JPS6158991B2 - - Google Patents

Info

Publication number
JPS6158991B2
JPS6158991B2 JP1450580A JP1450580A JPS6158991B2 JP S6158991 B2 JPS6158991 B2 JP S6158991B2 JP 1450580 A JP1450580 A JP 1450580A JP 1450580 A JP1450580 A JP 1450580A JP S6158991 B2 JPS6158991 B2 JP S6158991B2
Authority
JP
Japan
Prior art keywords
layer
region
density
light emitting
carrier density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1450580A
Other languages
Japanese (ja)
Other versions
JPS56111276A (en
Inventor
Junichi Nishizawa
Tooru Tejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUTANREE DENKI KK
Original Assignee
SUTANREE DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUTANREE DENKI KK filed Critical SUTANREE DENKI KK
Priority to JP1450580A priority Critical patent/JPS56111276A/en
Priority to GB8103499A priority patent/GB2070859B/en
Priority to FR8102426A priority patent/FR2475803B1/en
Priority to DE19813104082 priority patent/DE3104082A1/en
Priority to US06/232,967 priority patent/US4414558A/en
Publication of JPS56111276A publication Critical patent/JPS56111276A/en
Publication of JPS6158991B2 publication Critical patent/JPS6158991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions

Description

【発明の詳細な説明】 本発明はGa,AlおよびAsを主成分とする半導
体テヘロ接合発光ダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor Teherojunction light emitting diode whose main components are Ga, Al and As.

Ga,Al,Asヘテロ接合発光ダイオードの構造
と禁制帯巾の変化の一例を図に示すと第1図aの
ように、p形基板1、発光部となるp形
Ga1-xAlxAsの層2、n形Ga1-yAlyAsの層3、電
極4,5からできており基板1としてはたとえば
p形Ga,Asを使う。従来、特開昭50―157084号
「半導体発光ダイオード及び製造方法」にこのよ
うなヘテロ接合発光ダイオードが知られており、
光を表面から取り出す構造及び側面から取り出す
構造の両方が記されている。また特開昭53―6591
号「パターン表示用発光ダイオードおよびその製
造方法」には光を表面から取り出す構造が記され
ている。しかしながら各層のキヤリア密度の値に
対して特別な配慮がされていないため発光輝度が
小さいのが欠点であつた。本発明は極めて発光輝
度の高いヘテロ接合発光ダイオードを提供するも
のであり、後に詳述するごとく各層のキヤリア密
度をある範囲に設定することにより、極めて高輝
度にすることができる。特に前記の二つの構造の
うち光を表面から取り出す構造は、前記特開昭50
―157084号では後者との特性上の違いが述べられ
ていないにも拘らず、以下で述べるようなキヤリ
ア密度に対する考慮をはらうことにより、pn接
合の側面から光を取り出す構造では全く実現でき
なかつた高輝度の発光ダイオードが得られるので
ある。即ち本発明に関わる発光ダイオードは、禁
制帯幅が第1図bのようにpnヘテロ接合6を介
して基板と反対側を禁制帯幅を大きくしてあり、
禁制帯幅の大きい側を通つて電極のない部分の表
面から光が取り出される型の発光ダイオードに関
わる。
An example of the structure and change in forbidden band width of a Ga, Al, As heterojunction light emitting diode is shown in Figure 1A.
It is made up of a layer 2 of Ga 1-x Al x As, a layer 3 of n-type Ga 1-y Al y As, and electrodes 4 and 5, and the substrate 1 is made of, for example, p-type Ga or As. Conventionally, such a heterojunction light emitting diode has been known in Japanese Patent Application Laid-open No. 157084/1984 "Semiconductor light emitting diode and manufacturing method".
Both structures that extract light from the surface and structures that extract light from the sides are described. Also, JP-A-53-6591
No. ``Light-emitting diode for pattern display and its manufacturing method'' describes a structure for extracting light from the surface. However, the drawback is that the luminance is low because no special consideration is given to the carrier density value of each layer. The present invention provides a heterojunction light emitting diode with extremely high luminance, and as will be described in detail later, extremely high luminance can be achieved by setting the carrier density of each layer within a certain range. In particular, of the two structures mentioned above, the structure that extracts light from the surface is
-Although issue No. 157084 does not mention the difference in characteristics from the latter, by taking carrier density into consideration as described below, it was not possible to achieve this at all with a structure that extracts light from the side of the p-n junction. A high-brightness light emitting diode can be obtained. That is, in the light emitting diode according to the present invention, the forbidden band width is increased on the side opposite to the substrate via the pn heterojunction 6, as shown in FIG.
It relates to a type of light emitting diode in which light is extracted from the surface of the part without electrodes through the side with a large forbidden band width.

