JPS6158269A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6158269A
JPS6158269A JP59179185A JP17918584A JPS6158269A JP S6158269 A JPS6158269 A JP S6158269A JP 59179185 A JP59179185 A JP 59179185A JP 17918584 A JP17918584 A JP 17918584A JP S6158269 A JPS6158269 A JP S6158269A
Authority
JP
Japan
Prior art keywords
region
semiconductor
collector
conductivity type
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59179185A
Other languages
Japanese (ja)
Inventor
Masahiro Sakagami
坂上 正裕
Yoshihiko Mizushima
宜彦 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59179185A priority Critical patent/JPS6158269A/en
Publication of JPS6158269A publication Critical patent/JPS6158269A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/10ROM devices comprising bipolar components

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve operational margin and speed by a method wherein semiconductor elements commonly driving an emitter and collector are arranged on specified positions. CONSTITUTION:A collector in the first conductive type regions 2 and the second conductive type region 3, an emitter in the second conductive regions 4 and a base in the first conductive type regions 5 ohmic-junctioned with the substrate 1 are easily formed on the first conductive substrate 1 by means of normal planar diffusion technology to integrate the collector and the emitter into a semiconductor cell S1 connected through the intermediary of load resistors 13. When base terminals 11 are impressed with specified bias voltage with similar semiconductor element cells S2 arranged at specified interval, the cells S1,S2 and respective collector and emitter connecting to terminals 14, 15 may be coupled with each other subject to the current controlled negative resistance characteristics. On the other hand, when the reverse polarity setting up voltage of terminals 14, 15 is inversed, a storage carrier near one collector may be shifted in the other collector side drift electric field to reduce the non-symmetry of electric coupling effect for increasing operational margin making elements S1 etc. turn OFF rapidly due to drifting effect.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は負性抵抗特性を有する半導体素子の複数の組合
せから成るシフトレジスタ、メモリ。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a shift register and memory comprising a plurality of combinations of semiconductor elements having negative resistance characteristics.

論理素子等の機能全行いうる半導体装置に関する。The present invention relates to a semiconductor device capable of performing all functions such as a logic element.

(従来技術) 従来の負性抵抗特性を組合せた半導体素子としてプラズ
マ結合素子(plasma −coupled dev
ice)−(特許第936522号二半導体装置:鈴木
、水島)が提案されている。この素子は第4図に示すご
とく、フック付ユニジャンクショントランジスタを基本
電極前底としてお夛、第4図Aは単位ゲートの平面図、
Bはその断面図を示す。
(Prior art) A plasma-coupled device (plasma-coupled device) is used as a semiconductor device that combines conventional negative resistance characteristics.
ice)-(Patent No. 936522 2 Semiconductor device: Suzuki, Mizushima) has been proposed. As shown in Fig. 4, this device has a unijunction transistor with a hook as the front bottom of the basic electrode, and Fig. 4A is a plan view of the unit gate.
B shows its cross-sectional view.

図においてQlは単位半導体装置で、1は第1の4′t
L型t−Nする半導体基板、2は半導体基板内に形成さ
れ、かつ第2の導電型を有する第1の領域、3は前記の
第1の領域2173に形成され、かつ第1の導電型を有
する第2の領域、4は半導体基板内に形成され、前記の
第117)領域2と対向し、かつ第2の導電型を有する
第3の領域、5は前記の半導体基板内に形成され、かつ
第1の導電型を有する第4の領域、6はバイアス電源ヲ
示す。しかして第4図のバイアス条件のもとて第2の領
域3と第3の領域4との間には第5図に示す亀冗制御形
の負性抵抗特性を示す半導体素子Q+を基本単位セルと
している。シフトレジスタやメモリなどを構成する場合
には、同一の半導体基板1に多数個の電極群を配置し、
各単位セル間の電気的結合効果を利用している。
In the figure, Ql is a unit semiconductor device, and 1 is the first 4′t
2 is a first region formed in the semiconductor substrate and has a second conductivity type; 3 is a first region formed in the first region 2173 and has a first conductivity type; 117) A second region 4 having a second conductivity type, 4 formed in the semiconductor substrate, facing the 117th region 2, and having a second conductivity type, 5 formed in the semiconductor substrate. , and a fourth region having the first conductivity type, and 6 represents a bias power source. However, under the bias conditions shown in FIG. 4, a semiconductor element Q+ exhibiting the negative resistance characteristic of the tortoise control type shown in FIG. 5 is inserted between the second region 3 and the third region 4 as a basic unit. It is used as a cell. When configuring a shift register, memory, etc., a large number of electrode groups are arranged on the same semiconductor substrate 1,
It utilizes the electrical coupling effect between each unit cell.

