JPS6158327A - High-speed dpcm encoder - Google Patents

High-speed dpcm encoder

Info

Publication number
JPS6158327A
JPS6158327A JP59181061A JP18106184A JPS6158327A JP S6158327 A JPS6158327 A JP S6158327A JP 59181061 A JP59181061 A JP 59181061A JP 18106184 A JP18106184 A JP 18106184A JP S6158327 A JPS6158327 A JP S6158327A
Authority
JP
Japan
Prior art keywords
output
input
adder
multiplier
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59181061A
Other languages
Japanese (ja)
Other versions
JPH046288B2 (en
Inventor
Takeshi Okazaki
健 岡崎
Toshitaka Tsuda
俊隆 津田
Shinichi Maki
新一 牧
Kiichi Matsuda
松田 喜一
Hirohisa Karibe
雁部 洋久
Hirokazu Fukui
宏和 福井
Masuyuki Ikezawa
池沢 斗志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59181061A priority Critical patent/JPS6158327A/en
Priority to EP85110978A priority patent/EP0173983B1/en
Priority to KR1019850006333A priority patent/KR890004441B1/en
Priority to DE8585110978T priority patent/DE3586932T2/en
Priority to CA000489802A priority patent/CA1338767C/en
Publication of JPS6158327A publication Critical patent/JPS6158327A/en
Priority to US07/049,048 priority patent/US4771439A/en
Publication of JPH046288B2 publication Critical patent/JPH046288B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

PURPOSE:To obtain a quickly operating DPCM encoder, by providing a quantizator, delay element, multiplier, and 3-input and 2-output digital-digital converter. CONSTITUTION:The DPCM signal of the output of a quantizator 3 is inputted by inversion in a 3-input and 2-output DD converter 7 after it is multiplied by a forecasting coefficient of 1/2 by a multiplier 9. Moreover, the value of 1-sampling period before which is the output of an FF 6 is inputted by inversion in the converter 7 after it is multiplied by the forecasting coefficient of 1/2 by another multiplier 10. Two output signals are obtained from the two inputs of the converter 7 and a PCM signal and sent to an adder 8. The added result of the adder 8 is supplied to the quantizator 3 after delaying the result through an FF 2 and the DPCM signal is outputted from the quantizator 3. Since the operating speed of this encoder depends upon the FF 6, quantizator 3, multiplier 10, and converter 7, high-speed processing can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、画像帯域圧縮装置等に用いられるDI)CM
符号器に係り、動作速度を高速化出来る高速DPCM符
号器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a DI)CM used in an image band compression device, etc.
The present invention relates to an encoder, and relates to a high-speed DPCM encoder that can increase operating speed.

r)PCM符号器を用い帯域圧縮を行う場合動作速度を
高速化出来ることが望まれる。
r) When band compression is performed using a PCM encoder, it is desirable to be able to increase the operating speed.

〔従来の技術〕[Conventional technology]

第3図は従来例のDPCM符号器のブロック図である。 FIG. 3 is a block diagram of a conventional DPCM encoder.

図中1は減算器、2.6は遅延素子であるI” F、3
は量子化器、4は加算器、5は予測係数1/2を乗算す
る乗′n器を示す。
In the figure, 1 is a subtracter, 2.6 is a delay element I"F, 3
is a quantizer, 4 is an adder, and 5 is a multiplier for multiplying the prediction coefficient by 1/2.

第3図の動作を説明すると、入力するPCM信号と予測
値との差を減算2::lに°C31(め、ごれをFF2
にて遅延させ、量子化器3にて里子化してDPCM信号
を出力する。
To explain the operation in Fig. 3, the difference between the input PCM signal and the predicted value is subtracted from 2::l to °C31
The signal is delayed by the quantizer 3, adopted by the quantizer 3, and outputted as a DPCM signal.