各層のキヤリア密度をどのように選ぶべきかに
ついて、まず原理を述べる。
First, we will explain the principle of how the carrier density of each layer should be selected.

通常、ヘテロ接合6を介してp領域2に注入さ
れた電子の再結合によりp領域2で主に発光し、
発光波長はこのp領域2の禁制帯巾に対応してき
まる。一般に―族化合物半導体の発光ダイオ
ードではp領域での発光効率がn領域での発光効
率より高い。しかしながらGapにおいてはn領域
に注入された正孔の再結合による発光効率の方が
p領域における効率より大きいという報告もあ
る。
Usually, light is emitted mainly in the p region 2 due to recombination of electrons injected into the p region 2 via the heterojunction 6,
The emission wavelength corresponds to the forbidden band of this p region 2. Generally, in a light emitting diode made of a - group compound semiconductor, the luminous efficiency in the p region is higher than that in the n region. However, there is also a report that in the gap, the luminous efficiency due to recombination of holes injected into the n region is higher than the efficiency in the p region.

半導体レーザの場合は誘導放出のキヤリア寿命
が著しく短いため、非発光中心を介しての再結合
を生ずるよりも誘導放出で主に再結合するから、
非発光中心の効果はそれほど大きくはないが、発
光ダイオードの場合は、自然発光再結合のキヤリ
ア寿命が長いため、pn接合から注入された少数
キヤリアは非発光中心に捕えられ、そこで発光せ
ずに再結合してしまう確率が著しく高い。したが
つて発光ダイオードでは、非発光中心による効率
低下が決定的に大きいのである。
In the case of semiconductor lasers, the carrier lifetime of stimulated emission is extremely short, so recombination occurs mainly through stimulated emission rather than through non-emissive centers.
The effect of the non-emissive center is not so large, but in the case of light-emitting diodes, the carrier lifetime of spontaneous luminescent recombination is long, so the minority carriers injected from the p-n junction are captured by the non-emissive center, and do not emit light there. The probability of recombination is extremely high. Therefore, in light emitting diodes, the efficiency decrease due to non-light emitting centers is decisively large.

p領域とn領域のどちらが主発光領域となるか
は欠陥のできやすさに関係している。すなわち非
発光中心となる欠陥の発生が少ない領域が主発光
領域となる。GaAsおよびGaAsを含む混晶である
GaAlAsではn領域では欠陥ができやすいためp
側が主発光領域となつている。n領域で欠陥の原
因となる重要なる要素として、n領域にドープし
たTe,Se,Sなどのドナー不純物を電気的に補
償するような空格子点などがドーピング量に応じ
て形成され、これらが不純物と結合したり、ある
いは単独で非常に効果的な非発光中心となるから
であると考えられる。
Whether the p-region or the n-region serves as the main light-emitting region is related to the likelihood of defects occurring. In other words, a region in which fewer defects, which serve as non-light emitting centers, occur becomes the main light emitting region. GaAs and a mixed crystal containing GaAs
In GaAlAs, defects are likely to occur in the n region, so the p
The side is the main light emitting area. An important element that causes defects in the n-region is the formation of vacancies that electrically compensate for donor impurities such as Te, Se, and S doped in the n-region, depending on the doping amount. This is thought to be because it combines with impurities or becomes a very effective non-luminescent center on its own.

従つてGaAlAs系においては第1図aの2はp
層、3はn層であり、このp層が主発光領域であ
り、p層で発光した光は禁制帯幅の大きいn層を
吸収されることなく透過して表面より取り出され
る。
Therefore, in the GaAlAs system, 2 in Figure 1a is p.
Layer 3 is an n layer, and this p layer is the main light emitting region, and the light emitted in the p layer is transmitted through the n layer, which has a large forbidden band width, without being absorbed, and is extracted from the surface.

ところで禁制帯巾の変化のないpnホモ接合を
有する発光ダイオードの場合は、特に不純物拡散
法を使つて製作するときは、通常n形結晶にp形
不純物としてZnを拡散して作るのでp形領域の
キヤリア密度がn形領域のキヤリア密度より大き
くならざるを得ない。Znに匹敵するような大き
な拡散係数を有するn形の適当な不純物がないの
で、逆にp形基板にn形不純物を拡散してp領域
のキヤリア密度をn領域のキヤリア密度より低く
するということができないのである。
By the way, in the case of a light emitting diode having a pn homojunction with no change in forbidden band, especially when manufactured using the impurity diffusion method, it is usually made by diffusing Zn as a p-type impurity into an n-type crystal, so a p-type region is used. The carrier density of the n-type region must be larger than that of the n-type region. Since there is no suitable n-type impurity with a large diffusion coefficient comparable to Zn, it is necessary to diffuse n-type impurities into the p-type substrate to make the carrier density in the p region lower than that in the n region. It is not possible.

