JPS6158405B2 - - Google Patents

Info

Publication number
JPS6158405B2
JPS6158405B2 JP4179A JP4179A JPS6158405B2 JP S6158405 B2 JPS6158405 B2 JP S6158405B2 JP 4179 A JP4179 A JP 4179A JP 4179 A JP4179 A JP 4179A JP S6158405 B2 JPS6158405 B2 JP S6158405B2
Authority
JP
Japan
Prior art keywords
low
glass
eucryptite
expansion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4179A
Other languages
Japanese (ja)
Other versions
JPS5595615A (en
Inventor
Akio Takami
Kazuo Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP4179A priority Critical patent/JPS5595615A/en
Priority to US06/077,810 priority patent/US4310598A/en
Publication of JPS5595615A publication Critical patent/JPS5595615A/en
Priority to US06/301,860 priority patent/US4352889A/en
Priority to US06/386,811 priority patent/US4374942A/en
Publication of JPS6158405B2 publication Critical patent/JPS6158405B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、負膨張性粉末材料及びこれを含有す
る改良された低膨張封着用組成物に関し特に、
ICパツケージ等の封着に用いるためのものに関
する。 従来のハンダガラスを主体とする封着用組成物
は予め成型した物品、ガラス器具、金属体、セラ
ミツク材料、或いは半導体素子や半導体装置の部
材の封着、接着又は被覆のために用いられる。こ
のための封着用組成物に要求される性質は、低温
短時間の融着によつて低膨張性、高絶縁性、強固
な封着を形成すること及び適度な流動性を有する
ことである。例えば、ICパツケージ、表示管の
封着やブラウン管のフアーネスシールに使用され
る封着用ガラスは金属部材としてのコバール等の
低膨張金属と、A2O3を主成分とするセラミツ
ク基板を封着する必要から、A2O3の線熱膨張
係数よりも小さくコバールの線熱膨張係数よりも
大きな線熱膨張係数をもち400℃以下の転移点を
もち、電気絶縁性も良好なことが必要であつた。
然るに従来この用途に用いる低融点ガラスは何れ
も線熱膨張係数が大きいという欠点がある。 この欠点を除去するために、例えばLi2O−A
2O3−SiO2系或いはPbO−B2O3−TiO2系結晶性
ガラスを用い熱処理の際チタン酸鉛又はβ−ユー
クリプタイトの結晶を析出させる方法が試みられ
た。しかし前者はLiイオンのために封着部の絶縁
性が低下し、またその拡散により被覆又は封着さ
れた半導体素子の性能も劣化させる。他方後者の
系のガラスは封着温度が高く、比較的長時間の封
着処理を要するという欠点がある。 さらに別の手段として、PbO−B2O3−SiO2
又は、PbO−ZnO−B2O3系の結晶性ガラス粉末
に、線熱膨張係数減少の目的でジルコン、石英、
或いはβ−ユークリプタイト等の低膨張性フイラ
ーを添加することが米国特許第3250631号及び同
第3258350号に開示されている。その一例である
ジルコンは耐酸性は良好であるが、線熱膨張係数
が約45×10-7/℃であるため必要な線熱膨張係数
に下げるために添加量を多くする必要があり、必
然的に溶融温度が高くなる難点があつた。上記以
外のフイラー例として、チタン酸鉛は線熱膨張係
数は−60×10-7/℃と負の膨張を示し、又ガラス
の流動性を良好となるが誘電率が高くなる欠点が
あつた。更に別の一例であるβ−ユークリプタイ
トは線熱膨張係数−120×10-7/℃と最も小さ
く、このため僅かな添加量で線熱膨張係数を小さ
くする効果があり、且つ誘電率も低いがガラスに
添加した場合ガラス中に溶け込みガラスの流動性
を害し加えてβ−ユークリプタイトに含まれる
Li2Oがガラスの電気絶縁性を害する難があつ
た。 本発明は、上述の如き、従来技術の諸欠点を除
去することを目的とし、新規な負膨張性粉末材料
(フイラー)及びこのフイラーを用いた新規な封
着組成物を提供するものである。 即ち、本発明による負膨張性粉末材料は、酸化
チタン及び/又は酸化ジルコニウムからなる厚さ
1ミクロン以下の表面被膜をβ−ユークリプタイ
ト粉末表面に有することを特徴とする。さらに、
本発明による低膨張性封着用組成物は、上記負膨
張性材料粉末30重量%以下含み、残部を本質上低
融点ガラスとするものである。この低融点ガラス
に代えて、公知の合成樹脂を用いることによつて
も低膨張性封着用組成物或いは複合材料を得るこ
とができる。 本発明による負膨張性粉末材料は、公知の方法
で得られるβ−ユークリプタイト結晶粉末の、目
的に応じた適度の粒度のものにTiO2及び/又は
ZrO2の被膜を1μ以下、好ましくは0.2〜0.8μの
厚さに形成して得られる。上記β−ユークリプタ
イト結晶粉末の好ましい粒度は、低膨張封着用ガ
ラスのフイラーとして用いる場合約5〜25μであ
るが、合成樹脂封着剤のフイラーの場合にもほぼ
同様であり、他の用途には適宜選択できる。 TiO2及び/又はZrO2被膜の形成は、Ti或いは
Zrの有機化合物をβ−ユークリプタイト粉末粒子
上に分解生成させて得ることができる。TiO2
膜の形成は、Tiの有機化合物として例えばオル
ソチタン酸イソプロピル又はチタンイソプロポキ
シドを用い、前者のとき、水蒸気下で加水分解さ
せつつβ−ユークリプタイト粉末と接触させた
後、約600℃で熱処理することにより形成され
る。本発明はその他の公知のチタン有機化合物と
してアシレート或いはキレートを含むものでもよ
く、その被膜形成方法は、熱分解、反応その他
CVD、化学メツキ等によることもできる。 ZrO2被膜形成のためのZr有機化合物としては
Zrnプロポキシドを用いて水蒸気で加水分解しつ
つ、β−ユークリプタイト粉末粒子と接触させ被
着後約600℃に加熱処理してZrO2被膜を得ること
ができる。その他の有機ジルコネートとしてはア
シレート、キレートを含むものでもよい。 上述の如くして形成するTiO2或いはZrO2被膜
は、通例夫々単独に形成するが、重層または混合
して形成することを妨げない。 1μ以下の厚さのTiO2及び/又はZrO2被膜を
表面に形成したβ−ユークリプタイト粉末は、β
−ユークリプタイトの負膨張係数に近い膨張係数
を有し、この粉末を低融点封着ガラスに30重量%
以下混合したとき、該ガラスの膨張係数を顕著に
低下させる。TiO2又はZrO2被膜は、ガラス中で
安定であり封着ガラス中へのβ−ユークリプタイ
ト中のLiの拡散を有効に防止し、隔離膜としての
機能を有する。このため、封着用組成物の絶縁抵
抗も高く保たれ、特にバイアステストにおいて
は、無被膜のβ−ユークリプタイトを用いた組成
物に比して4桁以上高い値を示す。 なお、TiO2膜はPbO−B2O3系ガラス中のPbO
と反応して一部誘電率を増加しない程度の微量の
PbTiO3を生成し、これも熱膨張と流動性に良好
な一定の帰与を与えるものと推定される。 但し、流動性を加味した観点からは、被膜の厚
さは約0.8μ以下が好ましく、絶縁性も考慮する
と0.4〜0.8μの厚さが好ましい。 本発明は、上述のTiO2及び/又はZrO2被膜β
−ユークリプタイト粉末材料を混合する低融点封
着ガラスとしては、公知のもののうち、PbO及び
B2O3の合量70重量%以上のものを用いることが
できる。その他、下記の条件に適合する限りにお
いて、特公昭49−4525明細書に記載の公知封着用
ガラスをも用いることができる。 即ち、本発明においては、30〜250℃の間の線
膨張係数が80〜130×10-7/℃-1の範囲にあるガ
