JPS6158393A - Color image pick up device - Google Patents

Color image pick up device

Info

Publication number
JPS6158393A
JPS6158393A JP59180977A JP18097784A JPS6158393A JP S6158393 A JPS6158393 A JP S6158393A JP 59180977 A JP59180977 A JP 59180977A JP 18097784 A JP18097784 A JP 18097784A JP S6158393 A JPS6158393 A JP S6158393A
Authority
JP
Japan
Prior art keywords
color
signal
color difference
circuit
color temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59180977A
Other languages
Japanese (ja)
Inventor
Takashi Kitagawa
喜多川 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59180977A priority Critical patent/JPS6158393A/en
Publication of JPS6158393A publication Critical patent/JPS6158393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To reduce the number of necessary color temperature conversion filters and reduce a size of a color image pick up device by correcting the deterioration in color reproducibility owing to a color temperature change of an illumination light source electrically. CONSTITUTION:First and second color difference signal B-Y, R-Y are outputted by a photograph component 41, and a modulation component is separated in a BPF 52 and a color difference signal 42 is remodulated by a wave detector 53 to add to a white balance circuit 55. The reduced output component of a element 41 is taken out in a LPF 54 and added to a signal 42 through the circuit 55 and a color difference signal 53 is added to a synchronized circuit 56. The circuit 56 delays any of two color difference signals outputted alternately from the circuit 55 each scanning line by 1H. so that first and second color difference signals 44, 45 can be obtained at the same time. The scale of, these signals 44, 45 are corrected by gain control circuits 57, 58 individually. The circuits 57, 58 are controlled by the change of color temperature from a color temperature detecting circuit 20. A carrier from a terminal 29 and outputs from the circuits 57, 58 are added to a modulator 63 to reduce the necessary color temperature conversion filter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は力2−撮像装置、特に照明光源の差異による色
再現性の劣化を補正することのできるカラー撮像装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a power-2 imaging device, and particularly to a color imaging device capable of correcting deterioration in color reproducibility due to differences in illumination light sources.

(従来技術とその問題点) CODなどの固体撮像素子1個を用いたカラー撮像装置
においては、単一の固体撮像素子の出力信号から輝度を
表わす信号と色情報を表わす複数の信号を得るように構
成されている。色情報を表わす信号は2つの色信号の差
信号あるいは和信号として得られるようになされておシ
、これから複合カラー映像信号を形成するのに必要な2
つの色差信号を得ている。例えば着根らによシテレビジ
ゴン学会技術報告昭和58年3月VOL6. NO45
゜23ページから28ページに「フィールド読出し方式
CODカメラのカラー画像評価」と題して発表された論
文においては、几を赤、Gを緑、Bを背の信号成分とす
ると第4図に示される配列の色フィルタを用いて第nラ
インから2R−G、第n+1ラインから28−Gの2つ
の色差信号を線順次に取シ出し、これらの一方をIH遅
延させることで同時化するカラー撮像装置が示されてい
る。
(Prior art and its problems) In a color imaging device using one solid-state imaging device such as a COD, a signal representing brightness and multiple signals representing color information are obtained from the output signal of a single solid-state imaging device. It is composed of The signal representing color information is obtained as a difference signal or a sum signal of two color signals, and from this, two signals necessary to form a composite color video signal are obtained.
Two color difference signals are obtained. For example, Tsukine et al.'s Telescope Society Technical Report March 1982 VOL6. NO45
゜In the paper published on pages 23 to 28 entitled "Color image evaluation of field readout type COD camera", it is shown in Figure 4 that if 几 is red, G is green, and B is the back signal component, A color imaging device that sequentially extracts two color difference signals, 2R-G from the n-th line and 28-G from the n+1-th line, using an array of color filters, and synchronizes them by delaying one of them by IH. It is shown.