第6図はシフトレジスタの具体例で、信号入力線10か
らの入力が、7〜9の駆動端子に印加され次第7図に示
すクロックパルスに同期してセルQ、からQ、・・・へ
と転送することができる。
Figure 6 shows a specific example of a shift register, in which as soon as the input from the signal input line 10 is applied to the drive terminals 7 to 9, it is shifted from cell Q to Q, . . . in synchronization with the clock pulse shown in Figure 7. and can be transferred.

(発明が解決しょうとする問題点) 以上が従来のプラズマ結合素子の構造と動作原理の概要
であるが、この構成では各単位セル間の電気的結合の非
対称性を大きくするのが困難で動作マージンが小さいこ
と、ま几転送動作周波数がlOMHz以下と比較的遅い
などの欠点があった。
(Problems to be Solved by the Invention) The above is an overview of the structure and operating principle of a conventional plasma coupled device. However, with this configuration, it is difficult to increase the asymmetry of electrical coupling between each unit cell, and the device does not operate. It has disadvantages such as a small margin and a relatively slow transfer operating frequency of less than 10MHz.

(問題点を解決する九めの手段) 本発明はこれらの問題点を解決するために提案されたも
ので、通常のプレーナ拡散技術によジ容易に製造できる
半導体装置を提供することを目的とする。
(Ninth Means for Solving the Problems) The present invention was proposed to solve these problems, and its purpose is to provide a semiconductor device that can be easily manufactured using ordinary planar diffusion technology. do.

上記の目的を達成するため、本発明は第1の導電型を有
する半導体基板内に形成された第2の導電型を有する第
1の領域と、前記第1の領域内に形成され7C第10導
電型を有する第2の領域と、前記半導体基板内に形成さ
れ、前記第1の領域と対向し、かつ第2の導電型を有す
る第3の領域と、前記半導体基板内に形成された第1の
導電型を有する第4の領域とを具備し、前記第2及び第
3の領域が電気的に接続された構成を単位セルとする半
導体素子の複数が、前記半導体基板を共通として形成さ
れ、前記の第4の領域が一定バイアスの下で、前記第1
の半導体素子の第2と第3の領域の第1の接続端子と、
少くとも1つの隣接する他の半導体素子の第2の接続端
子との間に負性抵抗特性を呈する工9に結合された素子
グループが、その1組の半導体素子のターンオン状態に
因るキャリア注入及びバルク抵抗を介しfcit位変化
に基き前記の第1の半導体素子と隣る他の少くとも1つ
の他の半導体素子のターンオン電圧が低下するに十分な
関係が得られるように互いの間隔を保って配置されるこ
とを特徴とする半導体装置を発明の要旨とするものであ
る。
To achieve the above object, the present invention includes a first region having a second conductivity type formed in a semiconductor substrate having a first conductivity type, and a 7C10 region formed in the first region. a second region having a conductivity type; a third region formed within the semiconductor substrate and facing the first region and having a second conductivity type; and a third region formed within the semiconductor substrate and having a second conductivity type. A plurality of semiconductor elements each having a fourth region having a conductivity type of one conductivity type and having a unit cell having a configuration in which the second and third regions are electrically connected are formed using the semiconductor substrate in common. , the fourth region is under a constant bias, the first region is
a first connection terminal of the second and third regions of the semiconductor element;
The element group coupled to the terminal 9 exhibiting negative resistance characteristics with the second connection terminal of at least one other adjacent semiconductor element is capable of receiving carrier injection due to the turn-on state of the set of semiconductor elements. and at least one other semiconductor element adjacent to said first semiconductor element, maintaining a distance from each other such that a sufficient relationship is obtained such that the turn-on voltage of said first semiconductor element and at least one other semiconductor element adjacent to said first semiconductor element is reduced based on a change in fcit level through a bulk resistor. The gist of the invention is a semiconductor device characterized in that it is arranged as follows.

