JPS6158425B2 - - Google Patents

Info

Publication number
JPS6158425B2
JPS6158425B2 JP58181579A JP18157983A JPS6158425B2 JP S6158425 B2 JPS6158425 B2 JP S6158425B2 JP 58181579 A JP58181579 A JP 58181579A JP 18157983 A JP18157983 A JP 18157983A JP S6158425 B2 JPS6158425 B2 JP S6158425B2
Authority
JP
Japan
Prior art keywords
tcp
sintering
phase
quartz
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58181579A
Other languages
Japanese (ja)
Other versions
JPS6071567A (en
Inventor
Motozo Kawamura
Riichi Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58181579A priority Critical patent/JPS6071567A/en
Publication of JPS6071567A publication Critical patent/JPS6071567A/en
Publication of JPS6158425B2 publication Critical patent/JPS6158425B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

β―リン酸三カルシウム(以下β―TCPと略
記する)は人工骨として有望な材料である。この
材料に求められる重要な医学的要請の一つは高強
度を付与するということである。現在、国内外で
発表されているものは、曲げ強度で1000〜14000
Kgf/cm2の程度であるが本発明の方法では、それ
をはるかに凌ぐ高強度のものが得られる。 β―TCPの高強度焼結体を造るのに一番問題
になるのは、1180℃で起こるβ→α形の相転移現
象である。何故なら結晶密度が3.07から2.87へ下
がるため高密度のものが得られずしたがつて高強
度のものが得にくい。 本発明はβ―TCPの相転移を抑制する作用を
示す物質を探索し、その効果を詳細に調べる中で
シリカの相転移抑制効果を見出し、その製造条件
を明らかにした。 以下その製造方法について述べる。 1 β―TCP粉末の調製 現在発表されている高強度β―TCPの出発
原料粉末は水溶液沈澱法によつているが、本発
明の方法では乾式合成法(固相反応法)により
合成した。製造の手順を以下に述べる。 (1) リン酸水素カルシウム(CaHPO4
2H2O)を850℃で7時間加熱処理しβ―ピロ
リン酸カルシウム(β―Ca2P2O7)を造る。
これに炭酸カルシウム(CaCO3)を1:1の
モル比で加え均一に混合したものを1000〜
1100℃の温度範囲で24時間以上加熱してβ―
TCPの合成粉末を得る。 (2) β―TCP微粉末に相転移抑制剤としてシ
リカを1〜8%の範囲で加え、さらに焼結促
進剤としてβ―C2Pを添加して十分均一に混
合する。シリカとしては結晶質石英、非晶質
石英(石英ガラス)、あるいはコロイダルシ
リカ等を用いる。これを湿式あるいは乾式成
形によつて所望の形状に造り、1200〜1250℃
の温度で焼結せしめる。 次に本方法による試験結果について述べる。 添加用シリカとして結晶質石英を用い、β―
TCP粉末を1150〜1300℃に焼結しβからα相へ
の転移状況を調べた結果は以下のようである。但
し焼結促進剤としてβ―C2Pを3%添加した場合
の例である。
β-Tricalcium phosphate (hereinafter abbreviated as β-TCP) is a promising material for artificial bone. One of the important medical requirements for this material is that it should have high strength. Currently, the ones announced in Japan and overseas have a bending strength of 1000 to 14000.
Although the strength is on the order of Kgf/cm 2 , the method of the present invention provides a product with a strength far exceeding that. The biggest problem in producing high-strength sintered bodies of β-TCP is the β→α phase transition phenomenon that occurs at 1180°C. This is because the crystal density decreases from 3.07 to 2.87, making it difficult to obtain a high-density product and therefore difficult to obtain a high-strength product. The present invention searched for substances that have the effect of suppressing the phase transition of β-TCP, and through detailed investigation of its effects, discovered the phase transition suppressing effect of silica, and clarified the conditions for its production. The manufacturing method will be described below. 1. Preparation of β-TCP Powder Currently published starting material powders for high-strength β-TCP are based on an aqueous solution precipitation method, but in the method of the present invention, they were synthesized using a dry synthesis method (solid phase reaction method). The manufacturing procedure will be described below. (1) Calcium hydrogen phosphate ( CaHPO4
2H 2 O) is heat-treated at 850°C for 7 hours to produce β-calcium pyrophosphate (β-Ca 2 P 2 O 7 ).
Calcium carbonate (CaCO 3 ) was added to this at a molar ratio of 1:1 and mixed uniformly.
β-
Obtain TCP synthetic powder. (2) Add 1 to 8% of silica as a phase transition inhibitor to the β-TCP fine powder, and further add β-C 2 P as a sintering accelerator, and mix thoroughly and uniformly. As the silica, crystalline quartz, amorphous quartz (quartz glass), colloidal silica, or the like is used. This is formed into the desired shape by wet or dry molding, and heated to 1200 to 1250℃.
Sinter at a temperature of Next, we will discuss the test results using this method. Using crystalline quartz as additive silica, β-
The results of sintering TCP powder at 1150-1300℃ and examining the transition from β to α phase are as follows. However, this is an example in which 3% of β-C 2 P is added as a sintering accelerator.

