JPS6158748B2 - - Google Patents
Info
- Publication number
- JPS6158748B2 JPS6158748B2 JP53083284A JP8328478A JPS6158748B2 JP S6158748 B2 JPS6158748 B2 JP S6158748B2 JP 53083284 A JP53083284 A JP 53083284A JP 8328478 A JP8328478 A JP 8328478A JP S6158748 B2 JPS6158748 B2 JP S6158748B2
- Authority
- JP
- Japan
- Prior art keywords
- wood
- pressure
- temperature
- pressure vessel
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002023 wood Substances 0.000 claims description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 238000001291 vacuum drying Methods 0.000 claims description 15
- 238000009835 boiling Methods 0.000 claims description 12
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- 238000001035 drying Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Drying Of Solid Materials (AREA)
Description
【発明の詳細な説明】
本発明は、木材の真空乾燥法では沸騰による含
水率低下させうる時期が、減圧時だけであつたの
を改め、加圧・加熱時まで広げる木材乾燥法に係
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wood drying method that extends the time when the moisture content can be reduced due to boiling only to the time of depressurization in the vacuum drying method of wood, and extends it to the time of pressurization and heating. It is.
真空乾燥法は含水率低下しうる時期である減圧
時の前に、木材の内部温度を減圧時の沸点以上に
加熱しておく必要があり、その加熱時の時間は減
圧時の時間より長く、加熱時は含水率低下しない
ために、真空乾燥工法の加熱時と減圧時とを組み
合せた一サイクルの時間帯において、含水率低下
しているのは一サイクル時間の三分の一以下であ
つた。そして、加熱時に木材に損傷を与えないた
めにS・V法を利用するとすれば、加熱時に含水
率が増大するので、真空乾燥工法に則つとつて木
材を乾燥している時間数の三分の二以上は、含水
率低下している時間でなく、むしろ含水率増を示
している時間となつていた。そのため、真空乾燥
工法で木材を乾燥する場合、一サイクルの工程後
は真空乾燥機より木材を取り出し、他の乾燥工法
で乾燥する方が有利であるとされていた。この考
え方は、木材の加熱時に含有水の沸騰現象は生じ
させられないとする前提にたつている。木材の含
有水を発散させるのに、蒸発を利用するより沸騰
を利用した方が速いため、木材の加熱時にも含有
水を沸騰させうる工法があれば、真空乾燥工法の
評価が根本的に変ることになる。 In the vacuum drying method, it is necessary to heat the internal temperature of the wood to above the boiling point at the time of depressurization before depressurizing, which is the time when the moisture content can decrease, and the heating time is longer than the time during depressurization. Because the moisture content does not decrease during heating, the moisture content decreases in less than one-third of the cycle time in the time period of one cycle that combines heating and depressurization in the vacuum drying method. . If the S/V method is used to prevent damage to the wood during heating, the moisture content increases during heating, so the time required to dry the wood according to the vacuum drying method is 2 or more was not a time when the moisture content was decreasing, but rather a time when the moisture content was increasing. Therefore, when drying wood using a vacuum drying method, it has been considered more advantageous to take the wood out of the vacuum dryer after one cycle and dry it using another drying method. This idea is based on the premise that the boiling phenomenon of contained water cannot occur when wood is heated. It is faster to use boiling than to use evaporation to evaporate the water contained in wood, so if there is a method that can boil the water contained in wood even when heating the wood, the evaluation of vacuum drying methods will fundamentally change. It turns out.
そこで、真空乾燥工法を再検討してみよう。加
熱時に木材の内部温度を高くすればする程、減圧
時の沸点との差が大きくなるため、沸騰量が多く
なることは当然である。木材を加熱するのに飽和
蒸気を使用すれば、蒸気圧と温度は比例して上昇
するため、木材の強度の関係上蒸煮中の圧力に限
界があり、一般的に1Kg/cm2以上の圧をかけて蒸
煮することは危険であるので、加熱温度は120℃
を超えられない。それ故、120℃以上に加熱する
ためには飽和蒸気以外の加熱源を利用しなければ
ならない。この別個の加熱源を探すには、積載し
ている各木材に均一な加熱方法を取るために加圧
気体でなければならないことと、木材に損傷を与
えないために湿度の高い加熱源であることが前提
となる。 Therefore, let's reconsider the vacuum drying method. Naturally, the higher the internal temperature of the wood during heating, the greater the difference between the boiling point and the boiling point at reduced pressure, and therefore the amount of boiling will increase. If saturated steam is used to heat wood, the steam pressure and temperature will increase proportionally, so there is a limit to the pressure during steaming due to the strength of the wood, and generally the pressure is 1 kg/cm 2 or more. It is dangerous to steam the food over water, so the heating temperature should be 120℃.