ラスを用いることが目的に適し、このようなガラ
スとしては約250〜400℃に転移点を有する低融点
ガラスが知られている。 前記PbO系ガラスとして好適な一例は、PbO75
〜82、B2O36.5〜12、ZnO7〜14、SiO21.5〜3.0、
2O30〜3(重量%)のものである。 本発明は、さらに、本発明の負膨張性粉末材料
を、公知の合成樹脂に配合することにより、新規
な低膨張性材料及び封着用組成物を提供する。 プラスチツクパツケージ等に用いられる樹脂と
しては、ビスフエノール系エポキシ樹脂あるい
は、シリコン樹脂等が有り、それらの樹脂に加え
るフイラーの効果としては、離型性、耐熱性向
上、成形性向上、材料費の節約(樹脂材料は高価
な為)等が挙げられる。フイラーの添加量として
は、一般に50wt%以内である。 以下に本発明の好ましい実施例を記す。 実施例 1 Li2CO3、A2O3及びSiO2の各原料をLi2O:A
2O3:SiO2の分子比が1:1:2になるように
配合しアルミナるつぼにて1400℃の温度にて3時
間保ち溶融したのち冷却しフリツトにして900℃
の温度に5時間再度熱処理し、結晶化させてβ−
ユークリプタイト結晶化物を製作した。これをボ
ールミルで粉砕し平均粒径約10μのβ−ユークリ
プタイト粉末とした。次に上記β−ユークリプタ
イト粉末と共にオルソチタン酸イソプロピルを水
蒸気中において混合撹拌して加水分解させ、チタ
ン酸をβ−ユークリプタイト表面に析着させた。
その後600℃1時間熱処理してTiO2被膜を形成し
た。その厚さは第1表に示す通りである。次に、
TiO2被覆粉末をPbO78、B2O316、A2O33、
SiO23(重量%)の組成を有する低融点ガラス
(Tg=305℃、α=113×10-7/℃-1)に20重量%
混合して流動性をもつに至るまで加熱して冷却後
の諸特性を測定しその結果を第1表に示す。 但し、TiO2の膜が特に薄いものは、オルソチ
タン酸イソプロピルを80℃に加熱しN2ガスをキ
ヤリアーとして蒸気化ないし霧化し、水蒸気と混
合しつつβ−ユークリプタイト粉末に接触させ
た。 実施例 2 実施例1と同様にして得たβ−ユークリプタイ
トの粉末(粒度約10μ)と共にZr・n・プロポキ
シドを水蒸気中において混合撹拌しつつ、加水分
解させ、その後600℃1時間熱処理してZrO2被膜
を形成した。このZrO2被膜粉末を実施例1と同
一のガラスに20重量%混合して流動性をもつに至
る迄加熱して冷却後、諸特性を測定しその結果を
第2表に示す。
The present invention particularly relates to a negative expansion powder material and an improved low expansion sealing composition containing the same.
Relates to products used for sealing IC packages, etc. Conventional sealing compositions based on solder glass are used for sealing, adhering, or coating preformed articles, glass appliances, metal bodies, ceramic materials, or members of semiconductor elements and semiconductor devices. The properties required of the sealing composition for this purpose are low expansion, high insulation, and the ability to form a strong seal by low-temperature and short-time fusion, as well as appropriate fluidity. For example, sealing glass used for sealing IC packages, display tubes, and furnace seals for cathode ray tubes seals a low expansion metal such as Kovar as a metal member and a ceramic substrate whose main component is A 2 O 3 . Therefore, it is necessary to have a coefficient of linear thermal expansion smaller than that of A 2 O 3 and larger than that of Kovar, a transition point of 400°C or less, and good electrical insulation properties. It was hot.
However, all the low melting point glasses conventionally used for this purpose have a drawback of having a large coefficient of linear thermal expansion. To eliminate this drawback, e.g. Li 2 O-A
Attempts have been made to use 2O3 - SiO2- based or PbO- B2O3 - TiO2 - based crystalline glass to precipitate lead titanate or β-eucryptite crystals during heat treatment. However, in the former case, the insulation of the sealed portion is reduced due to Li ions, and the performance of the covered or sealed semiconductor element is also deteriorated due to the diffusion of the Li ions. On the other hand, the latter type of glass has the disadvantage that its sealing temperature is high and requires a relatively long sealing process. As another means , zircon , quartz , or
Alternatively, the addition of a low expansion filler such as β-eucryptite is disclosed in US Pat. Nos. 3,250,631 and 3,258,350. Zircon, one example, has good acid resistance, but its linear thermal expansion coefficient is approximately 45×10 -7 /°C, so it is necessary to increase the amount added to lower the linear thermal expansion coefficient to the required value. The problem was that the melting temperature was high. As an example of a filler other than the above, lead titanate exhibits a negative linear thermal expansion coefficient of -60×10 -7 /℃, and although it improves the fluidity of glass, it has the disadvantage of a high dielectric constant. . β-Eucryptite, which is another example, has the smallest linear thermal expansion coefficient of -120×10 -7 /°C, and therefore has the effect of reducing the linear thermal expansion coefficient with a small amount added, and also has a low dielectric constant. Although it is low, when added to glass, it dissolves into the glass, impairs the fluidity of the glass, and is included in β-eucryptite.