次に本発明の詳細な説明する。なお実施例は一つの例示
であって、本発明の精神を逸脱しない範囲で、種々の変
更あるいは改良を行いうろことは言うまでもない。
Next, the present invention will be explained in detail. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第1図は本発明の実施例を示すもので、Aは本発明の基
本セルの平面図、Bはその断面図を示す。図においてl
は第1の導電型含有する半導体基板、2は半導体基板内
に形成され、かつ第2の導電型を有する第1の領域、3
は前記の第1の領域2FE3に形成され、かつ第1の導
電型を有する第2の領域、4は半導体基板内に形成烙れ
、前記の第1の領域2と対向し、かつ第2の4電型を有
する第3の領域、5は前記の半導体基板内に形成され、
かつ第1の導電型を有する第4の領域を示す。しかして
第3の領域4は少数キャリアを注入するためのエミッタ
の役目をなし、第4の領域5は半導体基板とオーミック
接合をな丁ベースの役目をし、第1の領域2と第2の領
域3とはフック接合のコレクタ電極の役目をは九丁もの
である。しかしてエミッタとコレクタとは負荷抵抗13
を介して配線で接続されている。14はエミッタとコレ
クタの共通端子を示す。これをセルS、とする。ま′f
cs、と同様の電極構成をもつセルS、をセルs1に隣
接して配置することに工り、相互のセル間には従来得ら
れなかつfcW規な結合効果が得られる。なお15はセ
ルS、のエミッタとコレクタの共通端子を示ア。アなわ
ち、ペース電極端子11を基準電圧(例えばOV)に対
し一定バイアス(例えば5V)し、端子14をH−レベ
ル(例えば6V)に、且つ端子15をL−レベル(例え
ばOV)にすると、端子14と15の間には、端子14
がら端子15への電流が流れ、第5図に示す工うな電流
制御形の負性抵抗特性が生ずる。すなわち上記のレベル
設定ではセルS、■エミッタとセルs2のコレクタのみ
が順方向となフ、その他の電極、セルslのコレクタ及
びセルS、のエミッタは遮断状態となるからである。当
然のことながら、セルS、と82のレベル設定を逆に丁
れば逆方向に流れる電流制御形の負性抵抗特性を示す。
FIG. 1 shows an embodiment of the present invention, in which A shows a plan view of a basic cell of the invention, and B shows a sectional view thereof. In the figure l
2 is a semiconductor substrate containing a first conductivity type; 2 is a first region formed in the semiconductor substrate and has a second conductivity type; 3
is formed in the first region 2FE3 and has a first conductivity type; 4 is formed in the semiconductor substrate, faces the first region 2, and has a second conductivity type; a third region 5 having a 4-electrode type is formed in the semiconductor substrate;
and a fourth region having the first conductivity type. Thus, the third region 4 serves as an emitter for injecting minority carriers, the fourth region 5 serves as a base for making an ohmic contact with the semiconductor substrate, and the first region 2 and the second region Region 3 serves as a hook junction collector electrode. However, the emitter and collector have a load resistance of 13
It is connected by wiring through. 14 indicates a common terminal between the emitter and the collector. This is called cell S. Ma'f
By arranging the cell S having the same electrode configuration as cs and adjacent to the cell s1, an fcW coupling effect, which has not been previously obtained, can be obtained between the cells. Note that 15 indicates the common terminal of the emitter and collector of cell S. That is, if the pace electrode terminal 11 is set to a constant bias (for example, 5V) with respect to the reference voltage (for example, OV), the terminal 14 is set to H-level (for example, 6V), and the terminal 15 is set to L-level (for example, OV). , between terminals 14 and 15, terminal 14
However, a current flows to the terminal 15, and a negative resistance characteristic of the current control type as shown in FIG. 5 is generated. That is, with the above level setting, only the cell S, the emitter and the collector of the cell s2 are in the forward direction, while the other electrodes, the collector of the cell sl and the emitter of the cell S are in a cut-off state. Naturally, if the level settings of cells S and 82 are reversed, negative resistance characteristics of the current control type flowing in the opposite direction will be exhibited.