cannot be exceeded. Therefore, in order to heat above 120°C, a heating source other than saturated steam must be used. This separate heating source must be a pressurized gas to provide a uniform heating method for each piece of wood in the load, and a humid heating source to avoid damaging the wood. That is the premise.
木材に損傷が生じることは二の次として湿度の
高い加熱源を探せば、まず加熱蒸気が考えられる
加熱蒸気であれば、圧力容器A内の圧力が1Kg/
cm2であつても、それの沸点以上に加熱することは
可能であるが、加熱蒸気の性質上、木材加熱に使
用できる温度は加熱蒸気にすれば低いため温度コ
ントロールが難かしくなり、直接木材の入つてい
る圧力容器Aに注入するのは危険である。高圧飽
和蒸気と加熱空気との混合気体を導入すれば、蒸
気の飽和温度以上に加熱することは可能であるが
ボイラーの蒸気圧の変動等の理由による混合率の
不安定により、必要以上に加湿されたり湿度不足
になつたりするため、直接圧力容器Aに注入する
ことは危険となる。そのため、真空乾燥を行う圧
力容器A以外に、圧力容器Bを設けて、圧力容器
Bの温度計・圧力計の指示によつて、ボイラーか
らの高圧蒸気とコンプレサーによつて加圧された
空気を所定の割合にてミキシングして加熱を行い
つつ連続的に圧力容器B内に注入し、B内のヒー
ターにより加熱して温度低下によるミキシング率
の変化を防止しつつ、圧力容器A内の木材の状況
により高圧ボイラー蒸気を噴霧して加湿できるよ
うにして、高圧・高温・高湿の空気を作り得れば
圧力容器A内の木材の加圧・加熱時に圧力容器B
より、連続的に安全な状況の下に圧力容器A内に
高圧・高温・高湿の空気を注入しうる。 If you look for a high-humidity heating source, putting the risk of damage to the wood as a secondary consideration, first of all, if it is heating steam, the pressure inside pressure vessel A will be 1 kg/kg.
cm2 , it is possible to heat the wood above its boiling point, but due to the nature of heating steam, the temperature that can be used for heating wood is low, making temperature control difficult, and it is difficult to directly heat wood. It is dangerous to inject into pressure vessel A containing. If a gas mixture of high-pressure saturated steam and heated air is introduced, it is possible to heat the steam above its saturation temperature, but the mixing ratio is unstable due to fluctuations in the steam pressure of the boiler, resulting in excessive humidification. It is dangerous to directly inject into the pressure vessel A, as this may lead to water leakage or lack of humidity. Therefore, in addition to the pressure vessel A that performs vacuum drying, a pressure vessel B is installed to supply high-pressure steam from the boiler and air pressurized by the compressor according to the instructions from the thermometer and pressure gauge of pressure vessel B. The wood in the pressure vessel A is mixed at a predetermined ratio and continuously injected into the pressure vessel B while being heated. Depending on the situation, if high-pressure boiler steam can be sprayed and humidified to create high-pressure, high-temperature, and high-humidity air, pressure vessel B can be used to pressurize and heat the wood in pressure vessel A.
Therefore, high pressure, high temperature, and high humidity air can be continuously injected into the pressure vessel A under safe conditions.
圧力容器A内に積載されている被乾燥木材を事
前処理を行なわずに、いきなり高圧・高温・高湿
の空気を圧力容器A内に注入して加圧しても、木
材の表面より加熱されて木材の温度が上昇して行
くため、木材の表層付近より蒸発がおこるだけで
含有水が沸騰する状況とはならず、水分傾斜が増
大し、木材に割れが発生しやすくなり、真空乾燥
工法の加熱方法に使用することは不適当となる。 Even if you suddenly inject high-pressure, high-temperature, and high-humidity air into pressure vessel A and pressurize the wood to be dried loaded in pressure vessel A without pre-treating it, the surface of the wood will be heated. As the temperature of the wood increases, evaporation occurs only from near the surface layer of the wood, and the contained water does not boil, increasing the moisture gradient and making the wood more likely to crack. It is unsuitable for use in heating methods.
