JPS6158540B2 - - Google Patents
Info
- Publication number
- JPS6158540B2 JPS6158540B2 JP5136684A JP5136684A JPS6158540B2 JP S6158540 B2 JPS6158540 B2 JP S6158540B2 JP 5136684 A JP5136684 A JP 5136684A JP 5136684 A JP5136684 A JP 5136684A JP S6158540 B2 JPS6158540 B2 JP S6158540B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- weight
- corrosion resistance
- based alloy
- tin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005260 corrosion Methods 0.000 claims description 46
- 230000007797 corrosion Effects 0.000 claims description 46
- 239000010949 copper Substances 0.000 claims description 34
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 33
- 229910045601 alloy Inorganic materials 0.000 claims description 33
- 239000000956 alloy Substances 0.000 claims description 33
- 229910052802 copper Inorganic materials 0.000 claims description 33
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 20
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 239000011574 phosphorus Substances 0.000 claims description 10
- 229910052787 antimony Inorganic materials 0.000 claims description 7
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 description 10
- 239000010951 brass Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 229910000936 Naval brass Inorganic materials 0.000 description 5
- 238000005242 forging Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Description
本発明は、耐食性特に耐脱亜鉛腐食性の向上と
被削性の向上を図つた銅基合金に関する。
銅基合金の展伸材としては、従前から快削黄銅
棒、鍜造用黄銅棒、ネーバル黄銅棒、高力黄銅棒
等が広く使用されている。しかし、これ等の銅基
合金は、何れも耐食性と被削性の両特性を具備す
る材料としては、満足すべきものではない。即
ち、快削黄銅棒や鍜造用黄銅棒等には、亜鉛の含
有量が高いため、温水や汚染水や海水中で脱亜鉛
腐食が発生し易いという難点がある。また耐食性
が良いとされているネーバル黄銅棒や高力黄銅棒
には、被削性が悪くしかも耐脱亜鉛腐食性も十分
でないという欠点がある。
一方、この種銅基合金の耐脱亜鉛腐食性を改善
するものとして、鍜造用黄銅棒(JIS C3771)に
少量の燐を添加した銅基合金(特開昭55−97443
号)や、比較的多量の錫及びニツケルを銅に添加
して耐食性を高めるようにした銅基合金(特公昭
51−20375号)等が開発されている。而して、前
者は少量の燐を添加することによりα相組織の増
大を図り、これによつて脱亜鉛腐食を抑えんとす
るものであるが、燐の添加のみでは十分な耐脱亜
鉛腐食性を得ることが困難であり、実用上様々な
問題を起生している。
また、後者の銅基合金は、錫及びニツケルの寄
与により耐脱亜鉛腐食性の向上を図るものである
が、錫の添加量が1.2〜2.0重量%と比較的高いた
め、Cu4 Sn相の出現によつて脆化を起し、鍜造
割れを生じ易いという欠点があるうえ、錫が偏析
し易いために組織の安定化が困難となり、その結
果熱処理工程の管理が難かしくなつて合金の耐食
性にバラツキを生じ易いという大きな欠点があ
る。
本発明は、従前のこの種銅基合金に於ける上述
の如き問題の解決を課題とするものであり、耐食
性特に耐脱亜鉛腐食性と被削性が極めて高く、し
かも製造工程に於ける品質管理が容易で常に安定
した耐食性が得られると共に、安価に製造するこ
とができるようにした銅基合金の提供を目的とす
るものである。
本発明に係る銅基合金は銅63.0〜66.0重量%、
錫0.7〜1.2重量%、鉛1.0〜2.5重量%、鉄0.1〜1.0
重量%、ニツケル0.1〜0.7重量%、アンチモン
0.01〜0.1重量%、燐0.01〜0.2重量%及び残部が
亜鉛及びこれに同伴する不純物よりなり、実質的
にα相組織を有することを基本構成とするもので
ある。
また、本発明に係る銅基合金は、組織が錫と
ニツケルの相乗作用並びに添加剤により強化され
たα相であるため、耐食性特に耐脱亜鉛腐食性に
秀れていること、削り屑が青銅鋳物のリターン
材として使用できること、被削性等の機械的性
質が秀れていること、及び製造工程に於ける熱
処理管理が容易で常に安定した品質の製品が得ら
れること等の、多くの秀れた特徴を有するもので
ある。
以下、本発明に係る銅基合金に於ける各元素の
添加効果並びに組成範囲の限定理由について説明
する。
銅(63.0〜66.0重量%)
黄銅においてα相が多くなるのは、銅が約62%
以上の場合である。一方、銅をあまり多量に添加
すると、耐食性は良くなるが引張強さや硬さが低
下する。脱亜鉛腐食が主としてβ相から発生する
ことおよび経済性等を考えて銅の量を63.0〜66.0
重量%に限定した。
錫(0.7〜1.2重量%)