There was a problem that Li 2 O impairs the electrical insulation properties of the glass. The present invention aims to eliminate the various drawbacks of the prior art as described above, and provides a new negative expansion powder material (filler) and a new sealing composition using this filler. That is, the negative expansion powder material according to the present invention is characterized by having a surface coating of titanium oxide and/or zirconium oxide with a thickness of 1 micron or less on the surface of the β-eucryptite powder. moreover,
The low-expansion sealing composition according to the present invention contains 30% by weight or less of the above-mentioned negative-expansion material powder, and the remainder is essentially low-melting glass. A low-expansion sealing composition or composite material can also be obtained by using a known synthetic resin instead of this low-melting glass. The negative expansion powder material according to the present invention is a β-eucryptite crystal powder obtained by a known method, which has an appropriate particle size depending on the purpose, and is mixed with TiO 2 and/or
It is obtained by forming a ZrO 2 coating to a thickness of 1 μm or less, preferably 0.2 to 0.8 μm. The preferred particle size of the β-eucryptite crystal powder is approximately 5 to 25μ when used as a filler for low-expansion sealing glass, but it is approximately the same when used as a filler for synthetic resin sealants, and for other uses. can be selected as appropriate. Formation of TiO 2 and/or ZrO 2 coating is performed using Ti or
It can be obtained by decomposing an organic compound of Zr on β-eucryptite powder particles. The TiO 2 film is formed using, for example, isopropyl orthotitanate or titanium isopropoxide as the organic compound of Ti, and in the case of the former, it is hydrolyzed under water vapor and brought into contact with β-eucryptite powder, and then about 600 It is formed by heat treatment at ℃. The present invention may include other known titanium organic compounds such as acylates or chelates, and the coating may be formed by thermal decomposition, reaction, or other methods.
CVD, chemical plating, etc. can also be used. As a Zr organic compound for forming ZrO2 film,
A ZrO 2 film can be obtained by contacting β-eucryptite powder particles with Zrn propoxide while hydrolyzing it with water vapor, and heat-treating it at about 600° C. after deposition. Other organic zirconates may include acylates and chelates. The TiO 2 or ZrO 2 coatings formed as described above are usually formed individually, but they may be formed in layers or in a mixture. β-eucryptite powder with a TiO 2 and/or ZrO 2 film formed on the surface with a thickness of 1μ or less is β-eucryptite powder.
- Has an expansion coefficient close to the negative expansion coefficient of eucryptite, and 30% by weight of this powder is applied to low melting point sealing glass.
When mixed below, the expansion coefficient of the glass is significantly lowered. The TiO 2 or ZrO 2 film is stable in the glass, effectively prevents the diffusion of Li in β-eucryptite into the sealing glass, and functions as an isolation film. Therefore, the insulation resistance of the sealing composition is maintained high, and in particular, in a bias test, it exhibits a value that is four orders of magnitude higher than that of a composition using uncoated β-eucryptite. Note that the TiO 2 film is composed of PbO in PbO−B 2 O 3 glass.