そこで、通常使用されている南洋材及び米材の
厚さ45mm板の乾燥を行つた実施例に基づいて、本
発明の高温真空乾燥法の説明を行う。 Therefore, the high-temperature vacuum drying method of the present invention will be explained based on an example in which a 45 mm thick board of commonly used South Sea wood and rice wood was dried.
桟積みされた被乾燥木材を圧力容器A内に入れ
て扉をしめ圧力容器A内を飽和蒸気で満たす工程
をとり、この飽和蒸気の圧を0.1〜0.5Kg/cm2の範
囲でひんぱんに変動させると木材の表面及び木材
内部に発生した飽和蒸気の高温ドレン水が木材内
部に押し込まれ、木材内部に高温ドレン水が行き
わたることになる。更に飽和蒸気圧を上げて、
0.6〜0.9Kg/cm2の範囲でひんぱんに蒸気圧を変動
させると木材に押し込まれた高温ドレン水を通じ
て木材内の温度は均一になる。その後飽和蒸気を
放出し減圧気中を作りだせば木材内の全含有水は
均一に沸騰し、含有水の移動に障害となつていた
樹脂は水蒸気蒸溜されて除去され、全細胞腔内は
均一に含有水の一部が発散した稀薄な状態とな
り、高圧・高温・高湿の空気が木材内に入り易い
状態が作り出される。 The stacked wood to be dried is put into pressure vessel A, the door is closed, and pressure vessel A is filled with saturated steam, and the pressure of this saturated steam is frequently varied in the range of 0.1 to 0.5 kg/ cm2 . As a result, high-temperature drain water of saturated steam generated on the surface of the wood and inside the wood is forced into the wood, and the high-temperature drain water is spread inside the wood. Further increasing the saturated vapor pressure,
By frequently varying the steam pressure in the range of 0.6 to 0.9 Kg/cm 2 , the temperature inside the wood becomes uniform through the high-temperature drain water forced into the wood. After that, by releasing saturated steam and creating a reduced pressure atmosphere, all the water contained in the wood will boil uniformly, and the resin that was an obstacle to the movement of the contained water will be removed by steam distillation, and the inside of all cell cavities will be uniform. This creates a diluted state in which some of the water contained in the wood evaporates, creating a condition in which high-pressure, high-temperature, and high-humidity air can easily enter the wood.
その後、真空ポンプの運転を中止し、圧力容器
B内で作られた約180℃、5Kg/cm2前後の高圧高
温・高湿の空気を圧力容器Aの噴射管より、圧力
容器A内に噴出させると、約180℃の空気が木材
内に入つて行く。真空ポンプの運転を中止したと
き被乾燥木材の温度は75〜80℃であるが沸騰が停
止した直後の全含有水の沸点以下の蒸発が猛烈に
おきているため、100℃の温度差のある高温気体
が木材内に入つても木材に損傷を与えることがな
い。木材内に入つた約180℃の高温空気は全細胞
腔まで浸入し全細胞腔内に残つていた含有水は均
一に沸騰しながら、木材温度は上昇してゆく。こ
の高圧・高温・高湿の空気の注入は圧力容器A内
の圧力が0.9Kg/cm2になるまで続けられその圧力
に達すれば一旦注入を停止する。注入を停止すれ
ば圧力容器A内の圧力は低下し、0.6Kg/cm2まで
下がれば再び注入が開始される。注入開始と停止
を0.6〜0.9Kg/cm2の間にてひんぱんに繰り返えす
と、0.6〜0.9Kg/cm2の範囲で加圧と減圧が繰り返
えされ、そのつど、細胞腔内の含有水は沸騰して
気泡となつて木材より出て行く現象と、高温空気
がその後に入いる現象とが繰り返えされるように
なる。高圧容器A内に絶えず約180℃の高温空気
を注入しているにもかかわらず、圧力容器A内の
温度は乾燥末期を除けば、140℃を越えることが
ない。このことから木材を加圧・加熱中に木材内
の含有水は沸騰し、それによる気化熱にてカロリ
ー消耗が続いていることを推察しうる。この0.6
〜0.9Kg/cm2の範囲の加圧・加熱を続けると、木
材の内部温度は130〜135℃になるが、余りこの工
程を長くすると、通常の乾燥のように水分傾斜が
発生し増大する現象がでてくる。この工程を中止
し、加圧・加熱している空気を圧力容器Aより放
出し、大気圧以下に減圧してゆくと、一層含有水
の沸騰により含水率低下が促進されると同時に、
水分傾斜の発生が是正されてくる結果が現われ
る。このため二度以上の高圧・高温・高湿の空気
による加圧・加熱と減圧を繰り返えす方が、乾燥
品質に良い結果が得られた。被乾燥木材を圧力容
器に入れてから、約16時間で含水率8%の乾燥材
にすることができた。 After that, the operation of the vacuum pump is stopped, and the high-pressure, high-temperature, and high-humidity air of about 180℃ and around 5 kg/cm 2 produced in pressure vessel B is injected into pressure vessel A from the injection pipe of pressure vessel A. When this happens, air at a temperature of approximately 180°C enters the wood. When the vacuum pump stopped operating, the temperature of the wood to be dried was 75 to 80℃, but immediately after boiling stopped, all the water contained below the