を動作し、第1、第2、第3及び第
4の切換器3,4,5及び6の夫々の可動接点3
a,4,5a及び6aを夫々第3の固定接点3
d,4d,5d及び6dに接続する。この場合第
3の充電端子10cに充電用プラグ20が差し込
まれていないので、この抵抗器18a及び18b
の接続点の電圧は比較的高い電圧Vbとなりレベ
ル検出回路21の出力側に制御信号が得られ、こ
の制御信号が切換制御装置7に供給されるので、
この切換制御装置7が動作し、第1、第2、第3
及び第4の切換器3,4,5及び6の夫々の可動
接点3a,4a,5a及び6aを夫々第4の固定
接点3e,4e,5e及び6eに接続し、第4の
充電端子10dに定電流回路9よりの電流を供給
し次のNi−Cd電池19dの充電を開始する。こ
のNi−Cd電池19dも上述Ni−Cd電池19aと
同様に充電される。このNi−Cd電池19dの充
電終了時に上述同様にアンド回路13の出力側に
第3図Eに示す如き制御信号13aが得られ、こ
の制御信号に依り切換制御装置7を動作し、第
1、第2、第3及び第4の切換器3,4,5及び
6の夫々の可動接点3a,4a,5a及び6aを
夫々第5の固定接点3f,4f,5f及び6fに
接続する。この場合之等第5の固定接点3f,4
f,5f及び6fは夫々電気的に浮いた状態にあ
るので商用電源入力端子1よりの商用電源はオフ
となる。
Further, this Ni-Cd battery 19b is charged in the same manner as described above, and when the charging of this Ni-Cd battery 19b is completed, a control signal 13a as shown in FIG. 3E is obtained on the output side of the AND circuit 13, and this control signal 13a Accordingly, the switching control device 7 is operated, and the movable contacts 3 of each of the first, second, third and fourth switching devices 3, 4, 5 and 6 are operated.
a, 4, 5a and 6a respectively as third fixed contacts 3
Connect to d, 4d, 5d and 6d. In this case, since the charging plug 20 is not inserted into the third charging terminal 10c, the resistors 18a and 18b
The voltage at the connection point becomes a relatively high voltage Vb, and a control signal is obtained at the output side of the level detection circuit 21, and this control signal is supplied to the switching control device 7.
This switching control device 7 operates, and the first, second and third
The movable contacts 3a, 4a, 5a and 6a of the fourth switching devices 3, 4, 5 and 6 are respectively connected to the fourth fixed contacts 3e, 4e, 5e and 6e, and the fourth charging terminal 10d is connected to the fourth fixed contacts 3e, 4e, 5e and 6e. A current is supplied from the constant current circuit 9 to start charging the next Ni-Cd battery 19d. This Ni-Cd battery 19d is also charged in the same manner as the Ni-Cd battery 19a described above. When charging of the Ni--Cd battery 19d is completed, a control signal 13a as shown in FIG. The movable contacts 3a, 4a, 5a and 6a of the second, third and fourth switching devices 3, 4, 5 and 6 are connected to the fifth fixed contacts 3f, 4f, 5f and 6f, respectively. In this case, the fifth fixed contacts 3f, 4
Since f, 5f and 6f are each in an electrically floating state, the commercial power from the commercial power input terminal 1 is turned off.

以上述べた如く第2図によれば複数個のNi−
Cd電池等の蓄電池19a,19b,19cを1
個の充電装置で順次充電することができる。又第
2図に依れば複数個の充電端子10a,10b,
10c,10dに充電すべき蓄電池が接続されて
ない充電端子があつても、その充電端子を飛び越
して次の充電端子に電流を供給するので、蓄電池
の接続されない充電端子があつても何等不都合が
ない利益がある。又第2図に依れば充電すべき蓄
電池を1個、1個順次充電するので充電電流を大
きくでき、それぞれの充電時間を小さくできるの
で、複数個の蓄電池を並列に充電する場合に比し
結果的には複数個の蓄電池の充電時間を短かくす
ることができる。
As mentioned above, according to Fig. 2, multiple Ni−
Storage batteries 19a, 19b, 19c such as CD batteries are 1
Can be charged sequentially with multiple charging devices. Also, according to FIG. 2, a plurality of charging terminals 10a, 10b,
Even if there is a charging terminal in 10c or 10d to which a storage battery to be charged is not connected, current will be supplied to the next charging terminal by skipping over that charging terminal, so there will be no inconvenience even if there is a charging terminal to which a storage battery is not connected. There is no profit. Also, according to Figure 2, since the storage batteries to be charged are charged one by one, the charging current can be increased and the charging time for each can be reduced, compared to the case where multiple storage batteries are charged in parallel. As a result, the charging time for multiple storage batteries can be shortened.