一方この出力は、加算器4にも入力し、加算器4の出力
に予測係数1/2を乗算器5にて乗じFF6にて遅延さ
れた1標本化周期前の予測値との加算を行い、この出力
に乗算器5にて予測係数1/′2を乗算し予測値を求め
ている。
On the other hand, this output is also input to the adder 4, and the multiplier 5 multiplies the output of the adder 4 by 1/2 of the prediction coefficient, and the FF 6 adds it to the predicted value from one sampling period before the delay. , this output is multiplied by a prediction coefficient 1/'2 in a multiplier 5 to obtain a predicted value.

このようにして第3図のD P CM符号器は、量子化
されたDPCM信号を出力している。
In this way, the DPCM encoder of FIG. 3 outputs a quantized DPCM signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記DPCMfff号器の動作速度は、
FF2.量子化器3.加算器49乗算器5゜減算器1の
ループで定まり、動作速度が遅い問題点がある。
However, the operating speed of the DPCMfff signal generator is
FF2. Quantizer 3. It is determined by a loop of adder 49, multiplier 5°, and subtracter 1, and there is a problem that the operation speed is slow.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記問題点は、出力側に、工子化DPCM信号を発生す
る量子化器と、第1の加算器及び第1の乗算器及び第1
の遅延素子を含み、且つ該第1の乗算器で該第1の加算
器の出力に予測係数を乗算し、この出力を該第1の遅延
素子にて遅延させ、該第1の加算器に入力し予測値を検
出する予測値検出計算ループと、第1の入力にPCM信
号が、第2の入力に該量子化器の出力に第2の乗算器に
より予測係数を乗算した信号が、第3の入力に該予測値
を第1の遅延素子にて遅延された信号に第3の乗算器に
より予測係数を乗算した信号が入力し、2出力とする3
入力2出力デジタル・デジタル変換器の出力に、この2
出力を加算する第2の加算器を接続し、又ごの°出力に
、この出力を遅延さす第2の遅延素子を接続し、この出
力を該量子化器の入力側に接続してなる本発明の高速D
PCM符号器により解決される。
The above problem is that the output side includes a quantizer that generates an encoded DPCM signal, a first adder, a first multiplier, and a first
a delay element, and the first multiplier multiplies the output of the first adder by a prediction coefficient, the output is delayed by the first delay element, and the first adder multiplies the output by a prediction coefficient. A predicted value detection calculation loop that receives an input and detects a predicted value; a first input is a PCM signal; a second input is a signal obtained by multiplying the output of the quantizer by a prediction coefficient by a second multiplier; A signal obtained by multiplying the signal delayed by the first delay element by the prediction coefficient by the third multiplier is input to the input of 3, and 2 outputs are obtained.
These two inputs are connected to the output of the two-output digital-to-digital converter.
A second adder that adds the outputs is connected, a second delay element that delays this output is connected to the output of the adder, and this output is connected to the input side of the quantizer. Invention high speed D
Solved by PCM encoder.

〔作用〕[Effect]

本発明によれば、動作速度は第2の遅延素子。 According to the invention, the operating speed is determined by the second delay element.

量子化器、第2の乗算器、3入力2出力デジタル・デジ
タル変換器、全加算器にて定まり、従来の場合に比し、
3入力2出力デジタル・デジタル変換器(以下3人ツノ
2出力D/D変換器と称す)は減算器より動作速度が早
いので動作速度を高速にすることが出来る。
It is determined by a quantizer, a second multiplier, a 3-input 2-output digital-to-digital converter, and a full adder, and compared to the conventional case,
A 3-input, 2-output digital-to-digital converter (hereinafter referred to as a 3-input, 2-output D/D converter) has a faster operating speed than a subtracter, so the operating speed can be increased.

〔実施例〕〔Example〕

第1図は本発明の実施例のブI:7ソク図、第2図は第
1図の3入力2出力D/D変換器及び全加算器及びFF
の接続を示す図である。
FIG. 1 is a block diagram of the embodiment of the present invention, and FIG. 2 is a diagram of the 3-input 2-output D/D converter, full adder, and FF of the embodiment of the present invention.
FIG.

