JPS6158424B2 - - Google Patents

Info

Publication number
JPS6158424B2
JPS6158424B2 JP58098254A JP9825483A JPS6158424B2 JP S6158424 B2 JPS6158424 B2 JP S6158424B2 JP 58098254 A JP58098254 A JP 58098254A JP 9825483 A JP9825483 A JP 9825483A JP S6158424 B2 JPS6158424 B2 JP S6158424B2
Authority
JP
Japan
Prior art keywords
dielectric
present
composition
dielectric constant
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58098254A
Other languages
Japanese (ja)
Other versions
JPS59223271A (en
Inventor
Hiroshi Oochi
Yoichiro Yokoya
Junichi Kato
Masamitsu Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58098254A priority Critical patent/JPS59223271A/en
Publication of JPS59223271A publication Critical patent/JPS59223271A/en
Publication of JPS6158424B2 publication Critical patent/JPS6158424B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は誘電体磁器組成物、とくに酸化バリウ
ム(BaO)、酸化マグネシウム(MgO)、酸化ニ
オブ(Nb2O5)および酸化チタン(TiO2)の成分で
構成される誘電体共振器用磁器に関するものであ
る。 従来例の構成とその問題点 近年、波長が数cm以下のマイクロ波やミリ波
(以下これらをマイクロ波と総称する)を取扱う
高周波回路の技術の進展にともないこの回路を小
形化することが積極的に進められている。これま
ではこの高周波回路には空胴共振器、アンテナな
どが使用されてきたが、これらの大きさはマイク
ロ波の波長と同程度になるため、小形化に対する
障害となつていた。これを解決するために、誘電
率の大きい誘電体磁器を使用することによつて波
長そのものを短縮するという方法がとられてき
た。このような用途に適する材料としてはTiO2
系のものがよく使用され、たとえばTiO2―ZrO2
―SnO2系、CaTiO3―MgTiO3―La2O3―2TiO2
系、最近ではBa(Zn1/3Ta2/3)O3―Ba
(Zn1/3Nb2/3)O3系などの誘電体磁器が知られ
ている。しかしながら、これらの材料で誘電体共
振器を作つた場合には、比誘電率が30程度と低い
ため、たとえば共振周波数が約11GHzのX帯の
誘電体共振器では比誘電率εr=30の材料を使用
した場合には直径5.6mm、厚さ2.2mm程度の小さな
ユニツトになるが、周波数が下つて2GHz程度の
UHF帯での使用となると同じ比誘電率εr=30の
材料のときには直径30.7mm、厚さ12.3mm程度と形
状がいちぢるしく大きくなる。ここで使用する材
料の比誘電率εr=80程度に大きくできれば、そ
の大きさを直径18.8mm、厚さ7.5mm程度に小さく
することができるが、従来の材料ではこのような
要求を満足させることはできなかつた。 発明の目的 本発明は上記の欠点を改善するためになされた
ものであり、比誘電率(εr)と無負荷Q(Qu
の向上と共振周波数の温度係数(τf)が安定し
た値をもち、用途に応じてこの温度係数を広範囲
に変化させることのできる誘電体磁器を提供する
ことを目的とするものである。 発明の構成 本発明にかかる誘電体磁器組成物は、Ba
(Mg1/3Nb2/31-xTixO3で表わされる組成にお
いて、0<x≦0.5(モル分率)の範囲にある組
成物であり、かかる組成によつて上記目的を達成
できるものである。 実施例の説明 以下、その詳細につき、本発明の実施例ならび
に比較例をあげて説明する。 出発原料には化学的に高純度のBaCO3
MgO、Nb2O5、およびTiO2を所定の組成になる
よう秤量し、めのうボールを備えたゴム内張りの
ボールミルで純水とともに湿式混合した。この混
合物をボールミルからとり出して乾燥したのち、
空気中において1100℃の温度で2時間仮焼した。
仮焼物は純水とともに前記ボールミル中で湿式粉
砕した。粉砕泥しようを脱水乾燥したのち、粉末
にバインダーとして濃度6%のポリビニールアル
コール溶液8重量%添加して均質としたのち、32
メツシユのふるいを通して整粒した。整粒粉体は
金型と油圧プレスを用いて成形圧力800Kg/cm2
直径20mm、厚さ8約mmの円板に成形した。成形体
を高純度のアルミナさや鉢の中に入れ、組成に応
じて空気中において1200〜1600℃の範囲内の温度
で2時間保持して焼成し、下表に示す配合組成の
誘電体磁器を得た。この磁器素子を使用して誘電
体共振器法による測定から共振周波数と無負荷Q
との比誘電率を求めた。共振周波数の温度依存性
は−30℃から70℃の範囲で測定し温度係数τf
求めた。共振周波数は2〜4GHzであつた。それ
らの実験結果を表に示す。なお、表において*印
をした試料は本発明の範囲外の比較例であり、こ
れ以外の試料が本発明の範囲内の実施例である。
INDUSTRIAL APPLICATION FIELD The present invention relates to a dielectric ceramic composition, in particular a dielectric composed of barium oxide (BaO), magnesium oxide (MgO), niobium oxide (Nb 2 O 5 ) and titanium oxide (TiO 2 ). This relates to porcelain for resonators. Conventional configuration and its problems In recent years, with the advancement of high-frequency circuit technology that handles microwaves and millimeter waves (hereinafter collectively referred to as microwaves) with wavelengths of several centimeters or less, there has been an active effort to miniaturize these circuits. progress is being made. Until now, cavity resonators and antennas have been used in these high-frequency circuits, but their size is comparable to the wavelength of microwaves, which has been an obstacle to miniaturization. In order to solve this problem, a method has been taken in which the wavelength itself is shortened by using dielectric ceramics with a high dielectric constant. TiO 2 is a suitable material for such applications.