然しながら一般にNi−Cd電池等の蓄電池は完
全放電状態より低温時例えば0℃のときに充電し
たときの充電電圧は常温時例えば20℃のときに充
電したときの充電電圧より高く、例えば20℃のと
きに充電電圧が1.5Vの電池セルは0℃のときは
充電電圧が1.6Vとなる。又低温のとき例えば0
℃のとき1度充電したものを放電することなく再
充電してみると第4図に示す如く最初の充電した
ときに比べ2度目、3度目…と充電回数が多くな
るにつれて充電最高電圧が上昇して行く。特に急
速充電で充電電流が1/2C以上のものでこの傾向
が顕著である。第4図に於いて各回数間の符号は
休止時間である。ここでHは時間、dayは日を示
す。
However, in general, for storage batteries such as Ni-Cd batteries, the charging voltage when charged at a lower temperature (e.g. 0°C) than in a fully discharged state is higher than the charging voltage when charged at room temperature (e.g. 20°C). A battery cell whose charging voltage is 1.5V will have a charging voltage of 1.6V at 0°C. Also, when the temperature is low, for example 0
When a battery that has been charged once at ℃ is re-charged without discharging, as shown in Figure 4, the maximum charging voltage increases as the number of times it is charged increases, compared to the first time it is charged. I'll go. This tendency is particularly noticeable when the charging current is 1/2C or more during rapid charging. In FIG. 4, the symbols between each number of times are pause times. Here, H indicates the time and day indicates the day.

この為第2図に示す如き充電装置に依り1度充
電を終つたものを誤まつて2度目、3度目…と充
電したときは再び充電することができる。しかも
定電流回路9の出力電圧がこの最高充電電圧より
低いときは電池を充電することができないので充
電が終了しない不都合がある。斯る不都合を解除
する為にはこの定電流回路9の出力電圧を必要以
上に高くしなければならず、このとき定電流回路
9よりの充電電流が充電に必要な電流より多いと
きはこの電流差を定電流回路9で吸収せねばなら
ず、この為定電流回路9が発熱する不都合があつ
た。
Therefore, if a battery that has been charged once is mistakenly charged a second time, a third time, etc. using a charging device as shown in FIG. 2, the battery can be charged again. Moreover, when the output voltage of the constant current circuit 9 is lower than this maximum charging voltage, the battery cannot be charged, so there is a problem that charging is not completed. In order to eliminate this inconvenience, the output voltage of this constant current circuit 9 must be made higher than necessary, and at this time, if the charging current from the constant current circuit 9 is greater than the current required for charging, this current The difference had to be absorbed by the constant current circuit 9, which caused the inconvenience that the constant current circuit 9 generated heat.

本発明は斯る点に鑑み、充電済の電池に対する
再充電を防止し上述不都合を改良する様にしたも
のである。以下第5図を参照しながら本発明充電
装置の一実施例につき説明しよう。この第5図に
於いて第2図に対応する部分には同一符号を付
し、その説明は省略する。
In view of this point, the present invention is designed to prevent recharging of a charged battery and to improve the above-mentioned disadvantages. An embodiment of the charging device of the present invention will be described below with reference to FIG. In FIG. 5, parts corresponding to those in FIG. 2 are designated by the same reference numerals, and their explanation will be omitted.

本例に於いてはサンプリングホールド回路14
の出力側に得られる充電しているNi−Cd電池1
9aの端子電圧を電圧検出回路22に供給する。
この電圧検出回路22は充電する蓄電池が低温例
えば0℃で第1回目の充電をしたときの最高充電
電圧より所定値例えば0.1V高い電圧になつたこ
とを検出し、その出力側に制御信号を得る様にし
たものである。22aは基準電圧設定装置であ
る。この電圧検出回路22の出力側に得られる制
御信号に依り比較回路15の出力側にロー信号L
を得る如く比較回路15を制御する。その他は第
2図と同様に構成する。
In this example, the sampling hold circuit 14
A charging Ni-Cd battery 1 obtained on the output side of
The terminal voltage of 9a is supplied to the voltage detection circuit 22.
This voltage detection circuit 22 detects that the voltage of the storage battery to be charged has reached a predetermined value, for example, 0.1V higher than the maximum charging voltage when the first charge was performed at a low temperature, for example, 0°C, and sends a control signal to its output side. It was designed so that it could be obtained. 22a is a reference voltage setting device. Depending on the control signal obtained at the output side of the voltage detection circuit 22, a low signal L is sent to the output side of the comparison circuit 15.
The comparison circuit 15 is controlled so as to obtain . The rest of the structure is the same as in FIG. 2.