このような方式のカラー撮像装置においては、色差信号
に含まれるR、 G、 Hの各信号成分比率は固体撮像
素子上の色フィルタの分光特性および照明光源の色温度
によって決められている。色差信号に含まれる几、  
G、  B各信号成分比率は総合撮像特性を表わしてい
るから、1つの標準照明光源下において最良の色再現性
が得られるように色フィルタの分光特性を設定すると、
他の色温度の照明光源下においては色再現性が劣化する
In such a color imaging device, the ratio of R, G, and H signal components included in the color difference signal is determined by the spectral characteristics of the color filter on the solid-state imaging device and the color temperature of the illumination light source.几 contained in the color difference signal,
Since the ratio of G and B signal components represents the overall imaging characteristics, if the spectral characteristics of the color filter are set to obtain the best color reproducibility under one standard illumination light source,
Color reproducibility deteriorates under illumination light sources with other color temperatures.

この色再現性の劣化を防止するため、従来のカラー撮像
装置においては光学系に色温度変換フィルタを取シ付け
ることが行なわれていたコしかしながら、実際の照明光
源は白惑電球のような3000に以下のものから晴天下
の屋外のような10000に以上のものまでの非常に広
い範囲の色温度をもっている0従って、これらを標準照
明光源の色温度に誤差を少なく変換するためには異なる
光学特性の色温度変換フィルタを多数備えておかなけれ
ばならないので実用的でなく、逆に実用性を良くするた
め色温度変換フィルタの数を少なくすると色再現性が劣
化するという欠点があった口このような従来のカラー撮
像装置の欠点を除去することが可能々カラー撮像装置が
特願昭59−111329(59,5,31出願)とし
て本発明と同一出願人によって提案されている。このカ
ラー撮像装置においては、照明光源の色温度に応じて2
つの色差信号の大きさを補正することによって、照明光
源の色温度変化による色再現性の劣化を補正している。
In order to prevent this deterioration of color reproducibility, conventional color imaging devices have installed a color temperature conversion filter in the optical system. However, in reality, the illumination light source is has a very wide range of color temperatures, from below 0 to over 10,000, such as outdoors under clear skies.Therefore, in order to convert these to the color temperature of a standard illumination light source with less error, different optical systems are used. It is not practical because it requires a large number of characteristic color temperature conversion filters, and conversely, reducing the number of color temperature conversion filters to improve practicality has the disadvantage of deteriorating color reproducibility. A color imaging device capable of eliminating the drawbacks of the conventional color imaging device has been proposed in Japanese Patent Application No. 59-111329 (filed on 59/5/31) by the same applicant as the present invention. In this color imaging device, two
By correcting the magnitude of the two color difference signals, deterioration in color reproducibility due to changes in color temperature of the illumination light source is corrected.

第5図は前記発明の実施例、第6図は前記実施例におい
て照明光源の色温度に応じた2つの色差信号の大きさの
補正量を示す図である。
FIG. 5 is an embodiment of the invention, and FIG. 6 is a diagram showing the amount of correction of the magnitude of two color difference signals according to the color temperature of the illumination light source in the embodiment.

第5図において、撮像素子41には第1および第2の色
差信号44および45各々がB−Y信号およびR−Y信
号に相当するような色フィルタが内蔵されている0帯域
フイルタ52には撮像素子41の出力信号が供給され、
この出力信号に含まれる変調成分を分離して取出す。分
離された変調成分は検波器53で検波されて色差信号4
2に復調される口低域フィルタ54は撮像素子41の出
力信号の低域成分を取出す。白バランス回路55は前記
の復調された色差信号42に低域フィルタ54の出力信
号を加減算し、無彩色の被写体を撮像したときに色差信
号43が零となるように調整して白バランスをとる。同
時化回路56は白バランス回路55から走査線ととに交
互に得られる2つの色差信号の一方をIH遅延させ、同
時に前記第1および第2の色差信号44および45が得
られるように同時化する0利得制御回路57と58では
同時化回路56から得られる2つの色差信号44および
45の大きさが各々独立に補正される。
In FIG. 5, the 0-band filter 52 includes a built-in color filter in which the first and second color difference signals 44 and 45 correspond to the BY signal and the RY signal, respectively. The output signal of the image sensor 41 is supplied,
The modulation components contained in this output signal are separated and extracted. The separated modulation components are detected by a detector 53 and a color difference signal 4 is generated.
The low-pass filter 54 demodulates the low-pass filter 54 to extract the low-pass components of the output signal of the image sensor 41. The white balance circuit 55 adds and subtracts the output signal of the low-pass filter 54 to the demodulated color difference signal 42, and adjusts the color difference signal 43 to be zero when an achromatic subject is imaged to achieve white balance. . The synchronization circuit 56 delays one of the two color difference signals alternately obtained from the white balance circuit 55 for each scanning line, and synchronizes it so that the first and second color difference signals 44 and 45 are obtained at the same time. The zero gain control circuits 57 and 58 independently correct the magnitudes of the two color difference signals 44 and 45 obtained from the synchronization circuit 56.