【表】 表1に示すように無添加β―TCPでは1250℃
でほぼ完全にα相へ転移してしまう。これに対し
石英を添加した場合はα相の生成量は著しく低
い。特に5%添加が最も良い効果を示す。このこ
とは焼結密度にも直接影響しており、無添加の場
合では、最高密度は1200℃で2.87であつたが、5
%石英添加の焼結体では2.99という高い密度を示
した。このようにβ―TCPの相転移現象を高温
側へ移行させることにより焼結密度を高めその結
果高強度のβ―TCPが得られた。 純度の高いβ―TCPの最適焼結温度は1300〜
1350℃であるが、β―C2Pを適量添加すると最適
焼結温度を1200〜1250℃に引き下げることができ
る。一方石英添加による相転移抑制効果は1250℃
以下の温度範囲で有効であるので、焼結温度をコ
ントロールすることが必要である。β―C2Pの焼
結促進作用は、β―TCPと共融液を生成し、液
相焼結が起こることによるものであるが、またβ
―C2Pはβ―TCPに相当量固溶するので非常に都
合の良い焼結促進剤である。 表1の場合、石英5%添加、1200℃焼結により
得られたβ―TCP焼結体の曲げ強度は1730Kg
f/cm2を示した。これはβ―TCP焼結体が有す
る従来の水準をはるかに超えるものである。 相転移抑制剤として用いるシリカは、石英ガラ
ス、コロイダルシリカを用いても良いが、結晶質
石英の場合より効果が優れているという判定は得
られなかつた。 以下に実施例を示す。 実施例 1 既述した方法で合成したβ―TCP粉末に結晶
質石英微粉末を5%、及びβ―C2P粉末3%を添
加し湿式混合した後乾燥処理した。この粉末を
1ton/cm2の成形圧で長さ70mm、断面積6×6mmの
角柱状試料をプレス成形した。これを電気炉に
て、1時間200℃の速度で昇温し1200℃に達した
ら1時間保持した。このような条件で得られたβ
―TCP焼結体について、曲げ強度、かさ密度、
及び結晶相について調べ次の結果を得た。 吸水率:0.3% 曲げ強度:1730Kgf/cm2 かさ密度:2.99 α相の量:0% 実施例 2 既述した方法で合成したβ―TCP粉末に石英
ガラスの微粉末を8%、β―C2P粉末を3%それ
ぞれ添加した。試料の成形は実施例1と同じ方法
によつた。電気炉にて1時間200℃の速度で昇温
し1230℃で1時間保持した。得られた焼結体の性
質を以下に示す。 吸水率:0% 曲げ強度:1540Kgf/cm2 かさ密度:2.94 α相の量:12%
[Table] As shown in Table 1, 1250℃ for additive-free β-TCP
It almost completely transitions to the α phase. On the other hand, when quartz is added, the amount of α phase produced is extremely low. In particular, addition of 5% shows the best effect. This directly affects the sintered density; in the case of no additives, the maximum density was 2.87 at 1200℃, but
% quartz addition showed a high density of 2.99. In this way, by shifting the phase transition phenomenon of β-TCP to the high temperature side, the sintered density was increased, and as a result, high-strength β-TCP was obtained. The optimum sintering temperature for highly pure β-TCP is 1300~
The optimum sintering temperature is 1350°C, but by adding an appropriate amount of β-C 2 P, the optimum sintering temperature can be lowered to 1200-1250°C. On the other hand, the effect of suppressing phase transition by adding quartz is 1250℃
Since it is effective in the following temperature range, it is necessary to control the sintering temperature. The sintering promoting effect of β-C 2 P is due to the formation of a eutectic liquid with β-TCP and the occurrence of liquid phase sintering.
-C 2 P is a very convenient sintering accelerator because it dissolves in a considerable amount in β-TCP. In the case of Table 1, the bending strength of the β-TCP sintered body obtained by adding 5% quartz and sintering at 1200°C is 1730 kg.
f/cm 2 was shown. This far exceeds the conventional level of β-TCP sintered bodies. Although silica used as a phase transition inhibitor may be quartz glass or colloidal silica, it has not been determined that the effect is superior to that of crystalline quartz. Examples are shown below. Example 1 5% of crystalline quartz fine powder and 3% of β-C 2 P powder were added to β-TCP powder synthesized by the method described above, wet-mixed, and then dried. This powder
A prismatic sample with a length of 70 mm and a cross-sectional area of 6 x 6 mm was press-molded at a molding pressure of 1 ton/cm 2 . This was heated in an electric furnace at a rate of 200°C for 1 hour, and when it reached 1200°C, it was held for 1 hour. β obtained under these conditions
- Regarding TCP sintered bodies, bending strength, bulk density,
and the crystal phase and obtained the following results. Water absorption: 0.3% Bending strength: 1730 Kgf/cm 2 Bulk density: 2.99 Amount of α phase: 0% Example 2 8% quartz glass fine powder was added to β-TCP powder synthesized by the method described above, β-C 2 P powder was added at 3% each. The sample was molded in the same manner as in Example 1. The temperature was raised at a rate of 200°C for 1 hour in an electric furnace and held at 1230°C for 1 hour. The properties of the obtained sintered body are shown below. Water absorption rate: 0% Bending strength: 1540Kgf/cm 2 Bulk density: 2.94 Amount of α phase: 12%