本発明は上述の如く構成されているので1度充
電した蓄電池を誤つて再充電することとしたとき
にはその端子電圧が第1回目の充電電圧例えば
17.6Vより所定電圧例えば0.1V高い電圧17.7Vに
なつたとき電圧検出回路22の出力側に制御信号
を得、これに依り比較回路15の出力側をロー信
号Lとし、インバータ回路16の出力側即ちアン
ド回路13の他方の入力端子はハイ信号Hとな
り、このアンド回路13が導通となり、このアン
ド回路13の出力側に第3図Eに示す如き制御信
号13aが得られ、この制御信号13aに依り切
換制御装置7を動作し、次の蓄電池の充電を開始
する。その他は第2図同様に動作をする。
Since the present invention is configured as described above, when a storage battery that has been charged once is accidentally recharged, the terminal voltage is changed to the first charging voltage, e.g.
When a predetermined voltage, for example 17.7V, is higher than 17.6V by 0.1V, a control signal is obtained at the output side of the voltage detection circuit 22, which causes the output side of the comparator circuit 15 to become a low signal L, and the output side of the inverter circuit 16. That is, the other input terminal of the AND circuit 13 becomes a high signal H, this AND circuit 13 becomes conductive, and a control signal 13a as shown in FIG. 3E is obtained at the output side of this AND circuit 13. Accordingly, the switching control device 7 is operated to start charging the next storage battery. Other operations are the same as in FIG.

以上述べた如く本発明に依れば1度充電した蓄
電池を誤つて再び充電したときには低温で第1回
目の充電時の最高充電電圧より所定値例えば
0.1V高くなつたときに充電を終了するので、定
電流回路9の出力電圧を必要最小限例えば低温で
第1回目の充電時の最高充電電圧より所定値高い
電圧としても、充電が終了しないという不都合が
なく、且つこの定電流回路9の出力電圧を必要最
小限とできるのでそれだけ定電流回路9よりの充
電電流が必要な電流より多くなることがなく発熱
を少なくすることができる利益がある。
As described above, according to the present invention, when a storage battery that has been charged once is accidentally charged again, a predetermined value, e.g.
Since charging ends when the voltage increases by 0.1V, charging will not end even if the output voltage of the constant current circuit 9 is set to the minimum necessary level, for example, a predetermined value higher than the highest charging voltage during the first charging at low temperature. There are no inconveniences, and since the output voltage of the constant current circuit 9 can be minimized, there is an advantage that the charging current from the constant current circuit 9 does not become larger than the necessary current, and heat generation can be reduced.

尚上述実施例に於いては記憶した電圧と現在の
電圧を比較してピーク電圧を知る様にしたが、こ
のピーク電圧を微分回路を使用して検出する様に
しても良いことは勿論である。又上述例では記憶
した電圧により端子電圧が低温時の第1回目の充
電時の最高充電電圧より所定値高い電圧になつた
かどうかを検出したが、直接蓄電池の端子電圧に
より、この第1回目の充電時の最高充電電圧より
所定値高い電圧になつたかどうかを検出する様に
しても良いことは勿論である。
In the above embodiment, the peak voltage is determined by comparing the memorized voltage with the current voltage, but it is of course possible to detect this peak voltage using a differentiating circuit. . Furthermore, in the above example, it was detected based on the stored voltage whether the terminal voltage reached a predetermined value higher than the highest charging voltage during the first charging at low temperature. Of course, it is also possible to detect whether the voltage has reached a predetermined value higher than the maximum charging voltage during charging.