錫は耐食性をよくするために添加する。前記特
公昭51−2037号の銅基合金では錫の量が1.2〜2.0
重量%であるが、その後の研究の結果、錫の添加
量を少なくしても後述のニツケル、アンチモン及
び燐による耐食性の向上と相俟て、より良好な耐
食性が得られることが判明した。尚、耐食性を向
上させるためには、0.7重量%以上の錫の添加が
必要である。
鉛(1.0〜2.5重量%)
鉛は被削性の向上のために添加するが、1.0重
量%以下の添加であると十分な被削性が得られ
ず、また2.5重量%以上になると、引張強さ、伸
び、衝撃値等が低下する。
鉄(0.1〜1.0重量%)
鉄は合金の結晶を微細化する作用があるが、あ
まり少ないとその効果は少なく、また1.0重量%
以上添加すると耐食性も悪くなり、機械的性質の
伸び、衝撃値が低下するため、0.1〜1.0重量%の
範囲とする必要がある。
ニツケル(0.1〜0.7重量%)
ニツケルは錫との相乗効果によつて耐食性の向
上をもたらし、またその機械的性質を改善する。
ニツケルは亜鉛当量が負であるためα相が多く
なり、ニツケルを添加することによつてβ相の増
加を阻止し、又、γ相の発生を抑制し、高強度で
靭性のある合金を作ることができる。したがつ
て、ニツケルの添加により耐食性、機械的性質を
向上することができ、その添加量は0.1〜0.7重量
%の範囲が好ましい。
アンチモン(0.01〜0.1重量%)
アンチモンは耐食性をよくするために添加す
る。先の錫と相俟て、脱亜鉛腐食の傾向が抑制さ
れる。錫の添加量が0.01重量%以下ではその効果
が少なく、また0.1重量%以上添加すると硬くて
脆くなる。
燐(0.01〜0.2重量%)
燐はアンチモンとの共存によつて耐食性を向上
させるために添加する。燐は、単独では耐食性の
向上に著しい効果はないが、アンチモンとの共存
によつてその効果が増大する。0.01重量%以下の
燐量では耐食性の向上に対する影響は少なく、ま
た0.2重量%以上では、加工度によつては割れな
どが発生することがある。
尚、本発明に係る銅基合金に含まれることのあ
る不純物としては、アルミニウム、マンガン、シ
リコン、硫黄などがあり、総計0.5重量%以下で
ある。
本発明に係る合金は、前述した範囲の元素をそ
の許容範囲内において適当に組合せることにより
達成でき、耐食性、被削性および機械的性質にす
ぐれた銅基合金を得ることができる。また、本発
明に係る銅基合金は温水、汚染水及び海水等に対
する耐食性に秀れ、しかも被削性も高いため、バ
ルブ部品(ステムジスク等)、機械部品、船舶用
部品、電気部品、シヤフト、ポンプ軸、ブツシ
ユ、管、板等に多くの用途がある。
以下、実施例により本発明に係る銅基合金の効
用を明らかにする。
第1表は、本発明に係る銅基合金と比較試料用
の銅基合金の化学成分を示すものであり、また第
2表は前記第1表の各試料用銅基合金の引張り強
さ、伸び、硬さ及びドリルテスト値を示すもので
ある。
第1表に於いて、試料No.1はJIS規格の鍜造用
黄銅棒(C−3771)、No.2はJIS基格のネーバル
黄銅棒(C−4641)、No.3はJIS規格の高力黄銅
棒(C−6782)、No.4は、特公昭51−20375号に
係る耐食性銅基合金、No.5とNo.6とNo.7は本発
明に係る銅基合金、No.8は特開昭55−97443号に
係る銅基合金である。
第2表に示される機械的特性の試験結果からも
明らかな様に、本願発明に係る耐食性銅基合金は
錫量、鉛量及び鉄量の様に伸びを減少させる元素
を比較的多く含有しているにも拘わらず伸びがあ
り、また鉛を含有しているため被削性が極めて良
好である。
The present invention relates to a copper-based alloy that has improved corrosion resistance, particularly dezincing corrosion resistance, and improved machinability. As wrought materials of copper-based alloys, free-cutting brass rods, brass rods for forging, naval brass rods, high-strength brass rods, etc. have been widely used. However, none of these copper-based alloys is satisfactory as a material having both corrosion resistance and machinability properties. That is, free-cutting brass rods, brass rods for forging, and the like have a high zinc content, so they have the disadvantage that dezincification corrosion easily occurs in hot water, contaminated water, or seawater. Furthermore, naval brass rods and high-strength brass rods, which are said to have good corrosion resistance, have the drawbacks of poor machinability and insufficient dezincification corrosion resistance. On the other hand, in order to improve the dezincification corrosion resistance of this type of copper-based alloy, a copper-based alloy (Japanese Patent Laid-Open No. 55-97443
), and copper-based alloys (Special Publications Show