For example, TiO 2 -ZrO 2
―SnO 2 system, CaTiO 3 ―MgTiO 3 ―La 2 O 3 ―2TiO 2
system, recently Ba(Zn 1/3 Ta 2/3 )O 3 -Ba
Dielectric ceramics such as (Zn 1/3 Nb 2/3 ) O 3 type ceramics are known. However, when making a dielectric resonator using these materials, the relative permittivity is as low as about 30, so for example, an X-band dielectric resonator with a resonant frequency of about 11 GHz has a relative permittivity of ε r =30. If this material is used, it will be a small unit with a diameter of 5.6 mm and a thickness of 2.2 mm, but the frequency will be lowered to about 2 GHz.
When used in the UHF band, the material with the same dielectric constant ε r = 30 becomes significantly larger, with a diameter of 30.7 mm and a thickness of about 12.3 mm. If the dielectric constant ε r of the material used here could be increased to about 80, the size could be reduced to about 18.8 mm in diameter and 7.5 mm in thickness, but conventional materials cannot satisfy these requirements. I couldn't do that. Purpose of the Invention The present invention has been made to improve the above-mentioned drawbacks, and is aimed at improving the relative dielectric constant (ε r ) and the unloaded Q (Q u ).
The object of the present invention is to provide a dielectric ceramic that has a stable temperature coefficient (τ f ) of the resonant frequency and that can vary the temperature coefficient over a wide range depending on the application. Structure of the Invention The dielectric ceramic composition according to the present invention comprises Ba
(Mg 1/3 Nb 2/3 ) In the composition represented by 1-x TixO 3 , it is a composition in the range of 0<x≦0.5 (mole fraction), and the above objective can be achieved with such a composition. It is something. DESCRIPTION OF EXAMPLES Hereinafter, the details will be explained by giving examples of the present invention and comparative examples. Starting materials include chemically highly purified BaCO 3 ,
MgO, Nb 2 O 5 , and TiO 2 were weighed to give a predetermined composition and wet mixed with pure water in a rubber-lined ball mill equipped with an agate ball. After taking out this mixture from the ball mill and drying it,
It was calcined in air at a temperature of 1100°C for 2 hours.
The calcined product was wet-pulverized in the ball mill with pure water. After dehydrating and drying the crushed slurry, 8% by weight of a polyvinyl alcohol solution with a concentration of 6% was added to the powder as a binder to make it homogeneous.
The grains were sized through a mesh sieve. The sized powder was molded into a disk with a diameter of 20 mm and a thickness of about 8 mm using a mold and a hydraulic press at a molding pressure of 800 kg/cm 2 . The molded body is placed in a high-purity alumina pot and kept in the air at a temperature within the range of 1200 to 1600℃ for 2 hours depending on the composition and fired to produce dielectric porcelain with the composition shown in the table below. Obtained. Using this ceramic element, the resonant frequency and no-load Q were measured using the dielectric resonator method.
The relative dielectric constant was determined. The temperature dependence of the resonance frequency was measured in the range of -30°C to 70°C, and the temperature coefficient τ f was determined. The resonant frequency was between 2 and 4 GHz. The experimental results are shown in the table. Note that the samples marked with * in the table are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention.