端子59から入力されたサブキャリアは、直接変調器6
3に供給され、また前記直接供給されるサブキャリアと
共に変調クロマ信号を作成するのに必要な位相に移相回
路60において移相された後に変調器63に供給される
。変調器63において2つのサブキャリアは各々利得制
御回路57と58から得られる大きさが補正された2つ
の色差信号によって変調されて、変調クロマ信号が形成
される。変調器63よ)出力される変調クロマ信号は、
撮gR素子41の出力信号を低域フィルタ65とプロセ
ス回路66を通して得られた輝度信号と加算器67で加
えられ、端子68に複合カラー映像信号が得られる0 色温度検出回路64には照明光が入射されて3原色元に
分解され、3原色元それぞれの大きさから色温度が検出
されるO検出された照明光源の色温度に応じた補正量が
計算回路49によって決められ、前記利得制御回路57
および58に供給されて前記第1および第2の色差信号
の大きさが補正される。
The subcarrier input from terminal 59 is directly transmitted to modulator 6
3 and is supplied to a modulator 63 after being phase-shifted in a phase shift circuit 60 to the phase required to create a modulated chroma signal together with the directly supplied subcarriers. In modulator 63, the two subcarriers are modulated by two magnitude-corrected color difference signals obtained from gain control circuits 57 and 58, respectively, to form a modulated chroma signal. The modulated chroma signal outputted by the modulator 63 is
The output signal of the imaging gR element 41 is added to the luminance signal obtained through the low-pass filter 65 and the process circuit 66 in an adder 67, and a composite color video signal is obtained at the terminal 68. is incident and decomposed into three primary color elements, and the color temperature is detected from the size of each of the three primary color elements.The calculation circuit 49 determines the amount of correction according to the detected color temperature of the illumination light source, and the gain control circuit 57
and 58 to correct the magnitudes of the first and second color difference signals.

第6図は、第5図の色温度検出回路64によシ検出され
た照明光源の色温度と、利得制御回路57および58に
供給される補正量の関係を示す図である。照明光源の色
温度が高くなるに従って照明光中の背の成分は大きく赤
の成分は小さいので、B−Y信号に相当する第1の色差
信号に対する補正量は小さい値になシ、R−Y信号に相
当する第2の色差信号に対する補正量は大きな値になる
FIG. 6 is a diagram showing the relationship between the color temperature of the illumination light source detected by the color temperature detection circuit 64 of FIG. 5 and the amount of correction supplied to the gain control circuits 57 and 58. As the color temperature of the illumination light source increases, the back component in the illumination light becomes larger and the red component becomes smaller. Therefore, the correction amount for the first color difference signal corresponding to the B-Y signal should be a small value. The correction amount for the second color difference signal corresponding to the signal becomes a large value.

照明光源としては天然および人工の多くのものがあるが
、太陽光や白熱電球などは黒体放射に近い分光特性をも
つ。この場合は第6図に示した補正量を黒体放射に近い
分光特性の照明光源に対応して設定すれば、多くの照明
光源の色温度変化に対して色再現性の劣化をほとんどな
くすことができる。
There are many natural and artificial sources of illumination, such as sunlight and incandescent light bulbs, which have spectral characteristics close to blackbody radiation. In this case, if the correction amount shown in Figure 6 is set for an illumination light source with spectral characteristics close to blackbody radiation, it is possible to almost eliminate deterioration in color reproducibility due to color temperature changes of many illumination light sources. I can do it.