51-20375) etc. have been developed. The former method aims to increase the α-phase structure by adding a small amount of phosphorus, thereby suppressing dezincification corrosion, but the addition of phosphorus alone is not sufficient to prevent dezincification corrosion. It is difficult to obtain the desired characteristics, and various problems arise in practical use. In addition, the latter copper-based alloy aims to improve dezincification corrosion resistance through the contribution of tin and nickel, but since the amount of tin added is relatively high at 1.2 to 2.0% by weight, the Cu 4 Sn phase is In addition, tin tends to segregate, which makes it difficult to stabilize the structure, making it difficult to control the heat treatment process, making it difficult to control the alloy. A major drawback is that corrosion resistance tends to vary. The purpose of the present invention is to solve the above-mentioned problems with conventional copper-based alloys of this type. The object of the present invention is to provide a copper-based alloy that is easy to manage, always provides stable corrosion resistance, and can be manufactured at low cost. The copper-based alloy according to the present invention contains 63.0 to 66.0% by weight of copper;
Tin 0.7-1.2% by weight, lead 1.0-2.5% by weight, iron 0.1-1.0
wt%, nickel 0.1-0.7 wt%, antimony
The basic structure consists of 0.01 to 0.1% by weight, 0.01 to 0.2% by weight of phosphorus, and the balance being zinc and accompanying impurities, and substantially has an α-phase structure. In addition, the copper-based alloy according to the present invention has an α-phase structure strengthened by the synergistic effect of tin and nickel and additives, so it has excellent corrosion resistance, especially dezincification corrosion resistance, and the shavings are bronze-like. It has many advantages, such as being able to be used as a return material for castings, having excellent mechanical properties such as machinability, and being able to easily manage heat treatment in the manufacturing process, resulting in consistently stable quality products. It has the following characteristics. Hereinafter, the effect of adding each element in the copper-based alloy according to the present invention and the reason for limiting the composition range will be explained. Copper (63.0-66.0% by weight) The alpha phase in brass is about 62%.
This is the case above. On the other hand, if too much copper is added, the corrosion resistance will improve, but the tensile strength and hardness will decrease. Considering that dezincification corrosion mainly occurs from the β phase and considering economic efficiency, the amount of copper was set to 63.0 to 66.0.
% by weight. Tin (0.7-1.2% by weight) Tin is added to improve corrosion resistance. In the copper-based alloy of the above-mentioned Special Publication No. 51-2037, the amount of tin is 1.2 to 2.0.