この構成で、端子14と15のレベルを互いにH→L 
、L−+HKそれぞれ反転させると、セルs2のコレク
タ電極近傍に蓄積していた少数キャリアはセルSlのコ
レクタ側にドリフト電界に工り移動する几め、ドリフト
効果のない場合に比べてスイッチングのター/オフ時間
が極めて短くなる。しかもそのドリフトによるキャリア
の有無を利用することに工り、電気的結合効果の非対称
性を大きくすることができる。
With this configuration, the levels of terminals 14 and 15 are changed from H to L.
, L-+HK are inverted, the minority carriers accumulated near the collector electrode of cell s2 move to the collector side of cell Sl due to the drift electric field, resulting in a higher switching rate than in the case without the drift effect. / Off time becomes extremely short. Moreover, by utilizing the presence or absence of carriers due to the drift, it is possible to increase the asymmetry of the electrical coupling effect.

第2図は本発明の二相駆動シフトレジスタへの実施例の
平面パターンを示すもので、エミッタ、コレクタ間に抵
抗を挿入しない場合について示し友が、必要に応じ抵抗
を付加することもできる。この構造ではエミッタ及びコ
レクタの配置tメアンダ形にし、且つ形状に非対称性を
つけて、エフ大きな結合の非対称効果が得られる構造と
なっている。図中7,8は駆動端子、10は信号入力線
、16は電位検出電極(第1の導電型を有する第5の領
域)を示す。このシフトレジスタを駆動するには第3図
のタイミングチャートで表わした各々のパルス例えば人
力パルスDを信号入力線10に、駆動パルスE、F’e
それぞれ駆動端子8と7に印加すれば良い。パルスDは
駆動パルスの周期に同期して第2図の右方向に転送され
、その出力は必要に応じてオーミック接合等で形成され
た電位検出電極16(第1の4を型を有する第5の領域
)などで敗出丁ことができる。いま、セルS1のコレク
タがL−レベルで、且つ信号入力i10のレベルがH−
レベルで少数キャリアの注入のある状態ではセルS、の
コレクタ周辺には少数キャリアが蓄積している(第3図
で時刻t、の状態)。ところがセルS、のコレクタがH
−レベルで、セルS、のコレクタがL−レベルになると
(第3図で時刻t、の状態)、上記の蓄積キャリアはパ
ルスE、Fの振幅差に和尚する電界強度のドリフト効果
に工υセルS、からセルS2に移動し、遮断動作を速く
する。さらにこのトリアドキャリアがセルS、のエミッ
タから注入し友キャリアに加わり、ニジ速く導通になる
几め、高速スイッチングが実現でき、且つ隣接セル間と
の電気的結合効果に非対称性が付与される。コレクタや
エミッタの電極形状の非対称効果のみならず、二相駆動
による電気的駆動手段によっても非対称効果をつけ、ら
れることから、エフ大きな動作マージンを得ることがで
き、二相駆動シフトレジスタの構成が容易となる。特に
ドリフト電界効果は、単位セル内のコレクタ電極間距離
が小さければ小さい程顕著となる几め、セルピッチをつ
めることは高速動作にとっても有利である。
FIG. 2 shows a planar pattern of an embodiment of the two-phase drive shift register of the present invention, and shows the case where no resistor is inserted between the emitter and collector, but a resistor can be added as necessary. In this structure, the emitter and collector are arranged in a t-meander shape, and the shape is asymmetric, so that an asymmetrical effect of large coupling can be obtained. In the figure, 7 and 8 are drive terminals, 10 is a signal input line, and 16 is a potential detection electrode (fifth region having the first conductivity type). To drive this shift register, each pulse shown in the timing chart of FIG.
It is sufficient to apply the voltage to drive terminals 8 and 7, respectively. The pulse D is transferred to the right in FIG. area), etc. can be defeated. Now, the collector of cell S1 is at L- level, and the level of signal input i10 is at H- level.
In a state where minority carriers are injected at the cell S, minority carriers are accumulated around the collector of the cell S (state at time t in FIG. 3). However, the collector of cell S is H.
- level, and when the collector of cell S becomes L- level (state at time t in Fig. 3), the above accumulated carriers are affected by the drift effect of the electric field strength, which is caused by the amplitude difference between pulses E and F. Move from cell S to cell S2 to speed up the cutoff operation. Furthermore, these triad carriers are injected from the emitter of cell S and join the friend carriers, resulting in rapid conduction, realizing high-speed switching, and imparting asymmetry to the electrical coupling effect between adjacent cells. . Not only the asymmetrical effect of the collector and emitter electrode shapes, but also the asymmetrical effect of the electric drive means using two-phase drive, it is possible to obtain a large operating margin, and the configuration of the two-phase drive shift register is It becomes easier. In particular, the drift field effect becomes more pronounced as the distance between collector electrodes within a unit cell becomes smaller, and narrowing the cell pitch is also advantageous for high-speed operation.