図中7は3入力2出力D/D変換器、8は加算器、9.
10は予測係数の1/2を乗算する乗算器、7−1〜7
−8は各々2入力1出力の全加算器でこれらを用い第1
図の3入力2出力D/D変換器7を+14成しており、
8−1〜8−8は各々2入力l出力の全加算器で、これ
らを用い第1図の加算器8を構成しており、2−1〜2
−9はF Fで第1図のFF2を構成し°Cおり、尚全
図を通じ同一符号は同一機能のものを示す。
In the figure, 7 is a 3-input 2-output D/D converter, 8 is an adder, and 9.
10 is a multiplier that multiplies 1/2 of the prediction coefficient, 7-1 to 7
-8 is a full adder with 2 inputs and 1 output.
The 3-input 2-output D/D converter 7 shown in the figure is made up of +14,
8-1 to 8-8 are full adders each having 2 inputs and 1 output, which constitute the adder 8 in FIG. 1, and 2-1 to 2
-9 is FF, which constitutes FF2 in FIG. 1, and the same reference numerals indicate the same functions throughout the figures.

第1図の場合で第3図の場合と異なる点を説明すると、
量子化器3の出力のDPCM(3号は乗算器9にて予測
係数1/2を乗算され、3入力2出力D/D変換器7に
反転されて入力し、又FF6の出力であるl標本化周期
前の値は乗算器10にて予測係数1/2を乗算され、3
入力2出力デジタル・デジタル変換器7に反転されて入
力し、3入力2出力D/D変換器7に入力しているPC
M13号との差を求め、2出力に変換され、この出力は
加算器8にて加算され、F F 2を介し゛ζ■子量子
3に入力している点である。
To explain the difference between the case of Fig. 1 and the case of Fig. 3,
The DPCM of the output of the quantizer 3 (No. 3 is multiplied by the prediction coefficient 1/2 in the multiplier 9, is inverted and input to the 3-input 2-output D/D converter 7, and is the output of the FF 6) The value before the sampling period is multiplied by the prediction coefficient 1/2 in the multiplier 10, and
A PC that is inverted and input to the input 2 output digital-to-digital converter 7 and input to the 3 input 2 output D/D converter 7
The difference with No. M13 is calculated and converted into two outputs, and these outputs are added in an adder 8 and input to the ``ζ'' child quantum 3 via F F 2.

ごの場合、PCM信号を8ビツトの八7〜Δ0とし、乗
算器9,10にて1/2が乗算されることにより量子化
器3の出)jの8ビツトが7ビツトになった信号を86
〜BO,C6〜COとし、3入力2出力D/D変換器7
及び加算器8とFF 2との接続図を示すと第2図の如
く、2入力1出力の全加算器7−1〜7−8のキャリー
人ノjにAO〜A7の信号が入力し、2入力にはB6〜
[30゜C6〜COの信号が反転して人)jし、(但し
MSBの全加算器7−8にば[36,C6の信号が入力
する)出力は全加算器8−1〜8−8に、(但しLSB
の全加算器8−1の一方の入力はアースにキャリー入力
にはHレベルが加えられている)キャリー出力は全加算
器8−2〜8−9に入力し、全油ゴγ器8−1〜8−8
のキャリー出力は全加算器8−2〜8−9に入力し、出
力はF I” 2−1〜2−9に入力し遅延されて量子
化J:! 3に入力するように接続され上記説明の演算
が行われる。
In this case, the PCM signal is 8 bits 87 to Δ0, and the multipliers 9 and 10 multiply by 1/2, so that the 8 bits of the output of the quantizer 3) become 7 bits. 86
~BO, C6~CO, 3 input 2 output D/D converter 7
As shown in FIG. 2, the connection diagram between the adder 8 and the FF 2 shows that the signals AO to A7 are input to the carrier nodes of the 2-input and 1-output full adders 7-1 to 7-8. B6~ for 2 inputs
[30°C6 to CO signals are inverted) (However, the MSB full adder 7-8 receives the [36, C6 signal] output) Full adders 8-1 to 8- 8, (However, LSB
One input of the full adder 8-1 is grounded, and an H level is added to the carry input) The carry output is input to the full adders 8-2 to 8-9, and the full adder 8-1 is input to the full adder 8-1. 1-8-8
The carry output of is input to full adders 8-2 to 8-9, and the output is input to F I'' 2-1 to 2-9, delayed, and connected to be input to quantization J:!3. Explanation calculations are performed.