A trace amount that does not increase the dielectric constant by reacting with
It is assumed that PbTiO 3 is produced, which also gives a good constant contribution to thermal expansion and fluidity. However, from the viewpoint of fluidity, the thickness of the coating is preferably about 0.8μ or less, and from the viewpoint of insulation, the thickness is preferably 0.4 to 0.8μ. The present invention provides the above-mentioned TiO 2 and/or ZrO 2 coating β
- Among the known low melting point sealing glasses mixed with eucryptite powder material, PbO and
A total amount of B 2 O 3 of 70% by weight or more can be used. In addition, the known sealing glass described in Japanese Patent Publication No. 49-4525 can also be used as long as it meets the following conditions. That is, in the present invention, it is suitable to use glass whose linear expansion coefficient is in the range of 80 to 130×10 -7 /°C -1 between 30 and 250°C, and such glass has a linear expansion coefficient of about 250 Low melting point glasses with transition points at ~400°C are known. A suitable example of the PbO glass is PbO75
~82, B2O3 6.5~ 12 , ZnO7~14, SiO2 1.5~3.0,
A 2 O 3 0 to 3 (% by weight). The present invention further provides a novel low-expansion material and a sealing composition by blending the negative-expansion powder material of the present invention with a known synthetic resin. Resins used for plastic packages include bisphenol epoxy resins and silicone resins, and the effects of fillers added to these resins include improved mold release, heat resistance, moldability, and material cost savings. (because resin materials are expensive), etc. The amount of filler added is generally within 50 wt%. Preferred embodiments of the present invention are described below. Example 1 Each raw material of Li 2 CO 3 , A 2 O 3 and SiO 2 was converted into Li 2 O:A
2 O 3 :SiO 2 was mixed in a molecular ratio of 1:1:2, kept in an alumina crucible at a temperature of 1400℃ for 3 hours, melted, then cooled and fritted to 900℃.
Heat treatment was performed again at a temperature of 5 hours to crystallize β-
A eucryptite crystallized product was produced. This was ground in a ball mill to obtain β-eucryptite powder with an average particle size of about 10μ. Next, isopropyl orthotitanate was mixed and stirred in steam with the β-eucryptite powder to cause hydrolysis, and titanic acid was deposited on the β-eucryptite surface.
Thereafter, it was heat treated at 600°C for 1 hour to form a TiO 2 film. Its thickness is as shown in Table 1. next,
TiO 2 coated powder PbO78, B 2 O 3 16, A 2 O 3 3,
20% by weight in a low melting point glass (Tg=305℃, α=113× 10-7 /℃ -1 ) with a composition of SiO 2 3 (wt%)
The mixture was mixed and heated until it became fluid, and after cooling, various properties were measured, and the results are shown in Table 1. However, when the TiO 2 film was particularly thin, isopropyl orthotitanate was heated to 80° C., vaporized or atomized using N 2 gas as a carrier, and brought into contact with the β-eucryptite powder while being mixed with water vapor. Example 2 Zr.n.propoxide was mixed and stirred in steam with β-eucryptite powder (particle size approximately 10μ) obtained in the same manner as in Example 1, and hydrolyzed, followed by heat treatment at 600°C for 1 hour. to form a ZrO 2 film. This ZrO 2 coated powder was mixed in an amount of 20% by weight with the same glass as in Example 1, heated until it became fluid, and after cooling, various properties were measured and the results are shown in Table 2.