不純物拡散で製作される発光ダイオードよりも
液相成長法で製作される発光ダイオードは欠陥が
少ないためはるかに高い発光効率を示すことはよ
く知られている。もちろん本発明で扱う発光ダイ
オードは高輝度を得ることを目的としており、し
かもヘテロ接合なので液相成長法で製作される。
一方液相成長法で作られるpnホモ接合では拡散
法で製作されるpnホモ接合のようなキヤリア密
度に関する制限がないので発光領域への注入効率
を高めるようにキヤリア密度が選ばれる。たとえ
ばp領域が主発光領域である場合はp領域への電
子の注入量をn領域への正孔の注入量より充分大
きくする。
It is well known that light emitting diodes manufactured by liquid phase growth have fewer defects and exhibit much higher luminous efficiency than light emitting diodes manufactured by impurity diffusion. Of course, the purpose of the light emitting diode used in the present invention is to obtain high brightness, and since it is a heterojunction, it is manufactured by a liquid phase growth method.
On the other hand, in a pn homojunction made by a liquid phase growth method, unlike a pn homojunction made by a diffusion method, there is no restriction on carrier density, so the carrier density is selected to increase the injection efficiency into the light emitting region. For example, when the p region is the main light emitting region, the amount of electrons injected into the p region is made sufficiently larger than the amount of holes injected into the n region.

すなわち、発光領域であるp領域のキヤリア密
度がn領域のそれより小さくなるように不純物ド
ーピングが行われる。当然n領域への正孔の注入
を主とすべき場合はこの逆になり、いずれにせよ
主発光領域側が低不純物密度になるよう不純物ド
ーピングされる。
That is, impurity doping is performed so that the carrier density in the p region, which is the light emitting region, is smaller than that in the n region. Of course, if holes are to be mainly injected into the n-region, the opposite is true, and in any case, the main light-emitting region side is doped with impurities so as to have a low impurity density.

しかしながら本願に示すごとくpnヘテロ接合
を使つた発光ダイオードの場合、注入効率はp領
域、n領域の禁制帯巾の差によるポテンシヤル障
壁によつて決定され、不純物密度は主たる要素で
はなくなる。したがつてむしろ発光中心の数を多
くするために主発光領域の不純物密度、したがつ
てキヤリア密度を可能なかぎり大きくした方がよ
いのである。しかしながらドーピング不純物密度
を高くすると点欠陥をはじめ種々の欠陥が発生し
非発光中心を形成する。GaAsおよびGaAlAsで
はn形の方が欠陥が発生しやすいので適正なキヤ
リア密度、したがつて不純物密度はこの結果n形
領域より主発光領域であるp形領域の方が大とな
りホモpn接合の最適条件とは別のものになる。
However, in the case of a light emitting diode using a pn heterojunction as shown in the present application, the injection efficiency is determined by the potential barrier due to the difference in forbidden band width between the p region and the n region, and the impurity density is no longer the main factor. Therefore, in order to increase the number of luminescent centers, it is better to increase the impurity density, and therefore the carrier density, in the main luminescent region as much as possible. However, when the doping impurity density is increased, various defects including point defects occur, forming non-emissive centers. In GaAs and GaAlAs, defects are more likely to occur in the n-type, so the carrier density is appropriate.As a result, the impurity density is higher in the p-type region, which is the main light emitting region, than in the n-type region, making it the optimal homop-n junction. The conditions will be different.

n形領域においてはキヤリア密度が1018/cm3
こえると欠陥の発生による発光効率の低下が著し
くなる。
In the n-type region, when the carrier density exceeds 10 18 /cm 3 , the luminous efficiency is significantly reduced due to the occurrence of defects.

しかしあまりキヤリア密度を低くすれば抵抗が
大きくなり、このましくないから1017/cm3以上で
あることが望ましい。一方主発光領域のp層の欠
陥発生はn層より少ないからキヤリア密度は
1018/cm3をこえることができる。
However, if the carrier density is too low, the resistance will increase, which is undesirable, so it is desirable that the carrier density is 10 17 /cm 3 or more. On the other hand, the carrier density is
It can exceed 10 18 /cm 3 .