即ち乗算器9.lOの出力の和は、第3図の乗算器5の
出力と同じ予測値となるので、第3図の減算器lの動作
を、3入力2出力D/D変I!S器7及び加算器8にて
行なっている。
That is, multiplier 9. Since the sum of the outputs of lO has the same predicted value as the output of multiplier 5 in FIG. 3, the operation of subtractor l in FIG. This is performed by an S unit 7 and an adder 8.

このようにすると、動作速度を決定するクリーブ−カル
パスはFFz、m量化器32乗算器9.3入力2出力D
/D変換器7.加算器8となり、第3図の場合と比較す
ると、加算器8と加算器4とは動作速度はほぼ等しく、
3人ツノ2出力D/D変換器7は減算器1°より動作速
度は早いので、動作速度を早くすることが出来る。
In this way, the Cleave-Calpas that determines the operating speed is FFz, m quantifier 32 multiplier 9.3 input 2 output D
/D converter7. Adder 8 becomes adder 8, and when compared with the case of FIG. 3, adder 8 and adder 4 have almost the same operating speed.
Since the three-horn, two-output D/D converter 7 has a faster operating speed than the subtracter 1°, the operating speed can be increased.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明せる如く本発明によれば、動作速度の早
い高速DPCM符号器が得られる効果がある。
As explained in detail above, according to the present invention, a high-speed DPCM encoder with high operating speed can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のブロック図、第2図は第1図
の3入力2出力D/D変換器及び全加算器及びFFの接
続を示す図、 第3図は従来例のDPCM符号器のブロック図である。 図において、 1は減算器、 2.2−1〜2−9.6はFF。 3は■量化器、 4.8は加算器、 5.4)、10は乗算器、 7は3入力2出力デジタル・デジタル変換器、a−t〜
8−9.7−1〜7−8は全加算器を示す。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a diagram showing the connection of the 3-input 2-output D/D converter, full adder, and FF shown in Fig. 1, and Fig. 3 is a conventional DPCM. FIG. 2 is a block diagram of an encoder. In the figure, 1 is a subtracter, and 2.2-1 to 2-9.6 are FFs. 3 is a quantifier, 4.8 is an adder, 5.4), 10 is a multiplier, 7 is a 3-input 2-output digital-to-digital converter, a-t~
8-9.7-1 to 7-8 indicate full adders.

Claims (1)