以上は二相駆動シフトレジスタについて述べたものであ
るが、三相駆動に対しても適用可能であり、その他各種
の論理機能の構成にも応用できることは言うまでもない
。又動作電圧はバイアス電圧が5vの例について述べた
が、動作マージンが従来形のプラズマ結合素子に比べて
大きくできるため、さらに低電圧動作が可能で、低消費
電力化が図れる。
Although the above description is about a two-phase drive shift register, it goes without saying that it is also applicable to three-phase drive, and can also be applied to configurations of various other logical functions. Further, as for the operating voltage, an example in which the bias voltage is 5V has been described, but since the operating margin can be made larger than that of a conventional plasma coupled device, even lower voltage operation is possible, and power consumption can be reduced.

(発明の効果) 以上89.明したように、本発明によればエミッタとコ
レクタ電極を共通に駆動することにエフ、従来のコレク
タを固定していた場合に比べて動作マージンを大きくし
且つ、ドリフト電界に基づくキャリア輸送効果による高
速スイッチング動作が可能となる。
(Effect of the invention) Above 89. As explained above, according to the present invention, by driving the emitter and collector electrodes in common, the operating margin is increased compared to the conventional case where the collector is fixed, and the carrier transport effect based on the drift electric field is High-speed switching operation is possible.

