JPS6158772B2 - - Google Patents

Info

Publication number
JPS6158772B2
JPS6158772B2 JP55159083A JP15908380A JPS6158772B2 JP S6158772 B2 JPS6158772 B2 JP S6158772B2 JP 55159083 A JP55159083 A JP 55159083A JP 15908380 A JP15908380 A JP 15908380A JP S6158772 B2 JPS6158772 B2 JP S6158772B2
Authority
JP
Japan
Prior art keywords
manganese
nodule
nodules
light
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55159083A
Other languages
Japanese (ja)
Other versions
JPS5782751A (en
Inventor
Makoto Shima
Shigehiko Sugihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP55159083A priority Critical patent/JPS5782751A/en
Publication of JPS5782751A publication Critical patent/JPS5782751A/en
Publication of JPS6158772B2 publication Critical patent/JPS6158772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明は、マンガン団塊のマンガン含有量の測
定法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring manganese content in manganese nodules.

マンガン団塊は、次の時代の鉱物資源として有
望視されている。しかし、深海底に存在するため
に、その探査や採掘に困難な現状である。特に、
探査法については、近年、深海底用テレビの開発
で、団塊分布の観察が容易になつたものゝ、団塊
でマンガン含有量の測定は、深海底の現場では行
えず、試料を船上まで引き上げて測定する以外に
方法がなかつた。試料を引き上げるために、採取
器を約5000mの深海まで往復させる時間的、労力
的無駄は大きなものがあつた。一方、最近、放射
化分析法を利用し、テレビで観察すると同時に、
団塊の品位を分析する方法が提案されている。放
射能照射器で先ず海底の団塊の表面を放射化す
る。次いで、測定器を団塊上に移し、放射化され
た各種の元素がどの程度含有されているかを検出
し、船上のケーブルで伝える方法である。しか
し、この提案の方法は、放射線源を必要とするた
め、装置が大型且つ複雑化して、海底で操作する
装置として不適であるばかりでなく、安全上から
放射線の使用が国内で禁止されているため、実際
には利用されていない現状である。
Manganese nodules are seen as a promising mineral resource for the next era. However, because it exists deep under the sea, it is difficult to explore and mine it. especially,
Regarding exploration methods, the recent development of deep-sea TVs has made it easier to observe the distribution of nodules.However, it is not possible to measure the manganese content in nodules at the site on the deep sea floor, so samples must be taken up to the ship. There was no other way but to measure it. There was a huge waste of time and effort in transporting the sampler back and forth to a depth of approximately 5,000 meters to retrieve the sample. On the other hand, recently, using the activation analysis method, at the same time as observing on TV,
A method for analyzing the dignity of baby boomers has been proposed. First, the surface of the nodule on the ocean floor is radioactive using a radioactivity irradiator. Next, a measuring instrument is moved onto the nodule, and the amount of each radioactive element contained is detected, and the results are communicated via a cable on the ship. However, this proposed method requires a radiation source, which makes the device large and complex, making it unsuitable for use on the ocean floor.In addition, the use of radiation is prohibited in Japan for safety reasons. Therefore, it is currently not actually used.

本発明者等は上記に鑑み、マンガン団塊のマン
ガン含有量の測定法につき鋭意研究を重ねた結
果、光の反射スペクトルを利用することにより、
極めて容易に団塊のマンガン含有量を決定できる
ことを見出した。この方法は放射化分析法に比べ
装置が著しく簡単且つ経済的で、しかも安全性に
優れている。また、この方法によれば、短時間で
容易にマンガン含有量を測定できるため、深海底
の悪条件下でも有効に操作できる。
In view of the above, the present inventors have conducted intensive research on a method for measuring the manganese content in manganese nodules, and as a result, by using the reflection spectrum of light,
It has been found that the manganese content of nodules can be determined very easily. This method uses significantly simpler and more economical equipment than the activation analysis method, and is also superior in safety. Furthermore, according to this method, the manganese content can be easily measured in a short time, so it can be operated effectively even under adverse conditions on the deep sea floor.

本発明は上記の知見に基づくものであつて、マ
ンガン団塊に550mμ以上の波長の光線を照射
し、その団塊への入射光線に対する団塊からの反
射光線の割合を測定し、その測定した反射率から
マンガン含有量を決定することを特徴とする。
The present invention is based on the above knowledge, and involves irradiating a manganese nodule with light having a wavelength of 550 mμ or more, measuring the ratio of light rays reflected from the nodule to the light beam incident on the nodule, and calculating the reflectance from the measured reflectance. Characterized by determining manganese content.