不純物密度の上限をきめる第二の要素は成長時
における不純物の拡散である。p形不純物として
はZn,Geなどがあるが最も発光効率がよいのは
Zn不純物である。Znの拡散係数は大きいので、
成長中にn領域に拡散する。Znの拡散が強いと
n形領域の1部がp形に反転しpn接合の位置が
移動してしまうこともある。ただし拡散によりp
領域のn領域に隣接した部分の表面濃度も低下す
るからZn不純物密度がn領域の不純物をこえて
大きくなつてもすぐにはpn境界が禁制帯巾の大
きい領域へ深く入りこんでしまうことはない。
The second factor that determines the upper limit of impurity density is the diffusion of impurities during growth. P-type impurities include Zn, Ge, etc., but the one with the highest luminous efficiency is
It is a Zn impurity. Since the diffusion coefficient of Zn is large,
Diffuses into the n-region during growth. If the diffusion of Zn is strong, part of the n-type region may be inverted to p-type, and the position of the p-n junction may shift. However, due to diffusion, p
Since the surface concentration of the region adjacent to the n region also decreases, even if the Zn impurity density increases beyond the impurity in the n region, the pn boundary will not immediately go deep into the region with a large forbidden band. .

第1図の構成を例にとり、p形領域2とn形領
域3との間のpn接合6近傍の不純物密度分布を
第2図を用いて説明する。第2図aはpn接合6
近傍の不純物密度分布、第2図bは同じpn接合
6近傍の禁制帯巾の分布を示す。横軸は接合面に
垂直方向の距離を表わし、a,b両図対応してい
る。第2図aにおいて、縦軸はドナー密度ND
アクセプタ密度NAの差ND―NAないし正方向で
ドナー密度ND、負方向でアクセプタ密度NAを示
す。p形領域2にトープしたアクセプタ密度はN
AOであり、n形領域3にドープしたドナー密度は
DOであるとする。アクセプタ密度NAはpn接合
6の近傍以外のp形領域2内ではND―NAを示す
実線10と同一の分布であるが、pn接合6の近
傍では点線12のように分布する。同様にドナー
密度NDは、pn接合6の近傍以外のn形領域3内
ではND―NAの分布10と同一であるが、pn接
合6の近傍では点線13のように分布する。pn
接合6の近傍ではドナー密度NDの分布13とア
クセプタ密度NAの分布12とが補償し合い、NA
―NDは実線10のようになる。ドープしたドナ
密度NDOよりドープしたZnアクセプタ密度NAO
が大きくても、Znの拡散にともないpn界面近く
のZn密度も低下するから、導電型の反転は起り
にくく、Znの拡散により補償された領域3もn
形のままである。ドープするZn密度をドナ密度
に比べてあまりに大きくするとpn境界は禁制帯
巾の大きい領域に入りこんでしまうが、このよう
な入りこみが起きる限度は発光スペクトルを観測
すれば知ることができる。すなわちZn密度が高
くなりすぎてpn界面が禁制帯巾の大きい領域内
へ移行すれば発光波長はそれに対応して短くな
る。それとともにGaAlAsの場合禁制帯巾が大き
い組成では間接遷移となるか、直接遷移であつて
も、間接遷移バンドの電子密度が相対的に増すの
で効率が低下する。
Taking the configuration of FIG. 1 as an example, the impurity density distribution near the pn junction 6 between the p-type region 2 and the n-type region 3 will be explained using FIG. 2. Figure 2 a shows pn junction 6
Nearby impurity density distribution, FIG. 2b shows the forbidden band distribution near the same pn junction 6. The horizontal axis represents the distance perpendicular to the joint surface, and corresponds to both figures a and b. In FIG. 2a, the vertical axis indicates the difference N D -N A between the donor density N D and the acceptor density N A , or the donor density N D in the positive direction and the acceptor density N A in the negative direction. The acceptor density toped in p-type region 2 is N
AO , and the donor density doped into the n-type region 3 is N DO . The acceptor density N A has the same distribution as the solid line 10 indicating N D -N A in the p-type region 2 other than the vicinity of the pn junction 6, but is distributed like the dotted line 12 in the vicinity of the pn junction 6. Similarly, the donor density N D is the same as the distribution 10 of N D -N A in the n-type region 3 other than the vicinity of the pn junction 6, but is distributed as shown by the dotted line 13 in the vicinity of the pn junction 6. pn
In the vicinity of the junction 6, the distribution 13 of the donor density N D and the distribution 12 of the acceptor density N A compensate each other, and N A
-ND becomes like the solid line 10. Doped Zn acceptor density N AO from doped donor density N DO
Even if Zn is large, the Zn density near the pn interface decreases as Zn diffuses, so conductivity type reversal is unlikely to occur, and region 3 compensated by Zn diffusion also
It remains in shape. If the doping Zn density is too large compared to the donor density, the pn boundary will enter a region with a large forbidden band width, but the limit to which such intrusion occurs can be determined by observing the emission spectrum. That is, if the Zn density becomes too high and the pn interface moves into a region with a large forbidden band, the emission wavelength will correspondingly become shorter. At the same time, in the case of GaAlAs, a composition with a large forbidden band width results in an indirect transition, or even if it is a direct transition, the electron density in the indirect transition band increases relatively, resulting in a decrease in efficiency.