ま′fc¥mf″I″マージンが大きく出来るため、従
来構造では実現の困難だった2相駆動シフトレジスタが
容易に構成され、配線領域も狭くできるため高密度、大
容量化に有利となる。さらに駆動パルスの構成も単純な
ため、周辺回路が簡略化ができ、全体とじて高速、高密
度なLSI化iC適した基本素子として優れた効果を有
するものである。
Since the 'fc\mf''I'' margin can be increased, a two-phase drive shift register, which was difficult to realize with the conventional structure, can be easily constructed, and the wiring area can also be narrowed, which is advantageous for high density and large capacity. Furthermore, since the configuration of the drive pulse is simple, the peripheral circuitry can be simplified, and the overall effect is excellent as a basic element suitable for high-speed, high-density LSI integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明による半導体装置の原
理、構成を示す図で、第1図Aは単位セルの平面図、B
はその断面図、第2図はシフトレジスタの実施例の平面
図、第3図はシフトレジスタを駆動するための駆動パル
スのタイミング図を示す。 第4図、第5図、第6図、第7図は従来形プラズマ結合
素子含水す図であり、第4図Aは単位ゲートの平面図、
第4図Bはその断面図、第5図は単位ゲートの特性曲線
図、第6図は装置全体の路線的平面図、第7図はその駆
動のためのパルスタイミング図を示す。 l・・・・・・・・・半導体基板 2・・・・・・・・・第1の函域 3・・・・・・・・・第2の領域 4・・・・・・・・・第3の鴇域 5・・・・・・・・・第4の領域 6・・・・・・・・・バイアスta Q、・・・・・・・・・半導体装置 7.8.9・・・駆動端子 lO・・・・・・・・・信号入力線 11・・・・・・・・・共通ペース電極端子12・・・
・・・・・・共通コレクタ電極13・・・・・・・・・
負荷抵抗 14・・・・・・・・・エミッタ4とコレクタ(2,!
:3)O共通端子 15・・・、・・、・、エミッタとコレクタの共通端子
16・・・・・・・・・第5の領域(電位検出電極)Q
、〜Q4・・・単位半導体装置 R1−R4・・・負荷抵抗 S5、Ss・・・単位セル
1, 2, and 3 are diagrams showing the principle and structure of a semiconductor device according to the present invention, and FIG. 1A is a plan view of a unit cell, and FIG.
2 is a sectional view thereof, FIG. 2 is a plan view of an embodiment of the shift register, and FIG. 3 is a timing chart of drive pulses for driving the shift register. 4, 5, 6, and 7 are diagrams of conventional plasma coupled devices containing water, and FIG. 4A is a plan view of a unit gate;
FIG. 4B is a sectional view thereof, FIG. 5 is a characteristic curve diagram of a unit gate, FIG. 6 is a schematic plan view of the entire device, and FIG. 7 is a pulse timing chart for driving the device. l...Semiconductor substrate 2...First box area 3...Second area 4...・Third region 5...Fourth region 6...Bias ta Q,...Semiconductor device 7.8.9 ...Drive terminal lO...Signal input line 11...Common pace electrode terminal 12...
......Common collector electrode 13...
Load resistance 14... Emitter 4 and collector (2,!
:3) O common terminal 15...,..., emitter and collector common terminal 16...Fifth region (potential detection electrode) Q
, ~Q4...Unit semiconductor device R1-R4...Load resistance S5, Ss...Unit cell

Claims (4)