As a result of subsequent research, it was found that even if the amount of tin added was reduced, better corrosion resistance could be obtained in combination with the improvement in corrosion resistance due to nickel, antimony, and phosphorus, which will be described later. In addition, in order to improve corrosion resistance, it is necessary to add 0.7% by weight or more of tin. Lead (1.0 to 2.5% by weight) Lead is added to improve machinability, but if it is added less than 1.0% by weight, sufficient machinability cannot be obtained, and if it is more than 2.5% by weight, the tensile strength Strength, elongation, impact value, etc. decrease. Iron (0.1 to 1.0% by weight) Iron has the effect of refining the crystals of the alloy, but if it is too small, the effect will be small, and 1.0% by weight
If added in excess of this amount, the corrosion resistance will deteriorate, and the elongation of mechanical properties and impact value will decrease, so it is necessary to keep the amount in the range of 0.1 to 1.0% by weight. Nickel (0.1-0.7% by weight) Nickel provides improved corrosion resistance through a synergistic effect with tin and also improves its mechanical properties. Since nickel has a negative zinc equivalent, the α phase increases, and adding nickel prevents the increase in the β phase and suppresses the generation of the γ phase, creating an alloy with high strength and toughness. be able to. Therefore, corrosion resistance and mechanical properties can be improved by adding nickel, and the amount added is preferably in the range of 0.1 to 0.7% by weight. Antimony (0.01-0.1% by weight) Antimony is added to improve corrosion resistance. Combined with the aforementioned tin, the tendency for dezincification corrosion is suppressed. If the amount of tin added is less than 0.01% by weight, the effect will be small, and if it is added more than 0.1% by weight, it will become hard and brittle. Phosphorus (0.01-0.2% by weight) Phosphorus is added to improve corrosion resistance by coexisting with antimony. Phosphorus alone does not have a significant effect on improving corrosion resistance, but its effect increases when it coexists with antimony. A phosphorus content of 0.01% by weight or less has little effect on improving corrosion resistance, and a phosphorus content of 0.2% by weight or more may cause cracking depending on the degree of processing. Incidentally, impurities that may be contained in the copper-based alloy according to the present invention include aluminum, manganese, silicon, sulfur, etc., and the total amount is 0.5% by weight or less. The alloy according to the present invention can be achieved by appropriately combining the elements in the above-mentioned range within their permissible ranges, and a copper-based alloy with excellent corrosion resistance, machinability, and mechanical properties can be obtained. In addition, the copper-based alloy according to the present invention has excellent corrosion resistance against hot water, contaminated water, seawater, etc., and also has high machinability, so it can be used for valve parts (stem discs, etc.), mechanical parts, marine parts, electrical parts, shafts, etc. There are many uses for pump shafts, bushes, pipes, plates, etc. Hereinafter, the effectiveness of the copper-based alloy according to the present invention will be clarified through Examples. Table 1 shows the chemical composition of the copper-based alloy according to the present invention and the copper-based alloy for comparative samples, and Table 2 shows the tensile strength of the copper-based alloy for each sample in Table 1, It shows elongation, hardness and drill test values. In Table 1, sample No. 1 is a JIS standard brass rod for forging (C-3771), No. 2 is a JIS standard naval brass rod (C-4641), and No. 3 is a JIS standard naval brass rod (C-4641). High-strength brass rod (C-6782), No. 4 is a corrosion-resistant copper-based alloy according to Japanese Patent Publication No. 51-20375, and No. 5, No. 6, and No. 7 are copper-based alloys according to the present invention. 8 is a copper-based alloy according to JP-A No. 55-97443. As is clear from the mechanical property test results shown in Table 2, the corrosion-resistant copper-based alloy according to the present invention contains relatively large amounts of elements that reduce elongation, such as tin, lead, and iron. It has elongation even though it is made of steel, and since it contains lead, it has extremely good machinability.
【表】【table】
【表】
一方、第3表は前記各試料の脱亜鉛腐食試験結
果を示すものであり、ISO 6509に規定する脱亜
鉛腐食試験方法により行つたものである。即ち、
暴路試料表面が押し出し方向に対して直角となる
ように試料をフエノール樹脂に埋め込み、試料表
面を1200番まで研磨後バフ仕上げをし、次にその
試料を12.7g/の塩化第2銅2水塩(CuCl2・
2H2O)の水溶液中に浸漬し、75℃で24時間保持
した後、試料を取り出し、平均の脱亜鉛腐食深さ
を測定した。[Table] On the other hand, Table 3 shows the dezincification corrosion test results for each of the above samples, which were conducted using the dezincification corrosion test method specified in ISO 6509. That is,
The sample was embedded in phenolic resin so that the rough surface of the sample was perpendicular to the extrusion direction, the sample surface was polished to No. 1200 and buffed, and then the sample was soaked in 12.7 g/dihydrous cupric chloride. Salt ( CuCl2・
After being immersed in an aqueous solution of 2H 2 O) and kept at 75°C for 24 hours, the samples were taken out and the average dezincification corrosion depth was measured.