以上の考察に基づきp形基板1上に、p形
GaAlAs層2、n形GaAlAs層3をエピタキシヤ
ル成長させる場合の不純物密度の好適範囲を求め
た。製作した発光ダイオードの光度を不純物密度
の関数として第3図、第4図に示す。
Based on the above considerations, p-type
A suitable range of impurity density when epitaxially growing the GaAlAs layer 2 and the n-type GaAlAs layer 3 was determined. The luminous intensity of the fabricated light emitting diode is shown in FIGS. 3 and 4 as a function of impurity density.

第3図、および第4図に示したように p側のキヤリア密度が 4.5×1017/cm3<p<2.5×1018/cm3 n側のキヤリア密度が 2×1017/cm3<n<1.0×1018/cm3 のときに発光効率が著しく高い。 As shown in Figures 3 and 4, the carrier density on the p side is 4.5×10 17 /cm 3 <p<2.5×10 18 /cm 3 The carrier density on the n side is 2×10 17 /cm 3 < Luminous efficiency is extremely high when n<1.0×10 18 /cm 3 .

上記の範囲からp層およびn層のキヤリア密度
を選択した場合、p>nだけでなく、p<nの場
合もありえるのであるが、発光層がp側であるか
ら、n側では発光中心密度を大にするよりは欠陥
密度を少くすることのほうがより重要であるか
ら、上記範囲でp>nとすることが望ましい。
When the carrier densities of the p layer and n layer are selected from the above range, it is possible not only for p>n but also for p<n, but since the emissive layer is on the p side, the luminescent center density on the n side Since it is more important to reduce the defect density than to increase p, it is desirable that p>n in the above range.

第3図、第4図より明らかなようにこの範囲に
それぞれのキヤリア密度を選ぶことにより
100mcd以上の高い輝度が得られる。さらに第3
図について説明すると、p層のキヤリア密度を
種々に変えたこの実験ではn層のキヤリア密度は
2×1017cm-3<n<8×1017cm-3、即ちn層キヤ
リア密度の範囲として先に掲げた範囲の中から選
んで得た結果であり、同様なことは第4図につい
ても言える。
As is clear from Figures 3 and 4, by selecting each carrier density within this range,
High brightness of 100mcd or more can be obtained. Furthermore, the third
To explain the figure, in this experiment in which the carrier density of the p-layer was varied, the carrier density of the n-layer was 2×10 17 cm -3 <n<8×10 17 cm -3 , that is, as the range of the carrier density of the n-layer. These are the results obtained by selecting from the range listed above, and the same can be said for Figure 4.

更に第3図、第4図から明らかなように、この
高輝度を与えるキヤリア密度範囲の中で第3図の
p=6×1017cm-3の特例以外は全てp>nであ
り、かつ前記の特例では輝度の低いダイオードも
得られることが矢印の長さで示されている。従つ
て確実に高輝度発光ダイオードを得るには、更に
p>nであることが望ましいことを第3図と第4
図は物語つている。
Furthermore, as is clear from Figures 3 and 4, within the carrier density range that provides this high brightness, all p>n except for the special case of p = 6 × 10 17 cm -3 in Figure 3, and The length of the arrow indicates that in the special case described above, a diode with low brightness can also be obtained. Therefore, in order to reliably obtain a high-brightness light emitting diode, it is furthermore desirable that p>n, as shown in Figures 3 and 4.
The pictures tell a story.