【特許請求の範囲】[Claims] (1)第1の導電型を有する半導体基板内に形成された
第2の導電型を有する第1の領域と、前記第1の領域内
に形成された第1の導電型を有する第2の領域と、前記
半導体基板内に形成され、前記第1の領域と対向し、か
つ第2の導電型を有する第3の領域と、前記半導体基板
内に形成された第1の導電型を有する第4の領域とを具
備し、前記第2及び第3の領域が電気的に接続された構
成を単位セルとする半導体素子の複数が、前記半導体基
板を共通として形成され、前記の第4の領域が一定バイ
アスの下で、前記第1の半導体素子の第2と第3の領域
の第1の接続端子と、少くとも1つの隣接する他の半導
体素子の第2の接続端子との間に負性抵抗特性を呈する
ように結合された素子グループが、その1組の半導体素
子のターンオン状態に因るキャリア注入及びバルク抵抗
を介した電位変化に基き前記の第1の半導体素子と隣る
他の少くとも1つの他の半導体素子のターンオン電圧が
低下するに十分な関係が得られるように互いの間隔を保
つて配置されることを特徴とする半導体装置。
(1) A first region having a second conductivity type formed in a semiconductor substrate having a first conductivity type, and a second region having a first conductivity type formed within the first region. a third region formed in the semiconductor substrate, facing the first region and having a second conductivity type; and a third region formed in the semiconductor substrate having the first conductivity type. A plurality of semiconductor elements having a unit cell having a configuration in which the second and third regions are electrically connected are formed using the semiconductor substrate in common, and the fourth region is a negative voltage between the first connection terminal of the second and third regions of the first semiconductor element and the second connection terminal of at least one other adjacent semiconductor element under a constant bias. A group of elements coupled so as to exhibit a resistive characteristic is connected to the first semiconductor element and another adjacent semiconductor element based on the carrier injection caused by the turn-on state of the set of semiconductor elements and the potential change via the bulk resistance. A semiconductor device characterized in that the semiconductor devices are arranged at a distance from each other so as to obtain a sufficient relationship to reduce the turn-on voltage of at least one other semiconductor device.
(2)特許請求の範囲第1項記載の半導体装置に於て、
第2の領域と第3の領域の接続に抵抗を介することを特
徴とする半導体装置。
(2) In the semiconductor device according to claim 1,
A semiconductor device characterized in that a second region and a third region are connected through a resistor.
(3)特許請求の範囲第1項記載の半導体装置に於て、
前記複数の半導体素子が予定の配列方向に順次配列され
、前記複数の半導体素子の夫々につき、エミッタ及びコ
レクタがメアンダ形に配置され、かつ非対称な形状とな
ることを特徴とする半導体装置。
(3) In the semiconductor device according to claim 1,
A semiconductor device, wherein the plurality of semiconductor elements are sequentially arranged in a predetermined arrangement direction, and each of the plurality of semiconductor elements has an emitter and a collector arranged in a meandering shape and has an asymmetric shape.
(4)特許請求の範囲第1項記載の半導体装置に於て、
前記半導体素子のターンオン又はターンオフ状態を検出
するための第1の導電型を有する第5の領域が設けられ
ていることを特徴とする半導体装置。
(4) In the semiconductor device according to claim 1,
A semiconductor device characterized in that a fifth region having a first conductivity type is provided for detecting a turn-on or turn-off state of the semiconductor element.
JP59179185A 1984-08-30 1984-08-30 Semiconductor device Pending JPS6158269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59179185A JPS6158269A (en) 1984-08-30 1984-08-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59179185A JPS6158269A (en) 1984-08-30 1984-08-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6158269A true JPS6158269A (en) 1986-03-25

Family

ID=16061419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59179185A Pending JPS6158269A (en) 1984-08-30 1984-08-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6158269A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180553A (en) * 1988-12-28 1990-07-13 Tokin Corp Work device for gap of ferrite core for power source
JPH0360959A (en) * 1989-07-26 1991-03-15 Tdk Corp Polishing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180553A (en) * 1988-12-28 1990-07-13 Tokin Corp Work device for gap of ferrite core for power source
JPH0360959A (en) * 1989-07-26 1991-03-15 Tdk Corp Polishing device

Similar Documents

Publication Publication Date Title
KR100803163B1 (en) Liquid crystal display apparatus
EP0196462A2 (en) Random access memory
US20050206585A1 (en) Display devices and integrated circuits
US4150392A (en) Semiconductor integrated flip-flop circuit device including merged bipolar and field effect transistors
JPH01166561A (en) Charge transfer device
US3309534A (en) Bistable flip-flop employing insulated gate field effect transistors
JPS6158269A (en) Semiconductor device
US4163239A (en) Second level phase lines for CCD line imager
US4562452A (en) Charge coupled device having meandering channels
JPH0551185B2 (en)
KR940001393B1 (en) Standard cell
GB1413371A (en) Integrated circuit
KR900008622B1 (en) Semiconductor memory
US3497718A (en) Bipolar integrated shift register
US4574295A (en) Charge coupled device having meandering channels
JP2729379B2 (en) Logic circuit
JPH05268000A (en) Latched circuit
US4142249A (en) Conductor-access, magnetic bubble memory
SU473302A1 (en) Low Voltage High Voltage Switch
JPH02362A (en) Solid-state image pickup device
GB1270031A (en) Improvements in and relating to semiconductor devices
SU1413720A1 (en) Logical element
SU1247945A1 (en) Generator of voltage levels for writing-reading information
JPS60196973A (en) Semiconductor device
JPH11160671A (en) Liquid crystal display device