【表】【table】

【表】【table】

【表】 以上詳述の如く、本発明の負膨張性粉末材料
は、低膨張封着組成物(又はシール剤)として
ICパツケージのモールド又は封着用に極めて有
用である。即ち、ICパツケージに用いた場合、
コバール、セラミツク部及びシリコン素子との適
合性が良くなり、β−ユークリプタイト中のLiイ
オンのガラスへの拡散を抑止することによりリー
ド間の絶縁抵抗もバイアス下で劣化せず、同様の
理由でガラスの流動性も改善される。このため、
本発明は従来実用化困難であつたβ−ユークリプ
タイトを負膨張性フイラーとして利用可能にし、
このフイラーは例えばPbTiO3と比較すると誘電
率が低いので封着組成物全体の誘電率も下げるこ
とが可能となつた。
[Table] As detailed above, the negative expansion powder material of the present invention can be used as a low expansion sealing composition (or sealant).
Extremely useful for molding or sealing IC packages. That is, when used in an IC package,
The compatibility with Kovar, the ceramic part, and the silicon element is improved, and by suppressing the diffusion of Li ions in β-eucryptite into the glass, the insulation resistance between the leads does not deteriorate under bias, for the same reason. This also improves the fluidity of the glass. For this reason,
The present invention makes it possible to utilize β-eucryptite, which was previously difficult to put into practical use, as a negative expansion filler.
Since this filler has a lower dielectric constant than, for example, PbTiO 3 , it has become possible to lower the dielectric constant of the entire sealing composition.

Claims (1)