この発光ダイオードを製作するには特許第
85754号に記載の温度差法液相成長によることが
望ましい。すなわち従来の液相成長による発光ダ
イオードの製作は、徐冷法すなわち、溶液の温度
を徐々に降下することによりエピタキシヤル成長
させる方法を用いたので混晶の組成比、不純物密
度、化学量論的組成からのずれの度合などが温度
の降下とともに変化し、したがつて成長層の厚み
方向におけるそれらの量の変化をさけることがで
きなかつた。これに対して温度差法によれば溶液
中の温度差により、それぞれ一定温度に保つた高
温部から低温部に素材が拡散により運ばれ低温部
で溶液と接する基板上にエピタキシヤル成長す
る。したがつて結晶成長温度は時間的に一定であ
り原理的に先に述べたごとき変動を生じない。多
層を成長するにはスライダに乗せた基板を順次別
のメルト槽に接触させていく。したがつて不純物
密度も混晶組成比も成長時の固体拡散によるヘテ
ロ境界付近の変動をのぞけば、徐冷法とは比較に
ならない平担な分布を各層について得ることがで
きる。たとえばp形Ga1-xAlxAs層2およびn形
Ga1-yAlyAs層3のx,yの変動は上述の固体拡
散が問題となる境界領域をのぞけばそれぞれ△x
0.01、△y0.01に保つことは成長層厚みが10
μm以上あつても容易であり△x<0.002、△y
<0.002にすることもできるに対し、徐冷法では
Al組成は成長の進行とともに減少し、厚み10μ
mあたり△x〓0.02の減少は普通である。
To manufacture this light emitting diode, a patent number is required.
It is preferable to use the temperature difference method liquid phase growth described in No. 85754. In other words, the conventional manufacturing of light-emitting diodes by liquid phase growth uses a slow cooling method, that is, a method of epitaxial growth by gradually lowering the temperature of the solution. The degree of deviation of the growth layer changes as the temperature decreases, and therefore it is impossible to avoid changes in the amount in the thickness direction of the grown layer. On the other hand, according to the temperature difference method, the material is transported by diffusion from a high temperature part kept at a constant temperature to a low temperature part due to the temperature difference in the solution, and epitaxially grows on the substrate in contact with the solution in the low temperature part. Therefore, the crystal growth temperature is constant over time and, in principle, does not fluctuate as described above. To grow multiple layers, the substrates placed on a slider are brought into contact with different melt baths one after another. Therefore, except for fluctuations in the impurity density and mixed crystal composition near the hetero boundary due to solid diffusion during growth, it is possible to obtain a flat distribution for each layer that is incomparable to the slow cooling method. For example, p-type Ga 1-x Al x As layer 2 and n-type
The variations in x and y of the Ga 1-y Al y As layer 3 are △
Keeping it at 0.01, △y0.01 means that the growth layer thickness is 10
Even if it is more than μm, it is easy, △x<0.002, △y
<0.002, whereas in the slow cooling method
The Al composition decreases as the growth progresses, and the thickness of 10μ
A decrease of △x = 0.02 per m is normal.

発光ダイオードでは発光効率を高めるため非発
光中心の密度を下げるほど少数キヤリアの拡散長
が長くなるから成長層、特に主発光領域となるp
層の厚みはある程度厚くなければならない。良質
のGaAlAs発光ダイオードでは拡散長は数μm以
上にはなるから従来のように発光層の厚みが1μ
m以下、厚くても2〜3μm以下というのでは不
充分であり少くとも5μm以上にする必要があり
10μm以上にすることが望ましい。同時に温度差
法によれば、不純物密度の制御も極めてよく、徐
冷法のように設計値から実際のドーピングレベル
がばらつくことが少ない結果、先に述べたような
範囲に不純物ドーピング量を制御することが正確
に行える。従つて効率の高いダイオードの歩留り
が非常に高く、たとえば20mAにおいて80mcd以
上の光度(エポキシ樹脂コートした状態での値)
を示すダイオードの歩留りを70%以上にすること
ができた。
In light-emitting diodes, in order to increase luminous efficiency, the lower the density of non-emissive centers, the longer the diffusion length of minority carriers becomes, so the growth layer, especially p, becomes the main emissive region.
The thickness of the layer must be relatively thick. In a high-quality GaAlAs light-emitting diode, the diffusion length is several μm or more, so the thickness of the light-emitting layer is 1 μm as in the past.
It is insufficient to have a thickness of 2 to 3 μm or less, and it is necessary to make it at least 5 μm or thicker.
It is desirable that the thickness be 10 μm or more. At the same time, the temperature difference method allows extremely good control of impurity density, and as a result of the slow cooling method, there is less variation in the actual doping level from the designed value, making it possible to control the impurity doping amount within the range mentioned above. Can be done accurately. Therefore, the yield of highly efficient diodes is very high, for example, a luminous intensity of more than 80mcd at 20mA (value with epoxy resin coating)
We were able to increase the yield of diodes exhibiting 70% or more.