【表】【table】

【表】 *印は本発明範囲外の比較例を示す。
**印は周波数1MHzでの値を示す。
表から明らかなように、本発明の範囲内の誘電
体磁器はマイクロ波周波数帯において比誘電率を
大きくすることができるとともに無負荷Qも大き
い値を示し、しかも安定した温度特性を示してい
る。したがつて、本発明の誘電体磁器は発振器や
共振器の温度依存性を安定化するのに有用であ
り、とくに比誘電率が大きいことからUHF帯で
の使用に適し、小形で高性能の電子回路部品を作
ることができる。 本発明の組成範囲を限定した理由を説明する
と、TiO2量(x)が0.5モル分率を超える組成の
磁器では比誘電率の向上はみられるが、マイクロ
周波数帯での共振が微弱となり、無負荷Qの低下
がいちじるしくなるため、本発明の範囲から除い
た。またx=0の磁器は比誘電率が小さくて、本
発明の目的に合致しないために、本発明の範囲か
ら除いた。 発明の効果 本発明の誘電体磁器組成物はマイクロ波周波数
帯において比誘電率が大きく、無負荷Qが大き
く、さらに共振周波数の温度係数が安定した値を
示すので、発振器や共振器などの温度依存性を安
定化するのに有用である。また、比誘電率が大き
いことからUHF帯での使用に適し、小形で高性
能の電子回路部品を作ることができる。さらに、
材料の組成を変えることによつて所望の共振周波
数の温度係数を選択することができるので、誘電
体共振器を組立てたとき、周囲の金属板による温
度特性におよぼす影響をなくする温度補償作用を
もたせることができる。また、本発明の誘電体磁
器組成物は、誘電体共振器のみならず、マイクロ
波用の基板や誘電体調整棒などの用途にも有用な
素材を提供することができ、工業的に利用価値の
大きいものである。
[Table] *marks indicate comparative examples outside the scope of the present invention.
**marks indicate values at a frequency of 1MHz.
As is clear from the table, the dielectric ceramic within the scope of the present invention can have a large dielectric constant in the microwave frequency band, exhibits a large no-load Q value, and exhibits stable temperature characteristics. . Therefore, the dielectric ceramic of the present invention is useful for stabilizing the temperature dependence of oscillators and resonators, and is particularly suitable for use in the UHF band due to its large dielectric constant, and is a compact and high-performance device. Can make electronic circuit parts. To explain the reason why the composition range of the present invention is limited, porcelain with a composition in which the amount of TiO 2 (x) exceeds 0.5 mole fraction shows an improvement in the dielectric constant, but the resonance in the micro frequency band becomes weak. Since the drop in the no-load Q is noticeable, it is excluded from the scope of the present invention. Furthermore, porcelain with x=0 has a small dielectric constant and does not meet the purpose of the present invention, and is therefore excluded from the scope of the present invention. Effects of the Invention The dielectric ceramic composition of the present invention has a large dielectric constant in the microwave frequency band, a large no-load Q, and a stable temperature coefficient of the resonant frequency. Useful for stabilizing dependencies. Additionally, due to its high dielectric constant, it is suitable for use in the UHF band, and can be used to create small, high-performance electronic circuit components. moreover,
By changing the composition of the material, the temperature coefficient of the desired resonant frequency can be selected, so when a dielectric resonator is assembled, it is possible to create a temperature compensation effect that eliminates the influence of the surrounding metal plates on the temperature characteristics. It can be made to stand. In addition, the dielectric ceramic composition of the present invention can provide a material useful not only for dielectric resonators but also for microwave substrates, dielectric adjustment rods, etc., and has industrial utility value. This is a large one.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化バリウムと酸化マグネシウムと酸化ニオ
ブと酸化チタンとからなり、その組成式をBa
(Mg1/3Nb2/31-xTixO3と表わしたとき、その
成分組成がモル分率で0<x≦0.5の範囲にある
ことを特徴とする誘電体磁器組成物。
1 Consists of barium oxide, magnesium oxide, niobium oxide, and titanium oxide, and its composition formula is Ba.
(Mg 1/3 Nb 2/3 ) 1-x TixO 3 A dielectric ceramic composition characterized in that its component composition is in the range of 0<x≦0.5 in molar fraction.
JP58098254A 1983-06-01 1983-06-01 Dielectric ceramic composition Granted JPS59223271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58098254A JPS59223271A (en) 1983-06-01 1983-06-01 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098254A JPS59223271A (en) 1983-06-01 1983-06-01 Dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS59223271A JPS59223271A (en) 1984-12-15
JPS6158424B2 true JPS6158424B2 (en) 1986-12-11

Family

ID=14214819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098254A Granted JPS59223271A (en) 1983-06-01 1983-06-01 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS59223271A (en)

Also Published As

Publication number Publication date
JPS59223271A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
JPS6141863B2 (en)
JPH0126123B2 (en)
JPH0952762A (en) Aluminous ceramic composition
JPS6056306A (en) Dielectric porcelain composition
JPS6236325B2 (en)
JPS6348132B2 (en)
JPS6158424B2 (en)
JPH0372165B2 (en)
JPS5860668A (en) Dielectric ceramic composition
JPS6343338B2 (en)
JPS58126610A (en) Dielectric porcelain composition
JPS6117083B2 (en)
JPS5951088B2 (en) dielectric porcelain material
JPS6112865B2 (en)
JPS6141860B2 (en)
JPH0253884B2 (en)
JPS6348131B2 (en)
JPH0346923B2 (en)
JPH0952760A (en) Dielectric ceramic composition
JPS6348133B2 (en)
JPS6256606B2 (en)
JPH0253883B2 (en)
JPS6256607B2 (en)
JPS5951095B2 (en) dielectric porcelain composition
JPS6151703A (en) Dielectric porcelain composition