Claims (1)

【特許請求の範囲】[Claims] 1 β―リン酸三カルシウム(β―3CaO・
P2O5、β―TCP略記する)に相転移抑制剤とし
てシリカ(SiO2)を1〜8%、また焼結促進剤と
してβ―ピロリン酸カルシウム(β―Ca2P2O7
β―C2Pと略記する)を1〜8%添加して均一に
混合したものを所定の形状に成形し、1200〜1250
℃の温度範囲で焼結することを特徴とするβ―
TCPの製造方法。
1 β-tricalcium phosphate (β-3CaO・
P 2 O 5 , β-TCP (abbreviated as β-TCP), 1 to 8% silica (SiO 2 ) as a phase transition inhibitor, and β-calcium pyrophosphate (β-Ca 2 P 2 O 7 , abbreviated as β-TCP) as a sintering accelerator.
A mixture of 1 to 8% of β-C 2 P (abbreviated as β-C 2 P) is added and mixed uniformly and molded into a predetermined shape.
β-, which is characterized by sintering in the temperature range of °C.
Method of manufacturing TCP.
JP58181579A 1983-09-29 1983-09-29 Manufacture of beta-tricalcium phosphate sintering material Granted JPS6071567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58181579A JPS6071567A (en) 1983-09-29 1983-09-29 Manufacture of beta-tricalcium phosphate sintering material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58181579A JPS6071567A (en) 1983-09-29 1983-09-29 Manufacture of beta-tricalcium phosphate sintering material

Publications (2)

Publication Number Publication Date
JPS6071567A JPS6071567A (en) 1985-04-23
JPS6158425B2 true JPS6158425B2 (en) 1986-12-11

Family

ID=16103270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58181579A Granted JPS6071567A (en) 1983-09-29 1983-09-29 Manufacture of beta-tricalcium phosphate sintering material

Country Status (1)

Country Link
JP (1) JPS6071567A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171265A (en) * 1984-02-15 1985-09-04 日本特殊陶業株式会社 Manufacture of high strength calcium phosphate sintered body
US5679294A (en) * 1994-03-02 1997-10-21 Kabushiki Kaisya Advance α-tricalcium phosphate ceramic and production method thereof

Also Published As

Publication number Publication date
JPS6071567A (en) 1985-04-23

Similar Documents

Publication Publication Date Title
Ryu et al. An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate
US3861935A (en) Synthetic crystalline beta-wallastonite product
US5652016A (en) Tetracalcium phosphate-based materials and processes for their preparation
US4149894A (en) Process for producing an apatite powder having improved sinterability
US5679294A (en) α-tricalcium phosphate ceramic and production method thereof
Durucan et al. Reactivity of α-tricalcium phosphate
JP2004083410A (en) New calcium phosphate cement composition and method of preparing the same
JPS6287406A (en) Production of beta-tricalcium phosphate
TWI573776B (en) Dicalcium phosphate ceramics, dicalcium phosphate/hydroxyapatite biphasic ceramics and method of manufacturing the same
KR101078335B1 (en) Process of producing geopolymer using sodium silicate and the geopolymer
JPS6158425B2 (en)
JPS6158422B2 (en)
US3676165A (en) Sand-lime bricks and process for making them
JPS62275007A (en) Ca4p2o9 powder for dental material and its production
CN110255938B (en) Calcium silicophosphate matrix powder and preparation method thereof, bone repair material and preparation method thereof
JPH06245992A (en) Precursor for production of artificial bone and production of artificial bone
SU1155574A1 (en) Ceramic material
JPS6366790B2 (en)
JP2800829B2 (en) Tricalcium phosphate sintered compact
JPS6144835B2 (en)
CN1176231A (en) Production method of slightly expanded Portland cement
JPS6221747B2 (en)
JPH0196006A (en) Production of tetracalcium phosphate
Konishi LOW-TEMPERATURE SYNTHESIS OF TRICALCIUM PHOSPHATE AND RELATED MATERIALS
JPH11322411A (en) Production of ceramic