このようにして製作されるpnヘテロ接合発光
ダイオードの一例は先に第1図aに示した構造に
おいて、p形GaAslを基板としそのうえにエピタ
キシヤル成長したp形Ga1-xAlxAsの第1層2お
よび第1層上にエピタキシヤル成長したn形
Ga1-yAlyAs第2層3、を形成し、x<yとして
効率よく光を取り出せるようにしてある。p層で
発光した光はより禁制帯巾の大きいn層を通つて
接合面に垂直な方向に取り出される。このような
接合ではpn界面に近い所で発光した光ほど吸収
損が少ないという特徴を有している。従つてpn
界面近傍の欠陥に著しく輝度が敏感なのである。
An example of a pn heterojunction light emitting diode manufactured in this manner has the structure shown in FIG . n-type epitaxially grown on layer 2 and layer 1
A Ga 1-y Al y As second layer 3 is formed so that x<y allows light to be extracted efficiently. Light emitted from the p-layer passes through the n-layer, which has a larger forbidden band, and is extracted in a direction perpendicular to the junction surface. Such a junction has the characteristic that light emitted closer to the pn interface has less absorption loss. Therefore pn
The brightness is extremely sensitive to defects near the interface.

一方本発明が関わる構造とは異なる、接合の側
面方向に光を取り出す形の発光ダイオードでは発
光層自体の自己吸収損が大きいため輝度を高くす
ることができない。またそのような構造の場合
は、もともとpn接合境界から離れたp側部分か
らの発光を主に観測しているので、n側での欠陥
発生の影響よりも自己吸収の効果がはるかに大で
あり、たとえ本発明範囲のキヤリア密度範囲を選
んでも著しく輝度を増すことはできないのであ
る。
On the other hand, in a light emitting diode having a structure different from the structure to which the present invention relates, in which light is extracted in the side direction of the junction, the luminance cannot be increased because the self-absorption loss of the light emitting layer itself is large. In addition, in the case of such a structure, since the emission is primarily observed from the p-side part, which is far from the p-n junction boundary, the effect of self-absorption is far greater than the effect of defects occurring on the n-side. Therefore, even if a carrier density range within the range of the present invention is selected, the brightness cannot be significantly increased.

上記の例ではGaとAlとAsとからなるヘテロ接
合について述べたが半導体の構成成分としてたと
えばこれに少量のPを添加すれば結晶の他の物性
を著しく変えることなく格子定数をよく合せたヘ
テロ接合を製作できるのでヘテロ境界におけるミ
スフイツト転位などの欠陥が減り、さらに発光効
率を高めることができる。
In the above example, we talked about a heterojunction made of Ga, Al, and As, but if you add a small amount of P to this as a component of a semiconductor, you can create a heterojunction with well-matched lattice constants without significantly changing other physical properties of the crystal. Since junctions can be fabricated, defects such as misfit dislocations at hetero boundaries can be reduced, and luminous efficiency can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aはGaAlAsヘテロ接合発光ダイオード
の一例の構成例、第1図bは第1図aの禁制帯巾
の変化の一例、第2図aはpn接合近傍の不純物
分布、第2図bは禁制帯巾の分布を示す図、第3
図及び第4図は本発明を説明するための特性の一
例である。
Figure 1a shows an example of the configuration of a GaAlAs heterojunction light emitting diode, Figure 1b shows an example of the change in the forbidden band in Figure 1a, Figure 2a shows the impurity distribution near the pn junction, Figure 2b Figure 3 shows the distribution of prohibited band width.
4 and 4 are examples of characteristics for explaining the present invention.

Claims (1)

【特許請求の範囲】 1 族元素がGaまたはGaとAlの組合せを主成
分とし、族元素がAsを主成分とする・族
化合物半導体のpnヘテロ接合を少なくとも1個
有し前記pnヘテロ接合を形成するp層の禁制帯
幅が前記pnヘテロ接合を形成するn層の禁制帯
幅より小さく、前記p層で発生した光が前記n層
を通過してその表面より取り出される非可干渉性
の発光半導体装置において、前記n層のキヤリア
密度が大なることによる欠陥の発生を抑え、かつ
pn接合の実質的な境界がn層内に入ることによ
る発光波長の変化が生じないかぎりにおいてp層
のキヤリア密度を大ならしめるべく、前記p層の
キヤリア密度p及び前記n層のキヤリア密度nを 4.5×1017cm-3<p<2.5×1018cm-3 かつ 2×1017cm-3<n<1×1018cm-3 かつ p>n の範囲の値より選ぶことにより発光輝度を高めた
ことを特徴とする発光半導体装置。 2 前記p層のキヤリア密度を実質的に決定する
不純物が亜鉛であることを特徴とする前記特許請
求の範囲第1項記載の発光半導体装置。
[Scope of Claims] At least one pn heterojunction of a group compound semiconductor in which the group element is Ga or a combination of Ga and Al as the main component, and the group element is As, and the pn heterojunction is The forbidden band width of the p-layer to be formed is smaller than the forbidden band width of the n-layer forming the p-n heterojunction, and the light generated in the p-layer passes through the n-layer and is extracted from the surface of the non-coherent layer. In a light emitting semiconductor device, the generation of defects due to an increase in the carrier density of the n-layer is suppressed, and
In order to increase the carrier density of the p-layer as long as the actual boundary of the p-n junction does not change in the emission wavelength due to entering the n-layer, the carrier density p of the p-layer and the carrier density n of the n-layer The emission brightness can be determined by selecting from the range of 4.5×10 17 cm -3 <p<2.5×10 18 cm -3 and 2×10 17 cm -3 <n<1×10 18 cm -3 and p>n A light-emitting semiconductor device characterized by increased . 2. The light emitting semiconductor device according to claim 1, wherein the impurity that substantially determines the carrier density of the p-layer is zinc.
JP1450580A 1980-02-07 1980-02-07 Luminous semiconductor device Granted JPS56111276A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1450580A JPS56111276A (en) 1980-02-07 1980-02-07 Luminous semiconductor device
GB8103499A GB2070859B (en) 1980-02-07 1981-02-05 Hetero-junction light-emitting diode
FR8102426A FR2475803B1 (en) 1980-02-07 1981-02-06 HETERO-JUNCTION LIGHT EMITTING DIODE
DE19813104082 DE3104082A1 (en) 1980-02-07 1981-02-06 Light-emitting heterojunction diode
US06/232,967 US4414558A (en) 1980-02-07 1981-02-09 Hetero-junction light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1450580A JPS56111276A (en) 1980-02-07 1980-02-07 Luminous semiconductor device