boiling point was evaporating rapidly, so there was a temperature difference of 100℃. Even if high-temperature gas enters the wood, it will not damage the wood. The high-temperature air of about 180°C that enters the wood penetrates into all the cell cavities, and the water remaining in all the cell cavities boils uniformly, raising the temperature of the wood. This injection of high-pressure, high-temperature, and high-humidity air is continued until the pressure inside the pressure vessel A reaches 0.9 kg/cm 2 , and once that pressure is reached, the injection is stopped once. When the injection is stopped, the pressure inside the pressure vessel A decreases, and when the pressure drops to 0.6 kg/cm 2 , the injection is started again. By frequently repeating the start and stop of injection at a range of 0.6 to 0.9 Kg/cm 2 , the pressure is increased and reduced within the range of 0.6 to 0.9 Kg/cm 2 , and each time, the inside of the cell cavity is increased. The phenomenon in which the contained water boils, forms bubbles, and leaves the wood, and then the high-temperature air enters, is repeated. Although high-temperature air of about 180°C is constantly injected into the high-pressure vessel A, the temperature inside the pressure vessel A never exceeds 140°C, except at the end of drying. From this, it can be inferred that the water contained in the wood boils while the wood is pressurized and heated, and the resulting heat of vaporization continues to consume calories. This 0.6
If pressure and heating in the range of ~0.9Kg/ cm2 are continued, the internal temperature of the wood will reach 130~135℃, but if this process is prolonged too much, a moisture gradient will occur and increase as in normal drying. A phenomenon appears. When this process is stopped and the pressurized and heated air is released from the pressure vessel A and the pressure is reduced to below atmospheric pressure, the moisture content decreases further due to boiling of the contained water, and at the same time,
The result is that the occurrence of moisture gradient is corrected. For this reason, better drying quality was obtained by repeating pressurization, heating, and depressurization using high-pressure, high-temperature, and high-humidity air two or more times. After placing the wood to be dried in a pressure vessel, it took about 16 hours to dry the wood with a moisture content of 8%.
以上の実施例にて見られるように、本発明は真
空乾燥法の加圧・加熱中にも含有水を沸騰させて
発散するようにした高温真空乾燥法であるから、
S・V法のように含水率20%以下にすることは不
可能とされていた限界がなくなり、真空乾燥工法
は最終的には他の乾燥工法を採用しなければなら
ない不便もなくなり、被乾燥木材を乾燥過程で移
動させることもなく、同一の真空乾燥機の中で1
日以内に乾燥できることになつて業界に益する所
大となつた。 As seen in the above examples, the present invention is a high-temperature vacuum drying method in which the water contained in the vacuum drying method is boiled and released even during the pressurization and heating of the vacuum drying method.
The limit of the S/V method, where it was impossible to reduce the moisture content to 20% or less, has been eliminated, and the vacuum drying method will eventually eliminate the inconvenience of having to use other drying methods. There is no need to move the wood during the drying process, and the wood is dried in the same vacuum dryer.
It became possible to dry the product within a few days, which greatly benefited the industry.
Claims (1)
して高圧・高温・高湿の空気を作る圧力容器Bを
設けて該空気を圧力容器Bより圧力容器Aに注入
できるようにし、圧力容器A内の被乾燥木材を飽
和蒸気による加熱と減圧を用いて該木材の全細胞
腔の含有水の一部を沸騰し発散させて稀薄な状態
となつた全細胞腔に、圧力容器Bより5Kg/cm2前
後の圧力を有する高温・高湿の空気を注入し、大
気圧以上の所定の圧力に加圧・加熱しながら含有
水の沸騰現象をおこさせて含水率低下させること
と加熱しながら沸騰現象を生じさせた被乾燥木材
を直に減圧気中に置き含有水を更に沸騰放出させ
含水率低下を行うことを特徴とする木材用の高温
真空乾燥法。1. A pressure vessel B that produces high-pressure, high-temperature, and high-humidity air is attached to the pressure vessel A capable of vacuum drying wood, and the air is injected from the pressure vessel B into the pressure vessel A. The wood to be dried inside is heated with saturated steam and reduced pressure to boil and evaporate some of the water contained in all the cell cavities of the wood. High-temperature, high-humidity air with a pressure of around cm 2 is injected, and while it is pressurized and heated to a predetermined pressure above atmospheric pressure, the contained water is brought to a boiling phenomenon to lower the water content, and it is boiled while heating. A high-temperature vacuum drying method for wood, which is characterized in that the wood to be dried that has caused the phenomenon is placed directly in a reduced pressure atmosphere to further boil off the water contained therein and reduce the water content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8328478A JPS5512325A (en) | 1978-07-07 | 1978-07-07 | High temperature vacuum drying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8328478A JPS5512325A (en) | 1978-07-07 | 1978-07-07 | High temperature vacuum drying method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5512325A JPS5512325A (en) | 1980-01-28 |
JPS6158748B2 true JPS6158748B2 (en) | 1986-12-12 |
Family
ID=13798067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8328478A Granted JPS5512325A (en) | 1978-07-07 | 1978-07-07 | High temperature vacuum drying method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5512325A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6739821B1 (en) * | 2019-11-19 | 2020-08-12 | 株式会社アサヒテクノ | Vacuum dryer |
-
1978
- 1978-07-07 JP JP8328478A patent/JPS5512325A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5512325A (en) | 1980-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106440671A (en) | Wood drying and anticorrosive treatment method | |
CN103240780A (en) | Method for improving carbonized wood property by silica sol impregnation pretreatment | |
US4461310A (en) | Process for improving the filling capacity of tobaccos | |
CN105387691B (en) | A kind of drying means of control wood shrinkage | |
CN103252814A (en) | Production method for simultaneously performing high temperature drying and thermal modification carbonization treatments | |
CN107081834A (en) | A kind of method of carbonization of wood processing | |
US5392530A (en) | Method of seasoning lumber | |
US20040025367A1 (en) | Method for treating and drying of wood | |
CN107553645A (en) | A kind of method that reel material vacuum impregnation is modified | |
JPS6158748B2 (en) | ||
CN108344257A (en) | A kind of hot-pressing drying method of cryptomeria timber | |
CN106895664B (en) | A kind of combined drying method controlling wood shrinkage | |
CN106863511A (en) | A kind of drying integrated handling process of wood preservation | |
CN103788970B (en) | A kind of drying of wood charing integrated device and drying, charing method | |
CN106166780B (en) | A kind of rubber wood timber high temperature heat modification material and its production method | |
JP4854679B2 (en) | How to treat wood at high temperatures | |
JPS6017983B2 (en) | wood drying method | |
KR101975653B1 (en) | Method for producing green wood drying-heat treatment using superheated stream | |
GB2077784A (en) | Timber pretreated for seasoning and a method of pretreating timber for seasoning | |
JP2976961B2 (en) | Production machine and method for producing wood that does not require artificial drying | |
JP2698792B2 (en) | Wood treatment method | |
JPS57125674A (en) | Preparation of flavor and food or beverage with good flavor | |
TWI684423B (en) | A steam cooking device and method | |
Tiemann | An analysis of the internal stresses which occur in wood during the progress of drying from the green condition, with a brief discussion of the physical properties which affect these stresses | |
JP2007278525A (en) | Wood drying method and device |