【特許請求の範囲】 1 酸化チタン及び/又は酸化ジルコニウムから
なる厚さ1ミクロン以下の表面被膜をβ−ユーク
リプタイト粉末表面に有することを特徴とする負
膨張性粉末材料。 2 酸化チタン及び/又は酸化ジルコニウムから
なる厚さ1ミクロン以下の表面被膜を有する負膨
張性粉末材料30重量%以下を含み、残部が30〜
250℃間の線膨張係数80〜130×10-7-1の低融点
ガラスから本質上成ることを特徴とする低膨張封
着用組成物。 3 前記低融点ガラスが転移点250〜400℃を有す
ることを特徴とする特許請求の範囲第2項記載の
低膨張封着用組成物。 4 前記低融点ガラスが、PbO及びB2O3合量で
70重量%以上を含むガラスであることを特徴とす
る特許請求の範囲第2項記載の低膨張封着用組成
物。 5 酸化チタン及び/又は酸化ジルコニウムから
なる厚さ1ミクロン以下の表面被膜を有するβ−
ユークリプタイト50重量%以下を含み、残部がビ
スフエノール系エポキシ樹脂又はシリコン樹脂か
ら本質上成ることを特徴とする低膨張封着用組成
物。
[Scope of Claims] 1. A negative expansion powder material characterized by having a surface coating of titanium oxide and/or zirconium oxide with a thickness of 1 micron or less on the surface of β-eucryptite powder. 2 Contains up to 30% by weight of a negative expansion powder material having a surface coating of titanium oxide and/or zirconium oxide with a thickness of 1 micron or less, and the balance is 30 to 30% by weight.
1. A low-expansion sealing composition essentially consisting of a low-melting glass having a linear expansion coefficient of 80 to 130×10 -7 °C -1 between 250 °C and 250 °C. 3. The low expansion sealing composition according to claim 2, wherein the low melting point glass has a transition point of 250 to 400°C. 4 The low melting point glass has a total amount of PbO and B 2 O 3
3. The low expansion sealing composition according to claim 2, which is glass containing 70% by weight or more. 5 β- having a surface coating of titanium oxide and/or zirconium oxide with a thickness of 1 micron or less
1. A low expansion sealing composition comprising 50% by weight or less of eucryptite, with the remainder essentially consisting of a bisphenol epoxy resin or a silicone resin.
JP4179A 1978-09-21 1979-01-05 Nonexpansible powder material and seal bonding composition Granted JPS5595615A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4179A JPS5595615A (en) 1979-01-05 1979-01-05 Nonexpansible powder material and seal bonding composition
US06/077,810 US4310598A (en) 1978-09-21 1979-09-21 Coated glass powder having a negative coefficient of linear thermal expansion and a composition containing the same
US06/301,860 US4352889A (en) 1978-09-21 1981-09-14 Tin oxide, titanium oxide and/or zirconium oxide coated β-eucryptite particles having a negative coefficient of linear thermal expansion and sealing compositions containing said particles
US06/386,811 US4374942A (en) 1978-09-21 1982-06-09 Powder having a negative coefficient of linear thermal expansion and a composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4179A JPS5595615A (en) 1979-01-05 1979-01-05 Nonexpansible powder material and seal bonding composition

Publications (2)

Publication Number Publication Date
JPS5595615A JPS5595615A (en) 1980-07-21
JPS6158405B2 true JPS6158405B2 (en) 1986-12-11

Family

ID=11463218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4179A Granted JPS5595615A (en) 1978-09-21 1979-01-05 Nonexpansible powder material and seal bonding composition

Country Status (1)

Country Link
JP (1) JPS5595615A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950768U (en) * 1982-09-28 1984-04-04 ダイニツク株式会社 ink ribbon cassette
JP2020201383A (en) * 2019-06-10 2020-12-17 コニカミノルタ株式会社 Electrophotographic photoreceptor, electrophotographic image forming method, and electrophotographic image forming apparatus

Also Published As

Publication number Publication date
JPS5595615A (en) 1980-07-21

Similar Documents

Publication Publication Date Title
US5188990A (en) Low temperature sealing glass compositions
US5336644A (en) Sealing glass compositions
US3951669A (en) Fusion seals and sealing compositions for their production
US4002799A (en) Glass sealed products
US4542105A (en) Glass composition for covering semiconductor element
US3542572A (en) Germania-silica glasses
US4310598A (en) Coated glass powder having a negative coefficient of linear thermal expansion and a composition containing the same
US4710479A (en) Sealing glass composition with lead calcium titanate filler
US3408212A (en) Low melting oxide glass
JPH04288389A (en) Sealing material and mil additive for use therefor
JPH02267137A (en) Sealing material
JPS6158405B2 (en)
JP2743332B2 (en) Sealing material
US3307958A (en) Ceramic material
US3841883A (en) Bi{11 O{11 {11 CONTAINING Pbo-Zno-B{11 O{11 {11 LOW TEMPERATURE SEALING GLASS
US3535133A (en) Alkali-free electronic glass and method of manufacture
JPS59164649A (en) Glass composition for sealing
US3674520A (en) Solder glass for adhering sealing or coating
US3425817A (en) Low melting point devitrified glass and method
JPS6042246A (en) Glass for substrate
JP3125971B2 (en) Low temperature sealing composition
JPS6031104B2 (en) Glass for silicon semiconductor device packaging
JPS6160583B2 (en)
JPH02302337A (en) Sealing material
JPS6146419B2 (en)