以下、添付図面により本発明を説明する。第1
図は本発明を実施するための装置の一例である。
図示の如く、タングステン又はキセノンランプを
内蔵した光源部1と反射スペクトル測定部2を、
探査船3からケーブルで懸垂した深海用テレビ4
又は深海用潜水船の先端に取り付ける。光源部1
からの光線を、海底面のマンガン団塊5に照射
し、その反射スペクトルを測定器2で受け、その
アルベド(反射率)の目盛値から団塊のマンガン
含有量を決定する。光源の制御や反射スペクトル
の受信などは、船上又は船内での遠隔操作によつ
て行う。
The present invention will be explained below with reference to the accompanying drawings. 1st
The figure is an example of an apparatus for carrying out the present invention.
As shown in the figure, a light source section 1 with a built-in tungsten or xenon lamp and a reflection spectrum measurement section 2 are installed.
Deep-sea TV 4 suspended from exploration vessel 3 by cable
Or attached to the tip of a deep-sea submersible. Light source part 1
The manganese nodule 5 on the seabed surface is irradiated with light from the manganese nodule 5, the reflection spectrum of which is received by the measuring device 2, and the manganese content of the nodule is determined from the albedo (reflectance) scale value. Control of the light source and reception of reflection spectra are performed by remote control on or inside the ship.

第2図は、マンガン団塊への照射光線の波長
と、マンガン団塊の反射スペクトルから得られる
アルベドとの関係を示す特性曲線である。同図
は、光源にタングステン又はキセノンランプを使
用し、マンガン団塊試料として、人工的に製作し
たマンガン団塊(15%のFeO2を含む粘土にMnO2
を0、10、20、30、50%含有させた5種類)と採
取した海底マンガン団塊(MnO2を17、25%含有
する2種類)を用いたものである。図示の如く、
550mμ以上の波長では、試料のマンガン含有量
の減少に伴い、アルベド値は上昇し、マンガン含
有量に比例した数値を示す。太い実線で示した曲
線は海底マンガン団塊のものである。特に、700
〜740mμの波長域では、マンガン含有量の相違
によつてアルベド値がそれに比例して異なること
が顕著である。
FIG. 2 is a characteristic curve showing the relationship between the wavelength of a light beam irradiated to a manganese nodule and the albedo obtained from the reflection spectrum of the manganese nodule. The figure shows artificially produced manganese nodules (MnO 2 in clay containing 15% FeO 2 ) using a tungsten or xenon lamp as a light source.
(5 types containing 0, 10, 20, 30, and 50% MnO 2 ) and collected seabed manganese nodules (2 types containing 17 and 25% MnO 2 ). As shown,
At wavelengths above 550 mμ, the albedo value increases as the manganese content of the sample decreases, and shows a value proportional to the manganese content. The curve shown by the thick solid line is that of the submarine manganese nodule. In particular, 700
In the wavelength range ~740 mμ, it is noticeable that the albedo values vary proportionally due to the difference in manganese content.

したがつて、マンガン団塊に550mμ以上好ま
しくは700mμ以上の波長の光線を照射し、その
団塊からの反射スペクトルから得られるアルベド
値を検知することにより、マンガン団塊のマンガ
ン含有量を決定することができる。
Therefore, the manganese content of a manganese nodule can be determined by irradiating the manganese nodule with a light beam with a wavelength of 550 mμ or more, preferably 700 mμ or more, and detecting the albedo value obtained from the reflection spectrum from the nodule. .

以上説明したように、本発明はマンガン団塊に
光を照射し、その団塊からの反射光線のスペクト
ルを利用する方法であるので、深海底の現場での
マンガン団塊のマンガン含有量を短時間且つ容易
に決定することができる。したがつて、深海底の
マンガン団塊のマンガン含有量による品位分布図
を、時間的労力的無駄を省いて広い範囲にわたつ
て施行できる利点があり、工業的に極めて有用で
ある。
As explained above, the present invention is a method of irradiating light onto manganese nodules and utilizing the spectrum of the reflected light from the nodules, so the manganese content of manganese nodules can be determined quickly and easily on the deep seabed. can be determined. Therefore, there is an advantage that the quality distribution map based on the manganese content of manganese nodules on the deep sea floor can be carried out over a wide range without wasting time and effort, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の一例を
示す。第2図はマンガン団塊への照射光線の波長
と団塊の反射光線から得られるアルベド値の関係
を示す特性曲線である。 図中の符号:1……光源部、2……反射スペク
トル測定部、3……探査船、4……深海用テレ
ビ、5……マンガン団塊。
FIG. 1 shows an example of an apparatus for carrying out the invention. FIG. 2 is a characteristic curve showing the relationship between the wavelength of the light beam irradiated to the manganese nodule and the albedo value obtained from the light beam reflected by the nodule. Codes in the figure: 1...Light source section, 2...Reflection spectrum measurement section, 3...Exploration vessel, 4...Deep sea television, 5...Manganese nodules.