しかしながら;現在多く存在し、かつ黒体放射と異なる
分光特性の照明光源として蛍光灯があげられる。蛍光灯
など黒体放射と異なる分光特性の照明光源下では、前記
の補正量の設定を行なり斥場合、色再現性に若干の劣化
を生じる。これは蛍光灯が最も近い分光特性をもつ色温
度の黒体放射と比較しても緑の成分に対する赤および青
の成分比率が小さく、従って、第1および第2の色差信
号に含まれる現G、 B各信号成分比率が蛍光灯と前記
色温度の黒体放射とでは異なるためであるO(発明の目
的) 本発明の目的は、このような従来の欠点を除去し、小形
で実用的であり、かつ、蛍光灯を含む多くの照明光源に
対し、色再現性の劣化のほとんどないカラー撮像装置を
提供することにらるO(発明の構成) 本発明によれば、撮像素子の出力信号から輝度信号とB
−Y信号に相当する第1の色差信号および几−Y信号に
相当する第2の色差信号が形成され、前記輝度信号と前
記第1および第2の色差信号から複合カラー映像信号が
合成されるカラー撮像装置において、黒体放射の分光特
性に近い分光特性をもつ照明光源の色温度に応じて前記
第1および第2の色差信号の大きさ各々に対する第1お
よび第2の補正量を発生する手段と、黒体放射と異なる
分光特性の照射光源の色温度に応じて前記第1および第
2の色差信号の大きさ各々に対する第3および第4の補
正量を発生する手段と、前記第1および第2の補正量の
組み合わせと第3および第4の補正量の組み合わせのう
ち片方を選択して前記第1および第2の色差信号の大き
さを補正する手段を有することを特徴とするカラー撮像
装置が得られる。
However, fluorescent lamps are one of the many illumination light sources that currently exist and have spectral characteristics different from those of blackbody radiation. Under an illumination light source with spectral characteristics different from blackbody radiation, such as a fluorescent lamp, if the correction amount is not set as described above, color reproducibility will be slightly degraded. This is because the ratio of red and blue components to green components is small even when compared to black body radiation whose color temperature has the closest spectral characteristics to fluorescent lamps, and therefore the current G This is because the ratio of each signal component is different between a fluorescent lamp and a black body radiation having the above color temperature. According to the present invention, the output signal of the image sensor is The luminance signal from B
A first color difference signal corresponding to the -Y signal and a second color difference signal corresponding to the -Y signal are formed, and a composite color video signal is synthesized from the luminance signal and the first and second color difference signals. In a color imaging device, first and second correction amounts are generated for the magnitudes of the first and second color difference signals, respectively, in accordance with the color temperature of an illumination light source having spectral characteristics close to those of blackbody radiation. means for generating third and fourth correction amounts for the magnitudes of the first and second color difference signals, respectively, in accordance with the color temperature of the irradiation light source having spectral characteristics different from blackbody radiation; and means for correcting the magnitudes of the first and second color difference signals by selecting one of the combination of the second correction amount and the combination of the third and fourth correction amounts. An imaging device is obtained.

(構成の詳細な説明) 本発明は、上述の構成をとることにより従来の装置の欠
点を解決した。まず、照明光源の色巴度変化による色再
現性の劣化を電気的に補正することによシ、必要な色温
度変換フィルタの数を低減し、小形で実用的な装置とし
た。次に、照明光源が黒体放射の分光特性に近い場合に
は照明光源の色温度に応じて2つの色差信号の大きさを
補正する手段と、照明光源が蛍光灯など黒体放射と異な
る分光特性の場合には、前記2つの色差信号の大きさを
所定の大きさに補正する手段を備えることによって、多
くの照明光源に対し色再現性の劣化をほとんどなくした
(Detailed Description of Configuration) The present invention solves the drawbacks of conventional devices by adopting the above-described configuration. First, by electrically correcting deterioration in color reproducibility due to changes in color saturation of the illumination light source, the number of required color temperature conversion filters was reduced, resulting in a compact and practical device. Next, when the illumination light source has spectral characteristics close to blackbody radiation, there is a means for correcting the magnitude of the two color difference signals according to the color temperature of the illumination light source, and when the illumination light source has spectral characteristics different from blackbody radiation, such as a fluorescent lamp. In the case of characteristics, by providing means for correcting the magnitudes of the two color difference signals to predetermined magnitudes, deterioration in color reproducibility is almost eliminated for many illumination light sources.