又本発明は上述実施例に限ることなく本発明の
要旨を逸脱することなくその他種々の構成が取り
得ることは勿論である。
Furthermore, it goes without saying that the present invention is not limited to the above-described embodiments, and can take various other configurations without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図及び第4図は夫々本発明の説明
に供する線図、第2図は充電装置の例を示す構成
図、第5図は本発明充電装置の一実施例を示す構
成図である。 1は商用電源入力端子、2は4連5段切換装
置、7は切換制御装置、8は整流回路、9は定電
流回路、10a,10b,10c及び10dは
夫々充電端子、11はサンプリングパルス発生
器、12及び13は夫々アンド回路、14はサン
プリングホールド回路、15は比較回路、19
a,19b及び19dは夫々Ni−Cd電池、21
はレベル検出回路、22は電圧検出回路である。
1, 3, and 4 are diagrams for explaining the present invention, FIG. 2 is a configuration diagram showing an example of a charging device, and FIG. 5 is a configuration diagram showing an embodiment of the charging device of the present invention. It is a diagram. 1 is a commercial power supply input terminal, 2 is a 4-stage 5-stage switching device, 7 is a switching control device, 8 is a rectifier circuit, 9 is a constant current circuit, 10a, 10b, 10c and 10d are charging terminals, 11 is a sampling pulse generator 12 and 13 are AND circuits, 14 is a sampling hold circuit, 15 is a comparison circuit, 19
a, 19b and 19d are Ni-Cd batteries, 21
2 is a level detection circuit, and 22 is a voltage detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 充電時Ni−Cd電池の端子電圧を所定時間毎
にサンプリングしホールドする回路の出力と、上
記端子電圧とを比較し、上記端子電圧がサンプリ
ングホールドされた電圧より小さくなつた事に基
き充電ピーク電圧を検出して充電を停止する様に
した充電装置に於いて、使用最低温度にて上記
Ni−Cd電池を100%充電した時の充電ピーク電圧
より所定値高い電圧を検出する誤充電検出回路を
設け、上記充電ピーク電圧を検出しない場合でも
上記誤充電検出回路の検出信号のある時は充電を
停止するようにして再充電時の誤動作を防止する
ようにしたことを特徴とする充電装置。
1. Compare the output of a circuit that samples and holds the terminal voltage of the Ni-Cd battery at predetermined time intervals with the above terminal voltage during charging, and determine the charging peak when the above terminal voltage becomes smaller than the sampled and held voltage. In a charging device that detects voltage and stops charging, the above conditions are met at the lowest operating temperature.
An erroneous charge detection circuit is provided that detects a voltage that is a predetermined value higher than the charging peak voltage when the Ni-Cd battery is 100% charged. A charging device characterized in that charging is stopped to prevent malfunctions during recharging.
JP12736277A 1977-10-24 1977-10-24 Charging equipment Granted JPS5460430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12736277A JPS5460430A (en) 1977-10-24 1977-10-24 Charging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12736277A JPS5460430A (en) 1977-10-24 1977-10-24 Charging equipment

Publications (2)

Publication Number Publication Date
JPS5460430A JPS5460430A (en) 1979-05-15
JPS6159048B2 true JPS6159048B2 (en) 1986-12-15

Family

ID=14958067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12736277A Granted JPS5460430A (en) 1977-10-24 1977-10-24 Charging equipment

Country Status (1)

Country Link
JP (1) JPS5460430A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624208U (en) * 1979-08-02 1981-03-05
JPS56166731A (en) * 1980-05-23 1981-12-22 Sanyo Electric Co Charger for battery
JPS5733A (en) * 1980-05-28 1982-01-05 Sanyo Electric Co Charger for battery
JPS56107744A (en) * 1980-01-29 1981-08-26 Sanyo Electric Co Battery charger
JPS56110446A (en) * 1980-01-31 1981-09-01 Sanyo Electric Co Battery charging device
JPS56110444A (en) * 1980-01-31 1981-09-01 Sanyo Electric Co Battery charging device
JPS56110445A (en) * 1980-01-31 1981-09-01 Sanyo Electric Co Battery charging device
JPS56162937A (en) * 1980-05-20 1981-12-15 Sanyo Electric Co Charger for battery
JPS576538A (en) * 1980-06-10 1982-01-13 Sanyo Electric Co Charge indicator for battery
JPS6211165Y2 (en) * 1980-09-30 1987-03-16
JPS6211164Y2 (en) * 1980-09-30 1987-03-16

Also Published As

Publication number Publication date
JPS5460430A (en) 1979-05-15

Similar Documents

Publication Publication Date Title
US4387332A (en) Apparatus for successively charging rechargeable batteries
JPS6159048B2 (en)
JP2008193757A (en) Power supply apparatus for vehicle
JP3797350B2 (en) Charging apparatus and charging control method
US8878494B2 (en) Circuit for protecting a thin-layer battery
US20080174263A1 (en) Battery charger for different capacity cells
JP6644443B2 (en) Switching device, power unit including the same, and power system including the same
JP3761336B2 (en) Capacitor power storage device
JP3564458B2 (en) Battery regeneration device
JP3096535B2 (en) Method and apparatus for charging secondary battery
JP3019353B2 (en) Charging device
JPS5918843Y2 (en) Multiple charging device
JP2002199606A (en) Battery pack and charging method of the battery
JP2005027435A (en) Charging equipment
JP3805807B2 (en) Secondary battery charging circuit
JPH05219655A (en) Battery charger
JPH04281334A (en) Quick charger
JP2635346B2 (en) Charge control device
JPH09163622A (en) Charging circuit for secondary battery
JP2543063B2 (en) Charger
JP3151275B2 (en) Rechargeable battery charging circuit
JPS6211165Y2 (en)
JPH05146087A (en) Charger
JPS6211164Y2 (en)
JPH06165401A (en) Charging device