Claims (1)

【特許請求の範囲】 1 マンガン団塊に550mμ以上の波長の光線を
照射し、マンガン団塊への入射光線に対するその
団塊からの反射光線の割合を測定し、その測定し
た反射率からマンガン含有量を決定することを特
徴とするマンガン団塊のマンガン含有量の測定
法。 2 前記のマンガン団塊が海底マンガン団塊であ
ることを特徴とする特許請求の範囲第1項に記載
のマンガン団塊のマンガン含有量の測定法。
[Claims] 1. A manganese nodule is irradiated with light having a wavelength of 550 mμ or more, the ratio of the reflected light from the nodule to the light incident on the manganese nodule is measured, and the manganese content is determined from the measured reflectance. A method for measuring manganese content in manganese nodules. 2. The method for measuring manganese content in a manganese nodule according to claim 1, wherein the manganese nodule is a submarine manganese nodule.
JP55159083A 1980-11-12 1980-11-12 Measuring method for manganese content of manganese nodule Granted JPS5782751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55159083A JPS5782751A (en) 1980-11-12 1980-11-12 Measuring method for manganese content of manganese nodule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55159083A JPS5782751A (en) 1980-11-12 1980-11-12 Measuring method for manganese content of manganese nodule

Publications (2)

Publication Number Publication Date
JPS5782751A JPS5782751A (en) 1982-05-24
JPS6158772B2 true JPS6158772B2 (en) 1986-12-13

Family

ID=15685849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55159083A Granted JPS5782751A (en) 1980-11-12 1980-11-12 Measuring method for manganese content of manganese nodule

Country Status (1)

Country Link
JP (1) JPS5782751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122569U (en) * 1988-02-17 1989-08-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122569U (en) * 1988-02-17 1989-08-21

Also Published As

Publication number Publication date
JPS5782751A (en) 1982-05-24

Similar Documents

Publication Publication Date Title
GB2288017A (en) Determination of formation lithology by gamma ray spectroscopy
Curry et al. Carbon deposition rates and deep water residence time in the equatorial Atlantic Ocean throughout the last 160,000 years
Klinkhammer Fiber optic spectrometers for in-situ measurements in the oceans: the ZAPS Probe
NO750126L (en)
Byrne Inorganic lead complexation in natural seawater determined by UV spectroscopy
US4200792A (en) Method of and apparatus for ascertaining the volume components of a three-component mixture
Smoak et al. Influence of Boundary Scavenging and Sediment Focusing on234Th, 228Th and210Pb Fluxes in the Santa Barbara Basin
JPS6158772B2 (en)
GB2261068A (en) Nuclear borehole logging using lithium detector assemblies
Sakamoto et al. Non-destructive X-ray fluorescence (XRF) core-imaging scanner, TATSCAN-F2
JP2002350369A (en) Measuring method of boron concentration and measuring apparatus utilizing the same
Hall et al. Expedition 361 methods
EP0121463B1 (en) Method and device to get information about organic or mineral matter susceptible to be contained in geological formations
US4259577A (en) Method and means for predicting contents of containers
US3532881A (en) Submarine radioactivity logging technique
FR2514139A1 (en) METHOD AND DEVICES FOR ANALYZING A MEDIUM BY IRRADIATION OF PHOTONS, PARTICULARLY APPLICABLE IN A WELL
Dietrich et al. Carbonate contents in CRP-1 samples-initial results
Hodnett The neutron probe for soil moisture measurement
Wogman et al. In situ analysis of sedimentary pollutants by X-ray fluorescence
CN117927231A (en) Metamorphic rock down-the-hole mountain thermal liquid flow capacity evaluation method based on energy spectrum logging
Li et al. Optical scattering property: spatial and angle variability in Daya Bay
JPS58108438A (en) Optical probing method for material and soil in bottom of sea
Ruffine et al. Geochemistry
Society for Underwater Technology (SUT) et al. A Vessel-borne Gamma-ray Silt-density Gauge for the “in-situ” Examination of Sediments
Wogman et al. In-Situ Parts-per-Million Analysis of Marine Sediments by X-ray Fluorescence Techniques