(実施例1) 第2図は本発明によるカラー撮像装置の第1の実施例の
構成を示すブロック図である。
(Embodiment 1) FIG. 2 is a block diagram showing the configuration of a first embodiment of a color imaging device according to the present invention.

第2図において、撮像素子41には第1および第2の色
差信号44および45各々がB−Y信号および几−Y信
号に相当するような色フィルタが内蔵されている0帯域
フイルタ52には撮像素子41の出力信号が供給され、
この出力信号に含まれる変調成分を分離して取出す。分
離された変調成分は検波器3で検波されて色差信号42
に復調される。低域フィルタ54は撮像素子41の出力
信号の低域成分を取出す。白バランス回路55は前記の
復調された色差信号42に低域フィルタ54の出力信号
を加減算し、無彩色の被写体を撮像したときに色差信号
43が零となるように調整して白バランスをとる◎同時
化回路56は白バランス回路55から走査線ごとに交互
に得られる2つの色差信号の一方を1H遅延させ、同時
に前記第1および第2の色差信号44および45が得ら
れるように同時化する。利得制御回路57と58では同
時化回路56から得られる2つの色差信号44および4
5の大きさが各々独立に補正される。
In FIG. 2, the 0-band filter 52 includes a built-in color filter in which the first and second color difference signals 44 and 45 correspond to the BY signal and the B-Y signal, respectively. The output signal of the image sensor 41 is supplied,
The modulation components contained in this output signal are separated and extracted. The separated modulation components are detected by a detector 3 and a color difference signal 42 is generated.
is demodulated. The low-pass filter 54 extracts low-pass components of the output signal of the image sensor 41. The white balance circuit 55 adds and subtracts the output signal of the low-pass filter 54 to the demodulated color difference signal 42, and adjusts the color difference signal 43 to be zero when an achromatic subject is imaged to achieve white balance. ◎The synchronization circuit 56 delays one of the two color difference signals obtained alternately for each scanning line from the white balance circuit 55 by 1H, and synchronizes it so that the first and second color difference signals 44 and 45 are obtained at the same time. do. The gain control circuits 57 and 58 process the two color difference signals 44 and 4 obtained from the synchronization circuit 56.
5 are each corrected independently.

端子59から入力されたサブキャリアは、直接変調器6
3に供給され、まL−、前記直接供給されるサブキャリ
アと共に変調クロマ信号を作成するのに必要な位相に移
相回路60において移相された後に変調器63に供給さ
れ′る。変調器63において2つのサブキャリアは各々
利得制御回路57と58から得られる大きさが補正され
た2つの色差信号によって変調されて、変調クロマ信号
が形成される。変調器63よシ出力される変調クロマ信
号は、撮像素子41の出力信号を低域フィルタ65とプ
ロセス回路66を通して得られた譚度信号と加算器67
で加えられ、端子68に複合カラー映像信号が得られる
The subcarrier input from terminal 59 is directly transmitted to modulator 6
3 and L-, which together with the directly supplied subcarriers are phase shifted in a phase shift circuit 60 to the phase required to create a modulated chroma signal and then supplied to a modulator 63. In modulator 63, the two subcarriers are modulated by two magnitude-corrected color difference signals obtained from gain control circuits 57 and 58, respectively, to form a modulated chroma signal. The modulated chroma signal outputted from the modulator 63 is obtained by passing the output signal of the image sensor 41 through a low-pass filter 65 and a process circuit 66, and combining it with the obtained chroma signal and an adder 67.
A composite color video signal is obtained at terminal 68.

色温度検出回路20には、照明光が入射されて3原色光
に分解され、3原色光それぞれの比率から色温度が決め
られる。決められた色温度を示す信号は計算回路49に
与えられて、第6図に示した2つの色差信号に対する補
正量が計算される〇色温度検出回路20からは、3S色
光それぞれの大きさの比率がいずれの色温度の黒体放射
とも近くない場合は、制御信号21がスイッチ23に与
えられる0スイツチ23がA 11111に接続されて
いる場合には、前記制御信号21がスイッチ25および
26に与えられて各々をF側に接続し、固定値回路27
より与えられる所定の補正量が各々利得制御回路57お
よび58に与えられる。スイッチ23がM側に接続され
ている場合には、使用者に知らせるため啓告灯22がオ
ンされ、スイッチ24を使用者がオンした場合のみ前記
制御信号21がスイッチ25および26に与えられる。
Illumination light is incident on the color temperature detection circuit 20 and is separated into three primary color lights, and the color temperature is determined from the ratio of each of the three primary color lights. The signal indicating the determined color temperature is given to the calculation circuit 49, which calculates the amount of correction for the two color difference signals shown in FIG. If the ratio is not close to the blackbody radiation of either color temperature, the control signal 21 is applied to the switch 23. If the switch 23 is connected to A 11111, the control signal 21 is applied to the switches 25 and 26. fixed value circuit 27.
The predetermined correction amounts given by the above are given to gain control circuits 57 and 58, respectively. When the switch 23 is connected to the M side, the warning light 22 is turned on to notify the user, and the control signal 21 is given to the switches 25 and 26 only when the user turns on the switch 24.

色温度検出回路20において、3原色光それぞれの比率
がいずれかの色温度の黒体放射に近い場合およびスイッ
チ24がオンされない場合には、前記制御信号はスイッ
チ25および26に与えられないので、スイッチ25お
よび26はに側に接続され、計算回路59よシ補正量が
利得制御回路57および58に与えられる。
In the color temperature detection circuit 20, when the ratio of each of the three primary color lights is close to the black body radiation of any color temperature and when the switch 24 is not turned on, the control signal is not given to the switches 25 and 26. Switches 25 and 26 are connected to the opposite side, and the calculation circuit 59 provides the correction amount to gain control circuits 57 and 58.

固定値回路27よシ利得制御回路57および58に与え
られる2つの所定の補正量の組み合わせは、計算回路4
9によシ与えられる2つの補正量の組み合わせのいずれ
とも異なる。
The combination of two predetermined correction amounts given to the fixed value circuit 27 and the gain control circuits 57 and 58 is determined by the calculation circuit 4.
This is different from any of the combinations of the two correction amounts given by No. 9.

(実施例2) 第3図は第2の実施例の構成を示すブロック図でおる。(Example 2) FIG. 3 is a block diagram showing the configuration of the second embodiment.

第2の実施例は、第2図の色温度検出回路20、計算回
路59、醤告灯22およびスイッチ23〜26以外は、
第1の実施例と同じ構成。
In the second embodiment, except for the color temperature detection circuit 20, calculation circuit 59, warning lamp 22, and switches 23 to 26 shown in FIG.
Same configuration as the first embodiment.

動作でおる。It's in action.

色温度検出回路30および31では各々照明光中の宵と
緑成分の比率および赤と緑成分の比率から照明光の色温
度が検出され、各々の色但度を示す信号が計算回路32
および33に与えられる。
The color temperature detection circuits 30 and 31 detect the color temperature of the illumination light from the ratio of the evening and green components and the ratio of the red and green components in the illumination light, respectively, and a signal indicating each chromaticity is sent to the calculation circuit 32.
and 33.

計算回路32および33では各々第6図に示した第1お
よび第2の色差信号に対する補正量が計算される。スイ
ッチ34および35は使用者によって動作され、−に側
に接続された場合には計算回路32および33によって
与えられる補正量が選択され、F側に接続された場合に
は第2図と同様な固定値回路27よシ与えられる所定の
補正量が選択されて、利得制御回路57および58に与
えられる。
Calculation circuits 32 and 33 calculate correction amounts for the first and second color difference signals shown in FIG. 6, respectively. The switches 34 and 35 are operated by the user, and when connected to the - side, the correction amount given by the calculation circuits 32 and 33 is selected, and when connected to the F side, the correction amount given by the calculation circuits 32 and 33 is selected, and when connected to the F side, the correction amount is selected as shown in FIG. A predetermined correction amount provided by fixed value circuit 27 is selected and provided to gain control circuits 57 and 58.

(実施例3) 第1図は第3の実施例の構成を示すブロック図であるり
第3の実施例は、第3図の色温度検出回路30および3
1以外は第2の実施例と同じ構成。
(Embodiment 3) FIG. 1 is a block diagram showing the configuration of a third embodiment.
The configuration other than 1 is the same as the second embodiment.

動作である。It is an action.

色温度検出回路10および11には、白バランス回路5
5において第1および第2の色差信号44.45に対応
する色差信号42に加減算される低域フィルタ54の出
力信号の大きさを示す信号12および13が与えられ、
各々から照明光の色温度が検出される・検出された色温
度を示す信号が計算回路32および33に与えられる。
The color temperature detection circuits 10 and 11 include a white balance circuit 5.
5, signals 12 and 13 indicating the magnitude of the output signal of the low-pass filter 54 which is added to or subtracted from the color difference signal 42 corresponding to the first and second color difference signals 44, 45 are provided;
The color temperature of the illumination light is detected from each; a signal indicating the detected color temperature is given to calculation circuits 32 and 33.

計算回路32および33.固定値回路27、スイッチ3
4および35の動作は第2の実施例と同じであるり (発明の効果) 以上説明したように本発明によれば、螢光灯のように分
光特性が黒体放射と異なる場合にも色再現性の劣[ヒが
ほとんどなく、しかも小型で実用的なカラー撮像装置が
得られる0 口面の簡単な説明 第1図〜第3図は本発明のカラー撮像装置の実施例の構
成を示すブロック図、第4図は色フィルタの配列図、第
5図は本出願人が以前に提案したカラー撮像装置の構成
を示すブロック図、第6図は照明光源色g度と色差信号
の補正量の関係を示す図である口 各図を通じて41は撮像素子、52は’l¥域フィルタ
、53は検波器、54.65は低域フィルタ、55は白
バランス回路、56は同時化回路、57および58は利
得制御回路、60は移相回路、63は変調器、66はプ
ロセス回路、67は加算器、10.11,20,30,
31.64は色温度検出回路、32,33.49は計算
回路、23〜26゜34.35はスイッチ、27は固定
値回路、22は警告灯でらる口
Calculation circuits 32 and 33. Fixed value circuit 27, switch 3
The operations of 4 and 35 are the same as in the second embodiment. (Effects of the Invention) As explained above, according to the present invention, even when the spectral characteristics are different from black body radiation, such as in a fluorescent lamp, the color A compact and practical color imaging device with almost no poor reproducibility [hi] can be obtained.Brief explanation of the mouth surface FIGS. 1 to 3 show the configuration of an embodiment of the color imaging device of the present invention. FIG. 4 is a block diagram showing the arrangement of color filters, FIG. 5 is a block diagram showing the configuration of a color imaging device previously proposed by the applicant, and FIG. 6 is a correction amount of illumination light source chromaticity and color difference signal. In each figure, 41 is an image sensor, 52 is a 'l\ band filter, 53 is a detector, 54.65 is a low-pass filter, 55 is a white balance circuit, 56 is a synchronization circuit, and 57 and 58 is a gain control circuit, 60 is a phase shift circuit, 63 is a modulator, 66 is a process circuit, 67 is an adder, 10.11, 20, 30,
31.64 is a color temperature detection circuit, 32, 33.49 is a calculation circuit, 23~26°34.35 is a switch, 27 is a fixed value circuit, 22 is a warning light port

Claims (1)

【特許請求の範囲】[Claims] 撮像素子の出力信号から輝度信号とB−Y信号に相当す
る第1の色差信号およびR−Y信号に相当する第2の色
差信号が形成され、前記輝度信号と前記第1および第2
の色差信号から複合カラー映像信号が合成されるカラー
撮像装置において、黒体放射の分光特性に近い分光特性
をもつ照明光源の色温度に応じて前記第1および第2の
色差信号の大きさ各々に対する第1および第2の補正量
を発生する手段と、黒体放射と異なる分光特性の照射光
源の色温度に応じて前記第1および第2の色差信号の大
きさ各々に対する第3および第4の補正量を発生する手
段と、前記第1および第2の補正量の組み合わせと第3
および第4の補正量の組み合わせのうち片方を選択して
前記第1および第2の色差信号の大きさを補正する手段
を有する
A first color difference signal corresponding to the luminance signal and the B-Y signal and a second color difference signal corresponding to the R-Y signal are formed from the output signal of the image sensor, and the luminance signal and the first and second color difference signals are formed.
In a color imaging device in which a composite color video signal is synthesized from color difference signals of and means for generating first and second correction amounts for the magnitudes of the first and second color difference signals, respectively, in accordance with the color temperature of the irradiation light source having spectral characteristics different from the black body radiation. means for generating a correction amount, a combination of the first and second correction amounts, and a third correction amount;
and means for selecting one of a fourth combination of correction amounts to correct the magnitudes of the first and second color difference signals.
JP59180977A 1984-08-30 1984-08-30 Color image pick up device Pending JPS6158393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59180977A JPS6158393A (en) 1984-08-30 1984-08-30 Color image pick up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180977A JPS6158393A (en) 1984-08-30 1984-08-30 Color image pick up device

Publications (1)

Publication Number Publication Date
JPS6158393A true JPS6158393A (en) 1986-03-25

Family

ID=16092584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180977A Pending JPS6158393A (en) 1984-08-30 1984-08-30 Color image pick up device

Country Status (1)

Country Link
JP (1) JPS6158393A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604585A1 (en) * 1986-09-25 1988-04-01 Sony Corp SOLID STATE COLOR TELEVISION CAMERA
JPH0244991A (en) * 1988-08-05 1990-02-14 Mitsubishi Electric Corp Image picked up signal processor for color video camera
JPH0246090A (en) * 1988-08-06 1990-02-15 Mitsubishi Electric Corp Color video camera

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110486A (en) * 1979-02-16 1980-08-25 Matsushita Electric Ind Co Ltd Color temperature correction circuit for color television camera
JPS58210782A (en) * 1982-06-02 1983-12-08 Nippon Kogaku Kk <Nikon> Color television camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110486A (en) * 1979-02-16 1980-08-25 Matsushita Electric Ind Co Ltd Color temperature correction circuit for color television camera
JPS58210782A (en) * 1982-06-02 1983-12-08 Nippon Kogaku Kk <Nikon> Color television camera

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604585A1 (en) * 1986-09-25 1988-04-01 Sony Corp SOLID STATE COLOR TELEVISION CAMERA
JPH0244991A (en) * 1988-08-05 1990-02-14 Mitsubishi Electric Corp Image picked up signal processor for color video camera
JPH0246090A (en) * 1988-08-06 1990-02-15 Mitsubishi Electric Corp Color video camera

Similar Documents

Publication Publication Date Title
JPS60214183A (en) Color image pickup device
US4739392A (en) White balance adjusting apparatus having a plurality of standard color references automatically selected by the detected color temperature
JPS6146687A (en) Color video camera
JPS6158393A (en) Color image pick up device
US5329362A (en) Color video camera using common white balance control circuitry in negative and postive image photoimaging modes
JPS59141888A (en) Automatic white balancing circuit
JPS60254980A (en) Color image pickup device
JPS6235792A (en) Adjustment system for white balance
US3655909A (en) Color television camera
JPS61128693A (en) Color camera
JPS62133884A (en) Automatic white balance adjusting device
JPS59858Y2 (en) color temperature correction device
JPS61198989A (en) Image pickup device
JPH0628480B2 (en) Color camera
JPS63242090A (en) White balancing circuit
JP2692151B2 (en) Video camera
JPH01231586A (en) Automatic white balancing device
JPS62278882A (en) White balance correction circuit for color video camera
JPS6253586A (en) Color solid-state image pickup device
JPS6129595B2 (en)
JPH0244992A (en) Image picked up signal processor for color video camera
JPH02298192A (en) Color video camera
JPS5842390A (en) Color temperature switching device
JPH0230287A (en) Color video camera
JPS60140991A (en) Color video camera