【特許請求の範囲】[Claims] 出力側に、量子化DPCM信号を発生する量子化器と、
第1の加算器及び第1の乗算器及び第1の遅延素子を含
み、且つ該第1の乗算器で該第1の加算器の出力に予測
係数を乗算し、この出力を該第1の遅延素子にて遅延さ
せ、該第1の加算器に入力し予測値を検出する予測値検
出計算ループと、第1の入力にPCM信号が、第2の入
力に該量子化器の出力に第2の乗算器により予測係数を
乗算した信号が、第3の入力に該予測値を第1の遅延素
子にて遅延された信号に第3の乗算器により予測係数を
乗算した信号が入力し、2出力とする3入力2出力デジ
タル・デジタル変換器の出力に、この2出力を加算する
第2の加算器を接続し、又この出力に、この出力を遅延
させる第2の遅延素子を接続し、この出力を該量子化器
の入力側に接続してなることを特徴とする高速DPCM
符号器。
a quantizer that generates a quantized DPCM signal on the output side;
includes a first adder, a first multiplier, and a first delay element, and the first multiplier multiplies the output of the first adder by a prediction coefficient, and the output is multiplied by the first delay element. A predicted value detection calculation loop that detects a predicted value by delaying it with a delay element and inputting it to the first adder; a PCM signal is input to the first input; A signal obtained by multiplying the predicted value by the prediction coefficient by the second multiplier is input to the third input, and a signal obtained by multiplying the signal obtained by multiplying the predicted value by the first delay element by the prediction coefficient by the third multiplier is input to the third input, A second adder that adds these two outputs is connected to the output of a three-input, two-output digital-to-digital converter that has two outputs, and a second delay element that delays this output is connected to this output. , this output is connected to the input side of the quantizer.
encoder.
JP59181061A 1984-08-30 1984-08-30 High-speed dpcm encoder Granted JPS6158327A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59181061A JPS6158327A (en) 1984-08-30 1984-08-30 High-speed dpcm encoder
EP85110978A EP0173983B1 (en) 1984-08-30 1985-08-30 Differential coding circuit
KR1019850006333A KR890004441B1 (en) 1984-08-30 1985-08-30 Automatic cording circuit
DE8585110978T DE3586932T2 (en) 1984-08-30 1985-08-30 DIFFERENTIAL CODING CIRCUIT.
CA000489802A CA1338767C (en) 1984-08-30 1985-08-30 Differential coding circuit
US07/049,048 US4771439A (en) 1984-08-30 1987-05-12 Differential coding circuit with reduced critical path applicable to DPCM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59181061A JPS6158327A (en) 1984-08-30 1984-08-30 High-speed dpcm encoder

Publications (2)

Publication Number Publication Date
JPS6158327A true JPS6158327A (en) 1986-03-25
JPH046288B2 JPH046288B2 (en) 1992-02-05

Family

ID=16094098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59181061A Granted JPS6158327A (en) 1984-08-30 1984-08-30 High-speed dpcm encoder

Country Status (1)

Country Link
JP (1) JPS6158327A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961219A (en) * 1982-09-01 1984-04-07 ジ−メンス・アクチエンゲゼルシヤフト High speed dpcm encoder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961219A (en) * 1982-09-01 1984-04-07 ジ−メンス・アクチエンゲゼルシヤフト High speed dpcm encoder

Also Published As

Publication number Publication date
JPH046288B2 (en) 1992-02-05

Similar Documents

Publication Publication Date Title
JPS6056335B2 (en) encoder
JPH02134010A (en) Signal processor
JPS6158327A (en) High-speed dpcm encoder
JPH0156578B2 (en)
JPS5911027A (en) Adaptive differential pcm system
Fujisaka et al. Bit-stream signal processing circuits and their application
JPS6251830A (en) Parallel processing type plane forecasting circuit
JPH0243375B2 (en)
KR0163904B1 (en) D/a converter using digital signal delta
US5991784A (en) Signal processing circuit
JPH0239138B2 (en) SABUNFUGOKI
JP2699382B2 (en) Noise shaping method
JPH0156577B2 (en)
JP3158712B2 (en) Quantizer
Pneumatikakis et al. Direct processing of sigma-delta signals
JPH04329714A (en) Noise shaver
JPH029486B2 (en)
Angus Direct DSP on sigma-delta encoded audio signals
JPS61121619A (en) High speed dpcm circuit
JPH08107362A (en) Noise shaping re-quantizer
JPH03110924A (en) A/d converter
JPH03289810A (en) Quantizer
JPS62104223A (en) Adpcm coding and recoding device
JPS6359024A (en) Adaptive quantizing system
JPH0356022B2 (en)