Publications (2)

Publication Number Publication Date
JPS56111276A JPS56111276A (en) 1981-09-02
JPS6158991B2 true JPS6158991B2 (en) 1986-12-13

Family

ID=11862916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1450580A Granted JPS56111276A (en) 1980-02-07 1980-02-07 Luminous semiconductor device

Country Status (1)

Country Link
JP (1) JPS56111276A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183977A (en) * 1985-02-08 1986-08-16 Toshiba Corp Light emitting element and manufacture thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157084A (en) * 1974-05-28 1975-12-18
JPS52104091A (en) * 1976-02-27 1977-09-01 Hitachi Ltd Light-emitting semiconductor
JPS536591A (en) * 1976-07-07 1978-01-21 Stanley Electric Co Ltd Pattern display light emitting diode and method of producing same
JPS55158684A (en) * 1979-05-28 1980-12-10 Semiconductor Res Found Light emitting semiconductor
JPS5670766A (en) * 1979-11-14 1981-06-12 Yamajin Riken Kk Sweating promoting panel and its use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157084A (en) * 1974-05-28 1975-12-18
JPS52104091A (en) * 1976-02-27 1977-09-01 Hitachi Ltd Light-emitting semiconductor
JPS536591A (en) * 1976-07-07 1978-01-21 Stanley Electric Co Ltd Pattern display light emitting diode and method of producing same
JPS55158684A (en) * 1979-05-28 1980-12-10 Semiconductor Res Found Light emitting semiconductor
JPS5670766A (en) * 1979-11-14 1981-06-12 Yamajin Riken Kk Sweating promoting panel and its use

Also Published As

Publication number Publication date
JPS56111276A (en) 1981-09-02

Similar Documents

Publication Publication Date Title
US5344791A (en) Diffusion control of p-n junction location in multilayer heterostructure light emitting devices
JPH07254732A (en) Semiconductor light emitting device
KR19980064764A (en) Semiconductor light emitting device having high luminous efficiency
US5909051A (en) Minority carrier semiconductor devices with improved stability
US4414558A (en) Hetero-junction light-emitting diode
JP2681352B2 (en) Light emitting semiconductor device
US3634872A (en) Light-emitting diode with built-in drift field
US5150191A (en) P-type II-VI compound semiconductor doped
US4296425A (en) Luminescent diode having multiple hetero junctions
JP2579326B2 (en) Epitaxial wafer and light emitting diode
US5323027A (en) Light emitting device with double heterostructure
JPH055191B2 (en)
US5032539A (en) Method of manufacturing green light emitting diode
JPS6158991B2 (en)
US3934260A (en) Red light-emitting gallium phosphide device
JPH0897466A (en) Light emitting device
JP2817577B2 (en) GaP pure green light emitting element substrate
US3669767A (en) Doping profile for gap diodes improved electroluminescent efficiency
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JPS6158992B2 (en)
JP3057547B2 (en) Green light emitting diode
JP3140037B2 (en) Semiconductor light emitting device
JP3861995B2 (en) Method for manufacturing Zn-based semiconductor light emitting device
JPS63213378A (en) Manufacture of semiconductor light emitting element
US6794731B2 (en) Minority carrier semiconductor devices with improved reliability