【表】
第3表の脱亜鉛腐食試験結果からわかるよう
に、本発明に係る銅基合金(No.5、No.6、
No.7)は脱亜鉛腐食深さが著しく少なく、No.4
(特公昭51−20375号)と比較しても耐食性が良好
であり、他の比較材と比べると著しく耐脱亜鉛腐
食性に優れている。
また本願発明に係る耐食性銅基合金は、錫の量
が比較的少ないため錫の偏析等が起り難くく、そ
の結果熱処理条件の僅かな差異によつて耐食性等
が大きく変動することもなく、熱処理工程の管理
が容易になると共に耐食性のバラツキも略皆無と
なる。
本発明は上述の通り秀れた実用的効果を有する
ものである。[Table] As can be seen from the dezincification corrosion test results in Table 3, the copper-based alloys (No. 5, No. 6,
No.7) has significantly less dezincification corrosion depth, and No.4
(Japanese Patent Publication No. 51-20375), it has good corrosion resistance, and compared to other comparative materials, it has significantly better dezincification corrosion resistance. In addition, since the corrosion-resistant copper-based alloy according to the present invention has a relatively small amount of tin, it is difficult for tin segregation to occur, and as a result, corrosion resistance etc. do not vary greatly due to slight differences in heat treatment conditions, and heat treatment Process management becomes easier and there is almost no variation in corrosion resistance. As mentioned above, the present invention has excellent practical effects.
第1図、第2図、第3図、第4図及び第8図は
脱亜鉛腐食試験を行なつた従前の銅基合金試料の
顕微鏡写真であり、第1図は試料No.1(JIS
C3771鍜造用黄銅棒2種)の、第2図は試料No.2
(JIS C4641ネーバル黄銅棒2種)の、第3図は
試料No.3(JIS C6782高力黄銅棒2種)の、第4
図は試料No.4(特公昭51−20375号)の、第8図
は試料No.8(特開昭55−97443号の)各顕微鏡写
真である。第5図、第6図及び第7図は脱亜鉛腐
食試験を行なつた本発明に係る銅基合金試料の顕
微鏡写真であり、第5図は試料No.5の、第6図
は試料No.6の、第7図は試料No.7の各顕微鏡写
真である。
Aは腐食深さ(50部)。
Figures 1, 2, 3, 4, and 8 are micrographs of conventional copper-based alloy samples that were subjected to dezincification corrosion tests, and Figure 1 is sample No. 1 (JIS
Figure 2 shows sample No. 2 of C3771 (2 types of brass rods for forging)
(JIS C4641 Naval Brass Rod Type 2), Figure 3 shows sample No. 3 (JIS C6782 High Strength Brass Rod Type 2), Figure 4.
The figure is a microscopic photograph of sample No. 4 (Japanese Patent Publication No. 51-20375), and FIG. 8 is a microscopic photograph of sample No. 8 (Japanese Patent Publication No. 55-97443). Figures 5, 6, and 7 are micrographs of copper-based alloy samples according to the present invention that were subjected to dezincification corrosion tests; Figure 5 is sample No. 5, and Figure 6 is sample No. Figure 7 of .6 shows each microscopic photograph of sample No. 7. A is the corrosion depth (50 parts).
Claims (1)
1.0〜2.5重量%、鉄0.1〜1.0重量%、ニツケル0.1
〜0.7重量%、アンチモン0.01〜0.1重量%、燐
0.01〜0.2重量%及び残部が亜鉛及びこれに同伴
する不純物よりなる実質的にα相組織を有するこ
とを特徴とする被削性に秀れた耐食性銅基合金。1 Copper 63.0-66.0% by weight, Tin 0.7-1.2% by weight, Lead
1.0-2.5% by weight, iron 0.1-1.0% by weight, nickel 0.1
~0.7 wt%, antimony 0.01-0.1 wt%, phosphorus
A corrosion-resistant copper-based alloy with excellent machinability, characterized by having a substantially α-phase structure consisting of 0.01 to 0.2% by weight and the balance being zinc and impurities accompanying it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5136684A JPS60194035A (en) | 1984-03-16 | 1984-03-16 | Corrosion resistant copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5136684A JPS60194035A (en) | 1984-03-16 | 1984-03-16 | Corrosion resistant copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60194035A JPS60194035A (en) | 1985-10-02 |
JPS6158540B2 true JPS6158540B2 (en) | 1986-12-12 |
Family
ID=12884938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5136684A Granted JPS60194035A (en) | 1984-03-16 | 1984-03-16 | Corrosion resistant copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60194035A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003239078A (en) * | 2001-12-12 | 2003-08-27 | Nippon Parkerizing Co Ltd | Surface treatment method for lead-containing copper alloy and member in contact with water made of the same copper alloy |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0768595B2 (en) * | 1991-11-14 | 1995-07-26 | 三宝伸銅工業株式会社 | Corrosion resistant copper base alloy material |
US5445687A (en) * | 1991-11-14 | 1995-08-29 | Toyo Valve Co., Ltd. | Hot working material of corrosion resistant copper-based alloy |
DE19722827A1 (en) * | 1997-05-30 | 1998-12-03 | Diehl Stiftung & Co | Cold formable lead-containing brass for sanitary piping |
JP2002155326A (en) * | 2000-03-27 | 2002-05-31 | Toto Ltd | Brass material and its manufacturing method |
JP4184357B2 (en) * | 2005-05-20 | 2008-11-19 | 京都ブラス株式会社 | Lead-free free-cutting brass alloy and method for producing the same |
CN103695700B (en) * | 2013-12-17 | 2015-04-15 | 江西鸥迪铜业有限公司 | Easily-cut tin-brass alloy and preparation method thereof |
CN106460135B (en) * | 2014-04-30 | 2018-05-15 | 株式会社开滋 | Product is soaked using the manufacture method and hot forging of the hot forging of brass and the valve, the fire hose that are shaped using the hot forging are first-class |
CN104032176B (en) * | 2014-06-23 | 2015-03-11 | 江西鸥迪铜业有限公司 | Low-lead brass alloy |
CN104451248A (en) * | 2014-12-12 | 2015-03-25 | 宁波展慈金属工业有限公司 | Environment-friendly ROHS high-precision precise copper alloy bar and preparation method thereof |
-
1984
- 1984-03-16 JP JP5136684A patent/JPS60194035A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003239078A (en) * | 2001-12-12 | 2003-08-27 | Nippon Parkerizing Co Ltd | Surface treatment method for lead-containing copper alloy and member in contact with water made of the same copper alloy |
Also Published As
Publication number | Publication date |
---|---|
JPS60194035A (en) | 1985-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2732350C (en) | An environment-friendly manganese brass alloy and manufacturing method thereof | |
JP2000119775A (en) | Lead-free free cutting copper alloy | |
JP5591661B2 (en) | Copper-based alloy for die casting with excellent dezincification corrosion resistance | |
WO2004022804A1 (en) | Copper base alloy, and cast ingot and parts to be contacted with liquid | |
JPS6158540B2 (en) | ||
CN104404293A (en) | Low-lead free-cutting anti-corrosion tin-brass alloy material | |
WO2006000307A2 (en) | Corrosion-resistant copper alloy containing magnesium and use thereof | |
Kundig et al. | Copper and copper alloys | |
CN111118336B (en) | Corrosion-resistant high-elasticity copper alloy plug bush material and preparation method thereof | |
JPS5838500B2 (en) | Dezincification corrosion resistant special brass | |
AU646183B2 (en) | Corrosion-resistant copper-based alloy | |
JP2000239765A (en) | Leadless corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and leadless corrosion resistant brass alloy for continuous casting or continuous cast product | |
US3703367A (en) | Copper-zinc alloys | |
JP2003277855A (en) | Lead-free, free-cutting brass alloy material and production method thereof | |
US4169729A (en) | Corrosion resistant copper base alloys for heat exchanger tube | |
JPS5925938A (en) | Free-cutting brass having resistance to dezincification corrosion and its production | |
US5445687A (en) | Hot working material of corrosion resistant copper-based alloy | |
WO2008093974A1 (en) | Free-cutting copper alloy | |
JP7183285B2 (en) | Materials processed from copper alloy | |
JP2841270B2 (en) | Copper base alloy excellent in corrosion resistance and hot workability and valve parts using the alloy | |
US2249740A (en) | Aluminum alloys | |
JPS6143419B2 (en) | ||
US2178580A (en) | Magnesium alloy | |
US3976478A (en) | Copper alloy of excellent corrosion resistance, mechanical strength and castability | |
KR20120042483A (en) | Brass alloy with corrosion resistance containing little lead |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |